
More Balanced Polynomials: Cube Attacks on
810- and 825-Round Trivium with Practical

Complexities

Hao Lei1,2, Jiahui He1,2, Kai Hu3, and Meiqin Wang1,2,4 (B)

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
China

leihao@mail.sdu.edu.cn,hejiahui2020@mail.sdu.edu.cn,mqwang@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Jinan, China.
3 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore. kai.hu@ntu.edu.sg
4 Quan Cheng Shandong Laboratory, Jinan, China

Abstract. The key step of the cube attack is to recover the special poly-
nomial, the superpoly, of the target cipher. In particular, the balanced
superpoly, in which there exists at least one secret variable as a single
monomial and none of the other monomials contain this variable, can
be exploited to reveal one-bit information about the key bits. However,
as the number of rounds grows, it becomes increasingly difficult to find
such balanced superpolies. Consequently, traditional methods of search-
ing for balanced superpolies soon hit a bottleneck. Aiming at performing
a cube attack on more rounds of Trivium with a practical complexity,
in this paper, we present three techniques to obtain sufficient balanced
polynomials.

1. Based on the structure of Trivium, we propose a variable substitution
technique to simplify the superpoly.

2. Obtaining the additional balanced polynomial by combining two su-
perpolies to cancel the two-degree terms.

3. We propose an experimental approach to construct high-quality large
cubes which may contain more subcubes with balanced superpolies
and a heuristic search strategy for their subcubes whose superpolies
are balanced.

To illustrate the power of our techniques, we search for balanced poly-
nomials for 810- and 825-round Trivium. As a result, we can mount cube
attacks against 810- and 825-round Trivium with the time complexity
of 244.17 and 253.17 round-reduced Trivium initializations, respectively,
which can be verified in 48 minutes and 18 days on a PC with one A100
GPU. For the same level of time complexity, this improves the previous
best results by 2 and 5 rounds, respectively.

Keywords: Trivium · cube attack · key-recovery attack · division prop-
erty.

2 H.Lei et al.

1 Introduction

The cube attack, proposed by Dinur and Shamir at EUROCRYPT 2009 [8], is
one of the most powerful cryptanalysis techniques for symmetric ciphers. It has
been successfully used to attack various stream ciphers such as Kreyvium, Acorn
and Trivium [6,27,5,24,19,3].

Trivium was designed by Cannière and Preneel, as a bit-oriented synchronous
stream cipher which was selected as one of the eSTREAM hardware-oriented
finalists, and the international standard under ISO/IEC 29192-3:2012 [5]. Triv-
ium has attracted extensive attention because of its simple structure and high
level of security. Since the cube attack was proposed, it has become one of the
most effective cryptanalytic techniques to analyze the reduced-round variants
of Trivium. Currently, the best cube attacks on Trivium are those enhanced by
divsion-properties [24], which have reached 848 rounds [12] but with an imprac-
tical complexity that is very close to the exhaustive search.

At the same time, the cube attacks on reduced-round Trivium with practi-
cal complexities also attract much attention, for the practical attacks have the
potential to reveal more internal structural properties of Trivium and inspire
new techniques for cube attacks. In [8], the authors proposed the random walk
method to attack 767-round Trivium with about 245 initializations. Next, Fouque
et al. found many cubes with linear superpolies by improving the time complex-
ity of computing cubes, then the 784-round of Trivium could be attacked with
about 239 initializations [9]. Later, in [31], Ye et al. proposed an effective method
to construct cubes for linear superpolies and they gave a practical attack against
805-round Trivium with about 238 initializations. At FSE 2021, Sun proposed a
new heuristic method to reject cubes without independent secret variables and
they could perform practical attacks against 806- and 808-round Trivium with
time complexity of 239.88 and 244.58 initializations, respectively [22]. Recently,
Cheng et al. gave attacks on 815- and 820-round Trivium with 247.32 and 253.17

initializations, respectively [7]. These results are summarized in Table 1.

1.1 Our Contributions

This paper focuses on practical key-recovery attacks against reduced-round Triv-
ium. In order to attack a higher number of rounds, we propose the following
methods.

Simplify Superpolies by Variable Substitutions. At the cost of adding
one extra variable, the variable substitution can greatly simplify the superpoly,
so that some unbalanced superpolies can be transformed into balanced ones.
Thanks to this technique, more simple and balanced superpolies are utilized,
from which more information about secret variables can be extracted.

More Balanced Polynomials by Canceling the Quadratic Terms. Bal-
anced superpolies are important for practical attacks on round-reduced Trivium.
However, for Trivium with a higher number of rounds, it is hard to find cubes

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 3

with balanced superpolies. We propose a method to obtain one additional bal-
anced polynomial by canceling the quadratic terms in two superpolies. The new
balanced polynomial is the sum of these two superpolies.

A Modified Algorithm to Construct a Better Mother Cube. Finding a
large cube that contains many subcubes with balanced superpolies is important
for the practical attack on round-reduced Trivium. In the following paper, this
large cube is called a mother cube. By examining the relationship between the
superpoly of a mother cube and the superpolies of its subcubes, we can more
accurately judge whether a mother cube is suitable for a practical attack.

A Heuristic Strategy for Searching for Balanced Subcubes. It often
takes a long time to recover the superpoly of a cube for high rounds of Trivium.
Moreover, a high-dimensional mother cube has a large number of subcubes. To
reduce the search space, we propose two strategies for dividing the search space
by examining the relationship between the superpoly of a cube and the super-
polies of its subcubes, which allows us to obtain sufficient balanced superpolies
for a practical key-recovery attack with the reduced search space.

As an application, we apply our methods to 810-round Trivium and 825-round
Trivium. The complexities of the cube attacks on 810 and 825 rounds of Trivium
are respectively 244.58 and 253.09 round-reduced Trivium initializations. We list
our attacks as well as the previous practical/theoretical cube attacks on Trivium
for a better comparison in Table 1. We also implemented these two attacks on a
PC with an A100 GPU. The experimental results showed that the whole keys can
be recovered within 48 minutes and 18 days for 810 and 825 rounds of Trivium,
respectively.

All source codes for our algorithms in this paper are provided at the git
repository https://github.com/lhoop/ObtainMoreBS.

1.2 Outline

In Section 2, some related concepts and definitions are introduced. An overview
of previous works on round-reduced practical attacks on Trivium is given in Sec-
tion 3. In Section 4, we propose three techniques to obtain a lot of balanced
polynomials for round-reduced Trivium and a heuristic search strategy that re-
duces the cube search space of round-reduced Trivium. In Section 5, we mount
cube attacks against 810- and 825-round Trivium by our techniques. Finally, we
draw our conclusions in Section 6.

2 Preliminaries

2.1 Notation

We use bold italic lowercase letters to represent bit vectors, such as x = (𝑥0, 𝑥1,
. . . , 𝑥𝑛−1) where 𝑥𝑖 is the 𝑖-th element of x. For any 𝑛-bit vectors u and v, we

4 H.Lei et al.

Table 1. A summary of cube attacks on Trivium

Type # of rounds Cube size # of key bits Total time Ref.

Practical

672 12 63 218.56 [8]
709 22-23 79 229.14 [18]
767 28-31 35 245.00 [8]
784 30-33 42 239.00 [9]
805 32-38 42 241.40 [31]
806 33-37 45 239.88 [22]
808 39-41 37 244.58 [22]
810 40-42 39 244.17 Section 5.1
815 44-46 35 247.32 [7]
820 48-51 30 253.17 [7]
825 49-52 31 253.09 Section 5.2

Theoretical

799 32-37 18 262.00 [9]
802 34-37 8 272.00 [29]
805 28 7 273.00 [17]
806 34-37 16 264.00 [31]
835 35 5 275.00 [17]
832 72 1 279.01 [26]
832 72 > 1 < 279.01 [30]
840 78 1 279.58 [10]
840 75 3 277.32 [15]
841 78 1 279.58 [10]
841 76 2 278.58 [15]
842 78 1 279.58 [11]
842 76 2 278.58 [15]
843 54-57,76 5 276.58 [14]
843 78 1 279.58 [22]
844 54-55 2 278.00 [14]
845 54-55 2 278.00 [14]
846 51-54 1 279.00 [12]
847 52-53 1 279.00 [12]
848 51-54 1 279.00 [12]

define u ⪰ v if 𝑢𝑖 ≥ 𝑣𝑖 for all 0 ≤ 𝑖 < 𝑛. Similarly, we define u ⪯ v if 𝑢𝑖 ≤ 𝑣𝑖
for all 0 ≤ 𝑖 < 𝑛. Blackboard bold uppercase letters (e.g. X,K,L, . . .) are used
to represent sets of bit vectors. And we use the composition operator (◦) to
compose two functions. For example, 𝑔 ◦ 𝑓 (𝑥) = 𝑔(𝑓 (𝑥)).

2.2 Boolean Functions and Algebraic Degree

Boolean Function. Let 𝑓 : F𝑛2 → F2 be a Boolean function whose algebraic
normal form (ANF) is

𝑓 (x) = 𝑓 (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) =
⊕
u∈F𝑛2

𝑎u

𝑛−1∏
𝑖=0

𝑥
𝑢𝑖
𝑖
,

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 5

where 𝑎u ∈ F2, and

xu = 𝜋u (x) =
𝑛−1∏
𝑖=0

𝑥
𝑢𝑖
𝑖

with 𝑥
𝑢𝑖
𝑖

=

{
𝑥𝑖 , if 𝑢𝑖 = 1,
1, if 𝑢𝑖 = 0,

is called a monomial. We use the notation xu → 𝑓 to indicate that the co-
efficient 𝑎u of xu in 𝑓 is 1, i.e., xu appears in 𝑓 . Otherwise, xu ↛ 𝑓 . In this
work, we will use xu and 𝜋u (x) interchangeably to avoid the awkward notation

x(𝑖)
u(𝑗)

when both x and u have superscripts.
One important feature of a Boolean function is its algebraic degree which is

denoted by deg(𝑓) and defined as

deg(𝑓) = max {𝑤𝑡 (u) | 𝑎u ≠ 0} ,

where 𝑤𝑡 (u) is the Hamming weight of u, i.e., 𝑤𝑡 (u) = ∑𝑛−1
𝑖=0 𝑢𝑖.

Vectorial Boolean Function. Let 𝑓 : F𝑛2 → F𝑚2 be a vectorial Boolean function
with y = (𝑦0, 𝑦1, . . . , 𝑦𝑚−1) = f (x) = (𝑓0 (x), 𝑓1 (x), . . . , 𝑓𝑚−1 (x)). For v ∈ F𝑚2 , we
use yv to denote the product of some coordinates of y:

yv =

𝑚−1∏
𝑖=0

𝑦
𝑣𝑖
𝑖
=

𝑚−1∏
𝑖=0

(𝑓𝑖 (x))𝑣𝑖 ,

which is a Boolean function in x.

2.3 Pseudo-code of Trivium

Trivium is a bit oriented synchronous stream cipher, the main building block of
Trivium is a 288-bit nonlinear feedback shift register which is divided into three
small registers. For initialization, the 80 bit secret variables k = (𝑘0, 𝑘1, . . . , 𝑘79)
is loaded into the first register, and the 80-bit IV (i.e., public variables) v =

(𝑣0, 𝑣1, . . . , 𝑣79) is loaded into the second register. For the third register, all state
bits are set to 0 except the last three bits. After 1152 state updates, Trivium
starts to output keystream bits. The pseudo-code of Trivium is described in
Algorithm 1.

2.4 Cube Attack

The cube attack was first proposed by Dinur and Shamir in EUROCRYPT
2009 [8]. It is a powerful cryptanalytic technique against stream ciphers. For
a cipher with 𝑛 public variables and 𝑚 secret variables, each output bit of the
cipher can be represented as a polynomial in these secret and public variables.
Let 𝑧 be an output bit, x = (𝑥0, 𝑥1, ..., 𝑥𝑛−1) as the public variables and k =

(𝑘0, 𝑘1, ..., 𝑘𝑚−1) as the secret variables. 𝑧 can be expressed as

𝑧 = 𝑓 (k,x).

6 H.Lei et al.

Algorithm 1: Pseudo-code of Trivium

1 𝑠0, 𝑠1, ..., 𝑠92 ← (𝑘0, ..., 𝑘79, 0, ..., 0)
2 𝑠93, 𝑠94, ..., 𝑠176 ← (𝑣0, ..., 𝑣79, 0, ..., 0)
3 𝑠177, 𝑠178, ..., 𝑠287 ← (0, ..., 0, 1, 1, 1)
4 for i from 1 to N (Number of initialization rounds) do
5 𝑡𝑎 ← 𝑠65 ⊕ 𝑠92 ⊕ 𝑠90𝑠91 ⊕ 𝑠170
6 𝑡𝑏 ← 𝑠161 ⊕ 𝑠176 ⊕ 𝑠174𝑠175 ⊕ 𝑠263
7 𝑡𝑐 ← 𝑠242 ⊕ 𝑠287 ⊕ 𝑠285𝑠286 ⊕ 𝑠68
8 if 𝑖 > 1152 then
9 𝑧𝑖−1152 ← 𝑠65 ⊕ 𝑠92 ⊕ 𝑠161 ⊕ 𝑠176 ⊕ 𝑠242 ⊕ 𝑠287

10 end
11 𝑠0, 𝑠1, ..., 𝑠92 ← (𝑡𝑏, 𝑠0, 𝑠1, ..., 𝑠91)
12 𝑠93, 𝑠94, ..., 𝑠176 ← (𝑡𝑎, 𝑠93, 𝑠94, ..., 𝑠175)
13 𝑠177, 𝑠178, ..., 𝑠287 ← (𝑡𝑐, 𝑠177, 𝑠178, ..., 𝑠286)
14 end

Let 𝐼 =
{
𝑥𝑐1 , 𝑥𝑐2 , . . . , 𝑥𝑐𝑑

}
⊂ {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} be a subset of public variables,

assume xu =
∏

𝑥∈𝐼 𝑥 is its corresponding term. Then, 𝑓 (x,k) can be uniquely
expressed as

𝑓 (x,k) = 𝑝(x,k) · xu + 𝑞(x,k),
where 𝑞(x,k) misses at least one variable in 𝐼. A cube determined by 𝐼 is denoted
as 𝐶𝐼 and contains all 2𝑑 possible combinations of the values of variables in 𝐼. 𝐶𝐼

is a 𝑑-dimensional cube because the size of 𝐼 is 𝑑. xu is called a cube term. The
public variables in 𝐼 are called cube variables and the remaining public variables
are called non-cube variables. 𝑝(x,k) is called the superpoly of 𝐶𝐼 which can
be computed by ⊕

x∈𝐶𝐼

𝑓 (x,k) = 𝑝(x,k).

Therefore, we can get the value of the superpoly 𝑝(x,k) by 2 |𝐼 | calls to the
initialization oracle.
For a superpoly 𝑃, if a variable 𝑘𝑖 that appears only in a one-degree monomial,
we say 𝑃 is a balanced superpoly for the balanced variable 𝑘𝑖. Moreover,
if all variables in 𝑃 are balanced variables, we say 𝑃 is a linear superpoly.
For example, 𝑃1 = 𝑘1 ⊕ 𝑘2 ⊕ 𝑘3𝑘4 is a balanced superpoly for balanced variables
𝑘1 and 𝑘2, 𝑃2 = 𝑘1 ⊕ 𝑘2 is a linear superpoly. We say a cube is balanced if
its superpoly is balanced for some balanced variables. For a balanced superpoly
whose value is known, we can deduce its one balanced variable by enumerating
the values of other variables.

2.5 The Bit-Based Division Property and Monomial Prediction

The division property is a generalization of integral property, which was proposed
by Todo in [23,25]. The conventional bit-based division property can be used to
evaluate the algebraic degree of a cube and the three-subset division property

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 7

without unknown subset can be used to recover superpoly. The definitions of the
conventional bit-based division property and three-subset division property are
provided in Appendix A.

The monomial prediction, proposed by Hu et al. in [15], is another language
of division property from a pure algebraic perspective. By counting the so-called
monomial trails, the monomial prediction can determine if a monomial of IV
appears in the polynomial of the output of the cipher.

Let f : F𝑛0

2 → F
𝑛𝑟
2 be a composite vectorial Boolean function of a sequence

of 𝑟 smaller function f (𝑖) : F𝑛𝑖2 → F
𝑛𝑖+1
2 , 0 ≤ 𝑖 ≤ 𝑟 − 1 as

f = f (𝑟−1) ◦ f (𝑟−2) ◦ · · · ◦ f (0) .
Let x(𝑖) ∈ F𝑛𝑖2 and x(𝑖+1) ∈ F𝑛𝑖+12 be the input and output variables of f (𝑖) ,

respectively. Suppose 𝜋u(0) (x(0)) is a monomial of 𝑥 (0) , it is easy to find all mono-
mials of 𝑥 (1) satisfying 𝜋u(0) (x(0)) → 𝜋u(1) (x(1)). For every such 𝜋u(1) (x(1)), we
then find all the 𝜋u(2) (x(2)) satisfying 𝜋u(1) (x(1)) → 𝜋u(2) (x(2)). Finally, if we
are interested in whether 𝜋u(0) (x(0)) → 𝜋u(𝑟) (x(𝑟)), we collect some transitions
from 𝜋u(0) (x(0)) to 𝜋u(𝑟) (x(𝑟)) as

𝜋u(0) (x(0)) → 𝜋u(1) (x(1)) → · · · → 𝜋u(𝑟) (x(𝑟)).
Every such transition is called a monomial trail from 𝜋u(0) (x(0)) → 𝜋u(𝑟) (x(𝑟)),
denoted by 𝜋u(0) (x(0)) ⇝ 𝜋u(𝑟) (x(𝑟)). All the trails from 𝜋u(0) (x(0)) to 𝜋u(𝑟) (x(𝑟))
are denoted by 𝜋u(0) (x(0)) Z 𝜋u(𝑟) (x(𝑟)), which is the set of all trails. Then
whether 𝜋u(0) (x(0)) → 𝜋u(𝑟) (x(𝑟)) is determined by the size of 𝜋u(0) (x(0)) Z
𝜋u(𝑟) (x(𝑟)), represented as |𝜋u(0) (x(0)) Z 𝜋u(𝑟) (x(𝑟)) |. If there is no trail from
𝜋u(0) (x(0)) to 𝜋u(𝑟) (x(𝑟)), we say 𝜋u(0) (x(0)) ⇝̸ 𝜋u(𝑟) (x(𝑟)) and accordingly
|𝜋u(0) (x(0)) Z 𝜋u(𝑟) (x(𝑟)) | = 0.

Theorem 1 (Integrated from [10,13,15,11]). Let f = f (𝑟−1) ◦ f (𝑟−2) ◦ · · · ◦
f (0) defined as above. 𝜋u(0) (x(0)) → 𝜋u(𝑟) (x(𝑟)) if and only if

|𝜋u(0) (x(0)) Z 𝜋u(𝑟) (x(𝑟)) | ≡ 1 (mod2).
Propagation Rules of the Monomial Prediction. Any component of a
symmetric cipher can be regarded as a vectorial Boolean function. To model
the propagation of the monomial prediction for a vectorial Boolean function, a
common method is to list all the possible (input, output) tuples according to
the definition of the monomial prediction [15]. These tuples can be transformed
into a set of linear inequalities and thus modeled with MILP [21,20,4]. Since any
symmetric cipher can be decomposed into a sequence of the basic operations
XOR, AND and COPY. We provide their concrete propagation rules for these
basic functions and MILP models in Appendix B.

3 Previous Practical Cube Attacks on Trivium

3.1 Construct a Mother Cube for Linear Superpolies [31]

At ASIACRYPT 2021, Ye et al. presented a heuristic algorithm for constructing
a mother cube that may contain many subcubes with linear superpolies. Such

8 H.Lei et al.

a mother cube is very helpful for the practical attack on round-reduced Trivium
because all values of superpolies of its subcubes can be recovered by 2 |𝐼 | Trivium
initializations, where |𝐼 | is the size of the mother cube. Specifically, the construc-
tion of a mother cube consists of two steps, namely determining a starting cube
and then extending the starting cube.

Determine a Starting Cube Heuristically. Based on the structural analysis
of Trivium, Ye et al. found that one of six internal state bits involved in the
output function is more likely to contribute to linear terms in the superpoly of
𝑟-round Trivium. They called this bit the preference bit of 𝑟-round Trivium.

Definition 1 (The Preference Bit [31]). Among the six internal state bits in
the output function of 𝑟-round Trivium, the internal state bit which is most likely
to contribute linear superpolies is called the preference bit of 𝑟-round Trivium.

The preference bit can be determined by estimating the number of linear
terms of k contained in the ANF of the six internal bits. For details, see [31].

After they predicted a preference bit 𝑠 (𝑟)
𝜆

of 𝑟-round Trivium (the 𝜆-th bit of

the state), according to the update function of Trivium, 𝑠 (𝑟)
𝜆

can be written as

𝑠
(𝑟)
𝜆

= 𝑠
(𝑟−𝜆)
𝑖𝜆1

· 𝑠 (𝑟−𝜆)
𝑖𝜆2

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆3

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆4

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆5

.

It has five state bits from (𝑟 − 𝜆)-round Trivium.

𝑠
(𝑟−𝜆)
𝑖𝜆1

and 𝑠
(𝑟−𝜆)
𝑖𝜆2

are the dominant parts in determining whether 𝑠
(𝑟)
𝜆

con-

tributes to linear terms. Therefore, the starting cube is the cube which has a

linear superpoly in 𝑠
(𝑟−𝜆)
𝑖𝜆1

or 𝑠
(𝑟−𝜆)
𝑖𝜆2

.

Extend the Starting Cube by Greedy Strategies. The starting cube can be
extended to a larger mother cube by adding some public variables that are not in
the cube. The size of the mother cube can not be too large so that we can obtain
the values of superpolies corresponding to its subcubes in practical time. On
the other hand, the mother cube needs to contain enough low-degree subcubes
that are more likely to have linear superpolies. In order to satisfy the above
conditions, Ye et al. combined the division property based degree evaluation
method with some greedy strategies to extend the starting cube. Their method
has two stages. Before introducing these two stages, we first give the following
definitions.

Definition 2 (Steep IV Variable [31]). Let 𝐼 =
{
𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖ℓ

}
be a set

containing ℓ IV variables. Then, an IV variable 𝑏 ∈ 𝐵 = {𝑣0, 𝑣1, . . . , 𝑣𝑛−1}\𝐼 is
called a steep IV variable of 𝐼 if

𝑑𝑠(𝐼 ∪ {𝑏}) = min{𝑑𝑠(𝐼 ∪ {𝑣}) | 𝑣 ∈ 𝐵},

where 𝑑𝑠(𝐼) is the degree of the superpoly of 𝐼 in secret variables.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 9

Definition 3 (Gentle IV Variable [31]). Let 𝐼 =
{
𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖ℓ

}
be a set

containing ℓ IV variables. Then, an IV variable 𝑏 ∈ 𝐵 = {𝑣0, 𝑣1, . . . , 𝑣𝑛−1}\𝐼 is
called a gentle IV variable of 𝐼 if

𝑑𝑠(𝐼 ∪ {𝑏}) = max{𝑑𝑠(𝐼 ∪ {𝑣}) | 𝑑𝑠(𝐼 ∪ {𝑣}) ≤ 𝑑𝑠(𝐼), 𝑣 ∈ 𝐵},

where 𝑑𝑠(𝐼) is the degree of the superpoly of 𝐼 in secret variables.

Let 𝐼 be a starting cube. In the first stage, the steep variables of 𝐼 are added
to 𝐼 iteratively to make the degree of the superpoly decrease to a minimum
value other than 0. Then in the second stage, the gentle IV variables are added
to 𝐼 iteratively to reduce the degree of the superpoly slowly. Finally, cubes with
degrees of their superpolies close to 1 are obtained and merged to construct the
mother cube, namely

𝐼 ∪ {𝑣𝑖 ∈ {𝑣0, 𝑣1, . . . , 𝑣𝑛−1}\𝐼 | the upper bound of ds(𝐼 ∪ 𝑣𝑖) is close to 1},

where 𝐼 is the cube before adding the last gentle IV variable.
For 805-round Trivium, by searching for the subcubes of these mother cubes,

they found more than 1000 subcubes with linear superpolies and picked 37 cubes
whose superpolies are linearly independent to perform the practical attack.

3.2 Attack by Balanced Superpolies [22]

The cubes with linear superpolies only account for a small fraction of all super-
polies of Trivium, therefore, it is often difficult to obtain a sufficient number of
linear superpolies for practical attacks. To overcome this bottleneck, Sun et al.
further extended the linear superpoly to a more general concept, the balanced
superpoly [22].

A superpoly is balanced if there exists at least one secret variable as a single
monomial and none of the other monomials contain this variable in this super-
poly, and this variable is called the balanced variable in the superpoly. If we
know the value of a balanced superpoly, we can deduce the value of the balanced
variable by enumerating the values of other variables.

For example, consider a superpoly 𝑃3 = 𝑘1⊕ 𝑘2𝑘3. 𝑃3 is a balanced superpoly
with a balanced variable 𝑘1. Assume that we know that the value of 𝑃3 is 0, the
value of 𝑘1 can be obtained by enumerating the values of 𝑘2 and 𝑘3: (𝑘2 =

0, 𝑘3 = 0) ⇒ (𝑘1 = 0), (𝑘2 = 0, 𝑘3 = 1) ⇒ (𝑘1 = 0), (𝑘2 = 1, 𝑘3 = 0) ⇒ (𝑘1 = 0),
(𝑘2 = 1, 𝑘3 = 1) ⇒ (𝑘1 = 1).

Note that if the value of a balanced variable is already deduced, it may be
used to deduce another balanced variable. According to this rule, the values of
many balanced variables in balanced superpolies can be deduced in order.

For 808-round Trivium, Sun et al. used the method in Section 3.1 to construct
a mother cube. Then they searched for its subcubes whose superpolies are bal-
anced. Finally, they obtained many balanced superpolies and picked 37 balanced
superpolies to perform a practical attack.

10 H.Lei et al.

3.3 Construct a Mother Cube for Balanced Superpolies [7]

Last year, Che et al. modified a part of the algorithm in Section 3.1 to construct
a mother cube that may contain many subcubes with balanced superpolies. The
process of determining the starting cube is the same. Because balanced polyno-
mials do not need degrees to be close to 1, in the process of expanding a starting
cube, they only used the first stage to reduce the degree of the cube quickly
by adding steep IV variables. They wanted a mother cube with many subcubes
whose degrees are less than 5. Assume 𝐼𝑎 is the cube before adding the last steep
IV variable, they constructed a set 𝐴 which contained all 𝑣𝑖 that satisfied (1)
𝑣𝑖 ∈ {𝑣0, 𝑣1, . . . , 𝑣𝑛−1}\𝐼𝑎; (2) the upper bound of ds(𝐼𝑎 ∪ 𝑣𝑖) is less than 5.
If all the variables in 𝐴 are added to the 𝐼𝑎, the final mother cube will become
too large. So they only chose some variables from the set 𝐴 and added them to
the 𝐼𝑎. Then they obtained many candidate mother cubes. For example, there
would be 10 candidate mother cubes if three variables were chosen from a set 𝐴

of size 5. One of the candidate cubes was selected as the mother cube if it had
the most subcubes of degree less than 5.

Our work in this paper uses the balanced superpolies to perform the practical
attack on reduced-round Trivium, in order to obtain more simple and balanced
superpolies, we propose a new method based on the variable substitution to
simplify the superpolies and a method to obtain additional balanced polynomials
by combining superpolies to cancel the quadratic terms. Furthermore, we propose
a modified algorithm to construct a better mother cube that may contain more
subcubes with balanced superpolies.

4 Obtain More Balanced Polynomials

To mount a practical key-recovery attack on high rounds of Trivium, we need a lot
of small cubes whose superpolies are simple and balanced. However, small cubes
for high rounds of Trivium tend to have complex and unbalanced superpolies.

In order to obtain more simple and balanced polynomials, we propose a
method based on the variable substitution technique to simplify the superpolies
and a method to obtain more balanced polynomials by canceling some quadratic
terms between superpolies. We introduce these two methods in Sections 4.1
and 4.2, respectively. Additionally, according to an observation, we modify the
algorithm in [31, Section 3.1] to obtain a mother cube containing more subcubes
whose superpolies are balanced and provide a heuristic search strategy to make
a trade-off between the search space and the search quality. They are introduced
in Section 4.3.

4.1 Variable Substitutions

The Principle of Variable Substitutions. Notice that after the state of
Trivium was updated 24 times, the last 11 bits of the secret variables will only

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 11

exist in the state in a specific form.

(𝑠0, 𝑠1, . . . , 𝑠92) ← (𝑘0, 𝑘1, . . . , 𝑘79, 0, . . . , 0);

(𝑠93, 𝑠94, . . . , 𝑠176) ← (𝑣0, 𝑣1, . . . , 𝑣79, 0, . . . , 0);
(𝑠177, 𝑠178, . . . , 𝑠287) ← (0, . . . , 0, 1, 1, 1).

After 24 rounds of updates,

(𝑠′0, 𝑠′1, . . . , 𝑠′92) ← (𝑡𝑏23, 𝑡𝑏22, . . . , 𝑡𝑏0, 𝑘0, . . . , 𝑘68);

(𝑠′93, 𝑠′94, . . . , 𝑠′176) ← (𝑡𝑎23, 𝑡𝑎22, . . . , 𝑡𝑎0, 𝑣0, . . . , 𝑣59);
(𝑠′177, 𝑠′178, . . . , 𝑠′287) ← (𝑡𝑐23, 𝑡𝑐22, . . . , 𝑡𝑐0, 0, . . . , 0),

where 𝑡𝑎𝑖 , 𝑡𝑏𝑖 , 𝑡𝑐𝑖 are three bits updated by the round function of the 𝑖-th round
of Trivium.
From the expressions of 𝑠′0, 𝑠

′
1, ..., 𝑠

′
287, we find that 𝑘69, 𝑘70, . . . , 𝑘79 are only

involved in 𝑠′94, 𝑠
′
95, .., 𝑠

′
105.

𝑠′94 = 𝑡𝑎23 = 𝑘42 ⊕ 𝑘69 ⊕ 𝑘68𝑘67 ⊕ 𝑣54,

𝑠′95 = 𝑡𝑎22 = 𝑘43 ⊕ 𝑘70 ⊕ 𝑘69𝑘68 ⊕ 𝑣55,

...

𝑠′105 = 𝑡𝑎12 = 𝑘53 ⊕ 0 ⊕ 𝑘79𝑘78 ⊕ 𝑣65.

We use new variables 𝑝69, . . . , 𝑝80 to replace these polynomials of secret vari-
ables.

𝑝69 = 𝑘42 ⊕ 𝑘69 ⊕ 𝑘68𝑘67,

𝑝70 = 𝑘43 ⊕ 𝑘70 ⊕ 𝑘69𝑘68,

...

𝑝80 = 𝑘53 ⊕ 0 ⊕ 𝑘79𝑘78.

For the sake of clarity, we also use 𝑝0, . . . , 𝑝68 to replace the other secret variables
(𝑝0 = 𝑘0, 𝑝1 = 𝑘1, . . . , 𝑝68 = 𝑘68).

Then all state bits of round 24 are only related to the 81 new secret vari-
ables p = (𝑝0, 𝑝1, . . . , 𝑝80) and the 80 public variables v = (𝑣0, 𝑣1, . . . , 𝑣79).
(𝑠′0, . . . , 𝑠′287) can be written as the output of a vectorial Boolean function of p
and v, namely,

y = (𝑠′0, . . . , 𝑠′287) = g(v,p) = (𝑔0 (v,p), 𝑔1 (v,p), . . . , 𝑔287(v,p)).

And the output bit after 𝑟 rounds (𝑟 > 24) can be expressed as follows,

𝑧𝑟 = ℎ(s′) ◦ g(v,p),

where ℎ(s′) is a Boolean function from (𝑠′0, . . . , 𝑠′287) to 𝑧𝑟 .

12 H.Lei et al.

This implies that we can represent the superpoly as a polynomial of only p.
Since polynomials of degree 2 in k (e.g., 𝑘42 + 𝑘69 + 𝑘68𝑘67) are now replaced by
single variables (e.g., 𝑝69), the p-representation of the superpoly is likely to have
a lower algebraic degree and thus, is simpler.

Therefore, after representing superpolies as polynomials of p, more simple
and balanced superpolies may be obtained. We show this in Example 1.

Example 1. Let 𝐴 = 𝑘42 ⊕ 𝑘69 ⊕ 𝑘68𝑘67 and 𝐵 = 𝑘45 ⊕ 𝑘1 (𝑘45 ⊕ 𝑘72 ⊕ 𝑘71𝑘70)
be a balanced superpoly and an unbalanced superpoly of k, respectively. After
variable substitutions, we have 𝐴 = 𝑝69, 𝐵 = 𝑝45⊕ 𝑝1𝑝72, which means 𝐴 becomes
a linear superpoly of p and 𝐵 becomes a balanced superpoly of p.

To illustrate the power of this technique, we search for balanced superpolies
among the same set of cubes for 825-round Trivium before and after variable
substitutions, respectively. We evaluate the simplicity of each superpoly by the
number of variables it contains and record the number of occurrences of balanced
superpolies at different levels of simplicity. See Table 2 for details.

Table 2. Distribution of balanced superpolies (B.S.) involving different numbers of
variables.

variables involved #B.S. of k #B.S. of p

≤ 5 34 42

≤ 10 42 67

≤ 20 90 122

≤ 40 187 235

≤ 60 275 318

≤ 80 322 354

Substituting Variables Back. The variable substitution technique simplifies
superpolies at the cost of adding one extra variable, i.e., 𝑝80. Notice that the
values of 𝑘0, . . . , 𝑘79 can be derived from the values of 𝑝0, . . . , 𝑝79 as follows,

𝑝0, . . . , 𝑝68 ⇒𝑘0, . . . , 𝑘68,

𝑝69, 𝑘42, 𝑘67,𝑘68 ⇒ 𝑘69,

𝑝70, 𝑘43, 𝑘68,𝑘69 ⇒ 𝑘70,

...

𝑝79, 𝑘52, 𝑘78,𝑘77 ⇒ 𝑘79.

Therefore, 𝑝80 is actually redundant and can be expressed as a polynomial of
𝑝0, . . . , 𝑝79. In other words, 𝑓 : (𝑘0, . . . , 𝑘79) → (𝑝0, . . . , 𝑝79) is actually a bijec-
tive function.

In this paper, we always consider the superpolies represented as polynomials
of p. Once the values of all 81 new secret variables (i.e., 𝑝0, . . . , 𝑝80) are obtained,

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 13

we first derive the values of 𝑘0, . . . , 𝑘79 from 𝑝0, . . . , 𝑝79, then check whether the
value of 𝑝80 is correct. The concrete process of substituting p back to obtain k
is shown in Algorithm 2.

Algorithm 2: Recovering k from p

Input: (𝑝0, 𝑝1, . . . , 𝑝80)
Output: (𝑘0, 𝑘1 . . . , 𝑘79) or 𝑓 𝑎𝑙𝑠𝑒

1 for i from 0 to 68 do
2 𝑘𝑖 ← 𝑝𝑖 ;

3 for i from 69 to 79 do
4 𝑘𝑖 ← 𝑝𝑖 ⊕ 𝑘𝑖−27 ⊕ 𝑘𝑖−1𝑘𝑖−2 ;

5 𝑐ℎ𝑒𝑐𝑘 ← 𝑘53 ⊕ 𝑘78𝑘79 ;
6 if 𝑝80 == 𝑐ℎ𝑒𝑐𝑘 then
7 return (𝑘0, 𝑘1 . . . , 𝑘79)
8 else
9 return false

4.2 More Balanced Polynomials by Canceling Quadratic Terms

After constructing a mother cube, we can obtain a large number of subcubes, but
only a very small fraction of subcubes have balanced superpolies. More balanced
polynomials are required when we perform the practical attack on high rounds of
Trivium. In order to obtain more balanced polynomials, we provide an algorithm
to obtain additional balanced polynomials by canceling the common quadratic
terms between superpolies.

Inspiration. A balanced superpoly needs to contain a secret variable that ap-
pears as a one-degree monomial and none of the other monomials contain this
variable. However, if an unbalanced superpoly contains a secret variable that only
appears in a single monomial and a quadratic monomial, we may still generate
a balanced polynomial by canceling this quadratic monomial. For this purpose,
we define two types of superpolies.

Definition 4 (Type-I Superpoly). If there exists a single monomial 𝑝𝑖 and
a quadratic monomial 𝑝𝑖 𝑝 𝑗 , and none of the other monomials contain 𝑝𝑖, then
we call this superpoly a type-I superpoly of a variable 𝑝𝑖.

Definition 5 (Type-II Superpoly). If there exists a variable 𝑝𝑖 that appears
in a quadratic monomial 𝑝𝑖 𝑝 𝑗 , and none of the other monomials contain this
variable, then we call this superpoly a type-II superpoly of a variable 𝑝𝑖.

For example, a superpoly 𝐴 = 𝑝73 ⊕ 𝑝73𝑝25 is a type-I superpoly of a variable
𝑝73 and a superpoly 𝐵 = 𝑝73𝑝25 is a type-II superpoly of variables 𝑝73 and 𝑝25.

14 H.Lei et al.

Combining Rule. For a specific variable 𝑝𝑖, if we can find both a type-I super-
poly of 𝑝𝑖 and a type-II superpoly of 𝑝𝑖 and the quadratic monomials containing
𝑝𝑖 in these two superpolies are the same, then we can get a balanced polynomial
by adding these two superpolies. For example, we can obtain a balanced poly-
nomial 𝐶 with 𝑝73 being a balanced variable by adding the type-I superpoly 𝐴

and the type-II superpoly 𝐵,

𝐶 = 𝐴 ⊕ 𝐵 = 𝑝73 ⊕ 𝑝73𝑝25 ⊕ 𝑝73𝑝25 = 𝑝73.

In the superpolies recovery process, we use SageMath [2] to determine whether
a superpoly is a type-I superpoly or a type-II superpoly.

For 825-round Trivium, we find 540 cubes with type-I superpolies or type-II
superpolies. By the combining rule, we obtained 782 additional balanced poly-
nomials. This increases our number of balanced polynomials from 451 to 1323.

4.3 Relationship Between a Cube and its Subcubes

In our practical cube attacks on Trivium, we focus on balanced superpolies rather
than superpolies of low degrees.

For example, consider two superpolies 𝐴 and 𝐵.

𝐴 : 𝑝1𝑝2 ⊕ 𝑝2𝑝3 = 𝑐1,

𝐵 : 𝑝1 ⊕ 𝑝3𝑝10𝑝4𝑝6 = 𝑐2.

The degrees of 𝐴 and 𝐵 are 2 and 4, respectively. We prefer 𝐵 to 𝐴 because 𝐵 is
balanced so that we can use it to deduce 𝑝1 by enumerating 𝑝3, 𝑝10, 𝑝4, 𝑝6.

Inspiration. In the search process, we obtain a set of cubes whose superpolies
are estimated to have low degrees based on the division property, but the super-
polies of these cubes are almost all unbalanced. While for another set of cubes,
we find that a lot of their superpolies are balanced, although their superpolies
are estimated to have high degrees. This inspires us to investigate how to lo-
cate the balanced superpolies more accurately. With experiments, we have the
following observation.

Observation 1 For a given 𝑥-dimensional cube 𝐼, if its superpoly is balanced,
then the superpolies of its (𝑥−1)-dimensional subcubes have a greater probability
of being balanced.

We present some data in Appendix C to support this observation. Based on this
observation, we propose a method for constructing a better mother cube that
may contain more subcubes with balanced superpolies and a heuristic search
method to reduce the search space.

A Modified Algorithm to Construct a Mother Cube for Balanced Su-
perpolies. We modify the algorithm for constructing the mother cube in Sec-
tion 3.3 to obtain a better mother cube that may have more subcubes with
balanced superpolies.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 15

First, at the stage of determining the starting cube, Ye et al. predicted a

preference bit 𝑠 (𝑟)
𝜆

for 𝑟-round Trivium. 𝑠 (𝑟)
𝜆

can be written as

𝑠
(𝑟)
𝜆

= 𝑠
(𝑟−𝜆)
𝑖𝜆1

· 𝑠 (𝑟−𝜆)
𝑖𝜆2

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆3

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆4

⊕ 𝑠
(𝑟−𝜆)
𝑖𝜆5

,

it have five state bits from (𝑟 − 𝜆)-round Trivium. Next, 𝑠 (𝑟−𝜆)
𝑖𝜆1

and 𝑠
(𝑟−𝜆)
𝑖𝜆2

are

the dominant parts in determining whether 𝑠
(𝑟)
𝜆

contributes to linear terms in
the superpoly. Therefore, the starting cube should have a linear superpoly in

𝑠
(𝑟−𝜆)
𝑖𝜆1

or 𝑠
(𝑟−𝜆)
𝑖𝜆2

. We are less strict about the starting cube because we focus on

balanced superpolies, so our starting cube only need to have a simple balanced

superpoly in 𝑠
(𝑟−𝜆)
𝑖𝜆1

or 𝑠
(𝑟−𝜆)
𝑖𝜆2

.

Second, at the stage of extending the starting cube, we will obtain a lot of
candidate mother cubes after the expansion. The criteria for selection from can-
didate mother cubes by Tian et al. is choosing the mother cube which has the
most subcubes of degree less than 5 [7]. However, it may not be accurate enough
to judge whether superpoly is more likely to be balanced by its degree. We pro-
pose a more accurate way to determine the best mother cube from the candidate
mother cubes, i.e., the 𝑥-dimensional candidate mother cube that contains the
most (𝑥 − 1)-dimensional subcubes with simple balanced superpolies is selected.

If an 𝑥-dimensional mother cube contains most (𝑥 − 1)-dimensional subcubes
with simple balanced superpolies. Then by Observation 1, the superpolies of
their (𝑥 − 2)-dimensional subcubes have a greater probability of being balanced
and so do the superpolies of for (𝑥 − 3)- and (𝑥 − 4)-dimensional subcubes.

As an example, for 825-round Trivium, we select

𝐼2 = {𝑝3, 𝑝4, 𝑝5, 𝑝8, 𝑝9, 𝑝10, 𝑝16, 𝑝17, 𝑝20, 𝑝22, 𝑝25, 𝑝26, 𝑝28, 𝑝29, 𝑝32, 𝑝34, 𝑝37,
𝑝39, 𝑝40, 𝑝43, 𝑝44, 𝑝45, 𝑝46, 𝑝47, 𝑝48, 𝑝49, 𝑝51, 𝑝52, 𝑝53, 𝑝54, 𝑝55, 𝑝56, 𝑝57, 𝑝58,

𝑝59, 𝑝60, 𝑝61, 𝑝62, 𝑝64, 𝑝66, 𝑝67, 𝑝69, 𝑝70, 𝑝71, 𝑝72, 𝑝74, 𝑝76, 𝑝78, 𝑝79, 𝑝80}

as our mother cube. The size of 𝐼2 is 53 and it has 7 52-dimensional subcubes with
simple balanced superpolies. Among the subcubes of these 7 52-dimensional sub-
cubes, there are 44 51-dimensional subcubes with balanced superpolies. Further
more, 87 50-dimensional subcubes with balanced superpolies can be discovered
from these 44 51-dimensional subcubes.

A Heuristic Search Strategy for Searching Balanced Cubes. At ASI-
ACRYPT 2022 [12], He et al. proposed an efficient method based on the core
monomial prediction to recover the superpolies for up to 848 rounds of Trivium.
We utilize this method as a tool to search for balanced subcubes (i.e., subcubes
with balanced superpolies) among the subcubes of a mother cube by directly
recovering the superpolies of subcubes.

According to our experiments, if the superpoly of a subcube is complex, it
often takes a long time to recover it. Therefore, when recovering the superpoly
for a specific subcube, we set a time limit. If the superpoly of a subcube is not

16 H.Lei et al.

recovered within the time limit, we consider the superpoly to be complex and dis-
card this subcube. This simple trick speeds up the search for balanced subcubes
of a mother cube. However, for a 53-dimensional mother cube, it has 53 52-
dimensional subcubes, 1378 51-dimensional subcubes, and 23426 50-dimensional
subcubes. Recovering the superpolies for these subcubes one by one is still im-
possible in a reasonable time, but reducing the search space for subcubes means
some balanced superpolies may be missed.

To deal with this problem, we give two heuristic strategies based on Obser-
vation 1 to reject potentially useless subcubes in advance.

– First strategy. If an 𝑥-dimensional cube is determined to have an unbal-
anced and non-zero superpoly, all (𝑥 − 1)-dimensional subcubes of this cube
are considered to have unbalanced superpolies and are rejected.

– Second strategy. If an 𝑥-dimensional cube is determined to have a balanced
or zero superpoly, all (𝑥−1)-dimensional subcubes of this cube are considered
to possibly have balanced superpolies and will be checked.

The difference between the first strategy and the second strategy is that
when an (𝑥 − 1)-dimensional cube is simultaneously the subcube of several 𝑥-
dimensional cubes and one of these 𝑥-dimensional cubes has an unbalanced and
non-zero superpoly, then the (𝑥 − 1)-dimensional cube will be rejected according
to the first strategy, but will be checked according to the second strategy. In
other words, the first strategy is more aggressive in narrowing down the search
space.

To further illustrate the effect of reducing the search space on the number of
balanced superpolies, we give specific experimental data using the first strategy,
the second strategy, and no strategy (i.e., the search over the whole (𝑥 − 1)-
dimensional subcubes, called full search) in Table 3.

Table 3. A comparison between search space and balanced cubes for 50-dimensional
subcubes of a 53-dimensional mother cube 𝐴0 for 825-round Trivium, where 𝐴0 =

{𝑣2, 𝑣5, 𝑣8, 𝑣10, 𝑣12, 𝑣15, 𝑣17, 𝑣19, 𝑣23, 𝑣29, 𝑣31, 𝑣41, 𝑣44, 𝑣46, 𝑣51, 𝑣55, 𝑣63, 𝑣66, 𝑣72, 𝑣78, 𝑣3,
𝑣0, 𝑣69, 𝑣6, 𝑣26, 𝑣7, 𝑣50, 𝑣68, 𝑣25, 𝑣48, 𝑣33, 𝑣4, 𝑣21, 𝑣76, 𝑣36, 𝑣16, 𝑣14, 𝑣37, 𝑣38, 𝑣39, 𝑣59, 𝑣61,

𝑣18, 𝑣53, 𝑣34, 𝑣74, 𝑣40, 𝑣1, 𝑣57, 𝑣9, 𝑣13, 𝑣22, 𝑣35}

Method Search space # of balanced cubes Space rate† Balanced cubes rate‡

first strategy 1365 63 5.83% 40.38%

second strategy 12201 156 52.1% 96.30%

no strategy 23426 162 100% 100%

†: Space rate = (search space)/(the whole search space).
‡: Balanced cubes rate = (balanced cubes)/(balanced cubes from the whole search
space).

For an 𝑥-dimensional mother cube, we usually search over its (𝑥 − 1)- and
(𝑥 − 2)-dimensional subcubes by the full search, then the second strategy is used
to search over its (𝑥−3)-dimensional subcubes and (𝑥−4)-dimensional subcubes.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 17

Finally, we use the first strategy to search for (𝑥−5)-dimensional subcubes. These
search strategies help us find a sufficient number of balanced superpolies with
an acceptable computational effort.

5 Application

In this section, we apply our improved methods to 810- and 825-round Trivium.
Due to the page limit, superpolies used in this section are provided at https:
//github.com/lhoop/ObtainMoreBS/tree/main/data.

5.1 A Key-Recovery Attack on 810-Round Trivium with Practical
Complexity

Determine a Mother Cube. Using the algorithm in [31], we predict 𝑠 (810)66 as
the preference bit for 810-round Trivium. We choose many cubes of size 19 and

search for cubes whose superpolies in 𝑠
(744)
285 are balanced. Then, the cube

𝑆𝑎1 = {𝑣2, 𝑣6, 𝑣8, 𝑣10, 𝑣11, 𝑣15, 𝑣19, 𝑣21, 𝑣25, 𝑣29, 𝑣30, 𝑣32, 𝑣34, 𝑣36, 𝑣39, 𝑣41, 𝑣43,
𝑣45, 𝑣50}

is obtained. Its superpoly is 𝑝56. Also, we search for cubes whose superpolies in

𝑠
(744)
286 are balanced. We get the cube

𝑆𝑎2 = {𝑣0, 𝑣2, 𝑣4, 𝑣8, 𝑣10, 𝑣11, 𝑣17, 𝑣19, 𝑣25, 𝑣29, 𝑣30, 𝑣32, 𝑣34, 𝑣36, 𝑣39, 𝑣41, 𝑣43,
𝑣45, 𝑣50}.

Its superpoly is 𝑝56. We first choose 𝑆𝑎1 as the starting cube to extend.
The public variables are added to 𝑆𝑎1 iteratively to make the degree1 of the

superpoly decrease to a minimum value other than 0. Then 𝑆𝑎3 is obtained.

𝑆𝑎3 = {𝑣2, 𝑣6, 𝑣8, 𝑣10, 𝑣11, 𝑣15, 𝑣19, 𝑣21, 𝑣25, 𝑣29, 𝑣30, 𝑣32, 𝑣34, 𝑣36, 𝑣39, 𝑣41, 𝑣43, 𝑣45,
𝑣50, 𝑣0, 𝑣75, 𝑣12, 𝑣4, 𝑣14, 𝑣20, 𝑣22, 𝑣16, 𝑣27, 𝑣23, 𝑣72, 𝑣52, 𝑣55, 𝑣60, 𝑣37, 𝑣79,

𝑣62, 𝑣64, 𝑣47, 𝑣54, 𝑣70}.

The upper bound of the degree of its superpoly is 8 and its size is 40. We note
that this set contains all elements in 𝑆𝑎2 except 𝑣17. So we replace 𝑣16 in 𝑆𝑎3
with 𝑣17 to make it fully contain 𝑆𝑎2.

𝑆𝑎′3 = {𝑣2, 𝑣6, 𝑣8, 𝑣10, 𝑣11, 𝑣15, 𝑣19, 𝑣21, 𝑣25, 𝑣29, 𝑣30, 𝑣32, 𝑣34, 𝑣36, 𝑣39, 𝑣41, 𝑣43, 𝑣45,
𝑣50, 𝑣0, 𝑣75, 𝑣12, 𝑣4, 𝑣14, 𝑣20, 𝑣22, 𝑣17, 𝑣27, 𝑣23, 𝑣72, 𝑣52, 𝑣55, 𝑣60, 𝑣37, 𝑣79, 𝑣62,

𝑣64, 𝑣47, 𝑣54, 𝑣70}.
1 We evaluate the upper bound of the degree of the superpoly based on the division
property modeled with MILP.

18 H.Lei et al.

And after adding one element of set 𝐴 = {𝑣40, 𝑣53, 𝑣57, 𝑣58, 𝑣67, 𝑣68, 𝑣77, 𝑣48}, the
degree of 𝑆𝑎′3 is less than 5. Then, we select four elements from set 𝐴 to add
to 𝑆𝑎′3 and get 70 44-dimensional candidate mother cubes. We examine the
number of balanced superpolies in the 43-dimensional subcubes for each of the
70 candidate mother cubes, then the mother cube

𝑆𝑎4 = {𝑣0, 𝑣2, 𝑣4, 𝑣6, 𝑣8, 𝑣10, 𝑣11, 𝑣12, 𝑣14, 𝑣15, 𝑣17, 𝑣19, 𝑣20, 𝑣21, 𝑣22, 𝑣23, 𝑣25, 𝑣27,
𝑣29, 𝑣30, 𝑣32, 𝑣34, 𝑣36, 𝑣37, 𝑣39, 𝑣41, 𝑣43, 𝑣45, 𝑣47, 𝑣50, 𝑣52, 𝑣54, 𝑣55, 𝑣60, 𝑣62,

𝑣64, 𝑣70, 𝑣72, 𝑣75, 𝑣79, 𝑣68, 𝑣57, 𝑣53, 𝑣48}

is selected. It has two simple 43-dimensional subcubes whose superpolies are
linear.

Search for Balanced Subcubes. We add a time limit to the search time. A
full search is performed over all 42- and 43-dimensional subcubes of 𝑆𝑎4. The
40- and 41-dimensional subcubes are searched using the second strategy. The
method used to recover superpolies is from [12], and we modify it to recover su-
perpolies for new secret variables. Then several superpolies are obtained. After
using SageMath to extract balanced or quadratic superpolies, 405 balanced su-
perpolies and 526 quadratic superpolies are obtained. Then we obtain additional
275 balanced polynomials from 526 quadratic superpolies using the combining
rule in Section 4.2.

Determine the Order of Derivation. We pick 39 polynomials from 680 bal-
anced polynomials. The corresponding cubes and the independent bits contained
by these polynomials are listed in Table 4. 39 variables can be deduced from
these polynomials. The specific polynomials are provided at https://github.com/
lhoop/ObtainMoreBS/tree/main/data/810 superpoly.

A Practical Attack on a PC. The size of 𝑆𝑎4 is 44, so it takes 244 requests to
obtain all the values of these 39 polynomials. Next, we need to enumerate the val-
ues of 42 variables: {𝑝0, 𝑝2, 𝑝3, 𝑝4, 𝑝6, 𝑝7, 𝑝9, 𝑝10, 𝑝17, 𝑝18, 𝑝20, 𝑝23, 𝑝25, 𝑝28, 𝑝30,
𝑝33, 𝑝35, 𝑝38, 𝑝39, 𝑝40, 𝑝42, 𝑝44, 𝑝45, 𝑝47, 𝑝48, 𝑝49, 𝑝51, 𝑝52, 𝑝56, 𝑝57, 𝑝58, 𝑝59, 𝑝60,

𝑝63, 𝑝66, 𝑝69, 𝑝70, 𝑝73, 𝑝77, 𝑝78, 𝑝79, 𝑝80}.
For each enumeration, the values of the remaining 39 variables can be deduced

iteratively in the order (𝑝76, 𝑝61, 𝑝64, 𝑝74, 𝑝62, 𝑝41, 𝑝46, 𝑝11, 𝑝37, 𝑝34, 𝑝21, 𝑝22, 𝑝54,
𝑝24, 𝑝50, 𝑝12, 𝑝36, 𝑝19, 𝑝65, 𝑝5, 𝑝29, 𝑝8, 𝑝16, 𝑝53, 𝑝26, 𝑝14, 𝑝43, 𝑝68, 𝑝55, 𝑝67, 𝑝71,

𝑝27, 𝑝75, 𝑝31, 𝑝15, 𝑝1, 𝑝32, 𝑝13, 𝑝72).
There are 242 enumerations, for each enumeration, we use Algorithm 2 to

substitute new secret variables back to original secret variables. Half of the enu-
merations will be excluded because the value of 𝑝80 does not match. This check
only costs constant time. So actually, there are only 241 enumerations of original
secret variables. With 241 round-reduced Trivium initializations, the correct key
can be filtered out of these 241 candidate keys. To sum up, the whole attack costs
244 + 241 round-reduced Trivium initializations. On a PC with an A100 GPU, we
can perform the whole attack in 48 minutes.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 19

5.2 A Key-Recovery Attack on 825-Round Trivium with Practical
Complexity

Determine a Mother Cube. We predict 𝑠
(825)
66 as the preference bit for 825-

round Trivium. Then we choose many cubes of sizes 20 and search for cubes

whose superpolies in 𝑠
(759)
286 are balanced. Finally, the cube

𝑆𝑏1 = {𝑣2, 𝑣5, 𝑣6, 𝑣8, 𝑣10, 𝑣12, 𝑣15, 𝑣19, 𝑣23, 𝑣29, 𝑣34, 𝑣41, 𝑣44, 𝑣46, 𝑣53, 𝑣55, 𝑣63,
𝑣66, 𝑣72, 𝑣78}

is selected. Its superpoly is 𝑝66⊕ 𝑝24⊕ 𝑝22𝑝23⊕1. The public variables are added
to 𝑆𝑏1 iteratively to make the degree of the superpoly decrease to a minimum
value other than 0. Then 𝑆𝑏2 is obtained.

𝑆𝑏2 = {𝑣2, 𝑣5, 𝑣8, 𝑣10, 𝑣12, 𝑣15, 𝑣17, 𝑣19, 𝑣23, 𝑣29, 𝑣31, 𝑣41, 𝑣44, 𝑣46, 𝑣51, 𝑣55, 𝑣63, 𝑣66,
𝑣72, 𝑣78, 𝑣3, 𝑣0, 𝑣69, 𝑣6, 𝑣26, 𝑣7, 𝑣50, 𝑣68, 𝑣25, 𝑣48, 𝑣33, 𝑣4, 𝑣21, 𝑣76, 𝑣36, 𝑣16,

𝑣14, 𝑣37, 𝑣38, 𝑣39, 𝑣59, 𝑣61, 𝑣18, 𝑣53, 𝑣34, 𝑣74, 𝑣40, 𝑣1, 𝑣57, 𝑣9}.

The upper bound of the degree of its superpoly is 6 and its size is 50. And after
adding one variable of set 𝐵 = {𝑣40, 𝑣53, 𝑣57, 𝑣58, 𝑣67, 𝑣68, 𝑣77, 𝑣48}, the degree
of 𝑆𝑏2 is less than 5. Then we select three variables from set 𝐵 to add to 𝑆𝑏2
and obtain 280 53-dimensional candidate mother cubes. For each of the 280
candidate mother cubes, we examine the number of balanced superpolies that
can be generated by its 52-dimensional subcubes, then the mother cube

𝑆𝑏3 = {𝑣2, 𝑣5, 𝑣8, 𝑣10, 𝑣12, 𝑣15, 𝑣17, 𝑣19, 𝑣23, 𝑣29, 𝑣31, 𝑣41, 𝑣44, 𝑣46, 𝑣51, 𝑣55, 𝑣63, 𝑣66,
𝑣72, 𝑣78, 𝑣3, 𝑣0, 𝑣69, 𝑣6, 𝑣26, 𝑣7, 𝑣50, 𝑣68, 𝑣25, 𝑣48, 𝑣33, 𝑣4, 𝑣21, 𝑣76, 𝑣36, 𝑣16,

𝑣14, 𝑣37, 𝑣38, 𝑣39, 𝑣59, 𝑣61, 𝑣18, 𝑣53, 𝑣34, 𝑣74, 𝑣40, 𝑣1, 𝑣57, 𝑣9, 𝑣13, 𝑣22, 𝑣35}

is selected. It has 7 52-dimensional subcubes whose superpolies are simple and
balanced.

Search for Balanced Subcubes. A full search is performed over all 52- and 51-
dimensional subcubes of 𝑆𝑏3. The 50- and 49-dimensional subcubes are searched
using the second strategy, respectively. Then several superpolies are obtained.
We use SageMath to extract balanced or quadratic superpolies and obtain 354
balanced superpolies and 422 quadratic superpolies. Then we obtain an extra
872 balanced polynomials from 422 quadratic superpolies using the combining
rule in Section 4.3.

Determine the Order of Derivation. We pick 31 polynomials from 1226
balanced polynomials. The corresponding cubes and the independent bits con-
tained by these polynomials are listed in Table 5. 31 variables can be deduced
from these polynomials. The specific polynomials are provided at https://github.
com/lhoop/ObtainMoreBS/tree/main/data/825 superpoly.

20 H.Lei et al.

A Practical Attack on a PC. The size of 𝑆𝑏3 is 53, so it takes 253 requests to
obtain all the values of these 31 polynomials. Next, we need to enumerate the val-
ues of 50 variables: {𝑝3, 𝑝4, 𝑝5, 𝑝8, 𝑝9, 𝑝10, 𝑝16, 𝑝17, 𝑝20, 𝑝22, 𝑝25, 𝑝26, 𝑝28, 𝑝29, 𝑝32,
𝑝34, 𝑝37, 𝑝39, 𝑝40, 𝑝43, 𝑝44, 𝑝45, 𝑝46, 𝑝47, 𝑝48, 𝑝49, 𝑝51, 𝑝52, 𝑝53, 𝑝54, 𝑝55, 𝑝56, 𝑝57,

𝑝58, 𝑝59, 𝑝60, 𝑝61, 𝑝62, 𝑝64, 𝑝66, 𝑝67, 𝑝69, 𝑝70, 𝑝71, 𝑝72, 𝑝74, 𝑝76, 𝑝78, 𝑝79, 𝑝80}.
For each enumeration, the values of the remaining 31 variables can be deduced

iteratively in the order (𝑝73, 𝑝75, 𝑝77, 𝑝63, 𝑝14, 𝑝31, 𝑝11, 𝑝35, 𝑝27, 𝑝33, 𝑝12, 𝑝41, 𝑝30,
𝑝65, 𝑝38, 𝑝1, 𝑝13, 𝑝15, 𝑝50, 𝑝42, 𝑝6, 𝑝7, 𝑝18, 𝑝68, 𝑝24, 𝑝23, 𝑝2, 𝑝0, 𝑝19, 𝑝36, 𝑝21).

There are 250 enumerations, for each enumeration, we use Algorithm 2 to
substitute new secret variables back to original secret variables. Half of the enu-
merations will be excluded because the value of 𝑝80 does not match. This check
only costs a constant time. So actually, we only need 249 enumerations of original
secret variables. With 249 round-reduced Trivium initializations, the correct key
can be filtered out of these 249 candidate keys. To sum up, the whole attack costs
253 + 249 round-reduced Trivium initializations. On a PC with an A100 GPU, we
can perform the whole attack in 18 days.

6 Conclusion

In this paper, we focus on practical full key-recovery attacks on Trivium. We
propose a variable substitution technique to simplify the superpoly and a new
method to obtain a new balanced polynomial by combining two superpolies to
cancel out the quadratic terms. Moreover, by an observation that the subcubes of
a cube whose superpoly is balanced are more likely to have balanced superpolies,
we modify the original algorithm to construct a better mother cube that con-
tains more subcubes with balanced superpolies, and propose a heuristic strategy
for searching for cubes with balanced superpolies. As a result, we use our new
methods to perform full key-recovery attacks on 810- and 825-round Trivium,
which can be done with time complexity 244.17 and 253.09 round-reduced Triv-
ium initializations, respectively. It is experimentally verified that the two attacks
could be completed in 48 minutes and 18 days on a PC with one A100 GPU
(128 × 256 threads), respectively. We also time-test previous attacks on 808-
and 820-round Trivium with the same number of threads [22,7]. For the attack
on 808-round Trivium in [22], it could be completed in 12 hours with our GPU.
And for the attack on 820-round Trivium in [7], we estimate that the attack
would be completed in 19 days with our GPU. These experiments confirm that
we can improve the previous results for 2 and 5 rounds without increasing the
time complexity.

Acknowledgment. The authors would like to thank Raghvendra Rohit as our
shepherd and other anonymous reviewers that have helped us improve the quality
of this paper. This research is supported by the National Key Research and
Development Program of China (Grant No. 2018YFA0704702), the National
Natural Science Foundation of China (Grant No. 62032014), the Major Basic
Research Project of Natural Science Foundation of Shandong Province, China
(Grant No. ZR202010220025).

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 21

References

1. Gurobi Optimization. https://www.gurobi.com
2. Sagemath. https://www.sagemath.org
3. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery at-

tacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, Febru-
ary 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5665, pp. 1–22. Springer (2009), https://doi.org/10.1007/978-3-642-03317-9 1

4. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020), https:
//doi.org/10.13154/tosc.v2020.i3.327-361

5. Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986, pp. 244–266.
Springer (2008), https://doi.org/10.1007/978-3-540-68351-3 18

6. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018), https://doi.org/10.
1007/s00145-017-9273-9

7. Che, C., Tian, T.: An experimentally verified attack on 820-round Trivium (full
version). IACR Cryptol. ePrint Arch. p. 1518 (2022), https://eprint.iacr.org/2022/
1518

8. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In:
Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5479, pp. 278–299. Springer (2009), https://doi.org/10.1007/
978-3-642-01001-9 16

9. Fouque, P., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium
using optimized cube attacks. IACR Cryptol. ePrint Arch. p. 312 (2015), http:
//eprint.iacr.org/2015/312

10. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset - improved cube attacks against Triv-
ium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 466–495.
Springer (2020), https://doi.org/10.1007/978-3-030-45721-1 17

11. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. J. Cryptol. 34(3), 22 (2021), https:
//doi.org/10.1007/s00145-021-09383-2

12. He, J., Hu, K., Preneel, B., Wang, M.: Stretching cube attacks: Improved methods
to recover massive superpolies. In: Agrawal, S., Lin, D. (eds.) Advances in Cryp-
tology - ASIACRYPT 2022 - 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13794,
pp. 537–566. Springer (2022), https://doi.org/10.1007/978-3-031-22972-5 19

13. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of
block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol.
12491, pp. 537–566. Springer (2020), https://doi.org/10.1007/978-3-030-64837-4
18

22 H.Lei et al.

14. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery with
nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryp-
tology - ASIACRYPT 2021 - 27th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 6-10, 2021,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13090, pp. 392–421.
Springer (2021), https://doi.org/10.1007/978-3-030-92062-3 14

15. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12491, pp. 446–476. Springer (2020),
https://doi.org/10.1007/978-3-030-64837-4 15

16. Hu, K., Wang, M.: Automatic search for a variant of division property using three
subsets. In: Matsui, M. (ed.) Topics in Cryptology - CT-RSA 2019 - The Cryptog-
raphers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11405, pp. 412–432.
Springer (2019), https://doi.org/10.1007/978-3-030-12612-4 21

17. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: From weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part II. Lecture Notes in Computer Science, vol. 10821,
pp. 715–744. Springer (2018), https://doi.org/10.1007/978-3-319-78375-8 23

18. Mroczkowski, P., Szmidt, J.: Corrigendum to: The cube attack on stream cipher
Trivium and quadraticity tests. IACR Cryptol. ePrint Arch. p. 32 (2011), http:
//eprint.iacr.org/2011/032

19. Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.:
Investigating cube attacks on the authenticated encryption stream cipher Acorn.
In: Batten, L., Li, G. (eds.) Applications and Techniques in Information Security
- 6th International Conference, ATIS 2016, Cairns, QLD, Australia, October 26-
28, 2016, Proceedings. Communications in Computer and Information Science,
vol. 651, pp. 15–26 (2016), https://doi.org/10.1007/978-981-10-2741-3 2

20. Sasaki, Y., Todo, Y.: New algorithm for modeling s-box in MILP based differential
and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol.
10543, pp. 150–165. Springer (2017), https://doi.org/10.1007/978-3-319-69284-5
11

21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer
(2014), https://doi.org/10.1007/978-3-662-45611-8 9

22. Sun, Y.: Automatic search of cubes for attacking stream ciphers. IACR Trans. Sym-
metric Cryptol. 2021(4), 100–123 (2021), https://doi.org/10.46586/tosc.v2021.i4.
100-123

23. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Lecture Notes in

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 23

Computer Science, vol. 9056, pp. 287–314. Springer (2015), https://doi.org/10.
1007/978-3-662-46800-5 12

24. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox poly-
nomials based on division property. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III.
Lecture Notes in Computer Science, vol. 10403, pp. 250–279. Springer (2017),
https://doi.org/10.1007/978-3-319-63697-9 9

25. Todo, Y., Morii, M.: Bit-based division property and application to SIMON family.
In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 9783, pp. 357–377. Springer (2016), https://doi.
org/10.1007/978-3-662-52993-5 18

26. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: Milp-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019 - 25th Interna-
tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III. Lec-
ture Notes in Computer Science, vol. 11923, pp. 398–427. Springer (2019), https:
//doi.org/10.1007/978-3-030-34618-8 14

27. Wu, H.: Acorn v3. Submission to CAESAR competition (2016)
28. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to search-

ing integral distinguishers based on division property for 6 lightweight block ci-
phers. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 648–678 (2016),
https://doi.org/10.1007/978-3-662-53887-6 24

29. Ye, C., Tian, T.: A new framework for finding nonlinear superpolies in cube
attacks against Trivium-like ciphers. In: Susilo, W., Yang, G. (eds.) Informa-
tion Security and Privacy - 23rd Australasian Conference, ACISP 2018, Wol-
longong, NSW, Australia, July 11-13, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 10946, pp. 172–187. Springer (2018), https://doi.org/10.1007/
978-3-319-93638-3 11

30. Ye, C., Tian, T.: Algebraic method to recover superpolies in cube attacks. IET Inf.
Secur. 14(4), 430–441 (2020), https://doi.org/10.1049/iet-ifs.2019.0323

31. Ye, C., Tian, T.: A practical key-recovery attack on 805-round Trivium. In:
Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021
- 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6-10, 2021, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 13090, pp. 187–213. Springer (2021),
https://doi.org/10.1007/978-3-030-92062-3 7

24 H.Lei et al.

Appendix

A The Definition of Bit-based Division Property

Definition 6 (Conventional Bit-Based Division Property [23]). Let X
be a multi-set whose elements take a value of F𝑛2. Let K be a set whose elements
take an 𝑛-dimensional bit vector. When the multi-set X has the division property
𝐷1𝑛

K , it fulfills the following conditions:⊕
𝑥∈X

xu =

{
unknown if there exists k in K s.t. u ⪰ k,

0 otherwise.

Definition 7 (Three-Subset Division Property [25]). Let X be a multi-set
whose elements take a value of F𝑛2. Let K and L be two sets whose elements
take an 𝑛-dimensional bit vector. When the multi-set X has the division property
𝐷1𝑛

K,L, it fulfills the following conditions:

⊕
x∈X

xu =

unknown if there exists k in K s.t. u ⪰ k,

1 else if there exists l in L s.t. u = l,

0 otherwise.

B Propagation Rules of XOR, AND and COPY for
Monomial Prediction

According to [10], the rules for XOR, AND and COPY are the following:

Rule 1 (XOR [10,11]) Let x = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) and y = (𝑥0⊕𝑥1, 𝑥2, . . . , 𝑥𝑛−1)
be the input and output vector of a XOR function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfies

v = (𝑢0 + 𝑢1, 𝑢2, . . . , 𝑢𝑛−1), (𝑢0, 𝑢1) ∈ {(0, 0), (0, 1), (1, 0)}.

Rule 2 (AND [10,11]) Let x = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) and y = (𝑥0∨𝑥1, 𝑥2, . . . , 𝑥𝑛−1)
be the input and output vector of an AND function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfies

v = (𝑢0, 𝑢2, . . . , 𝑢𝑛−1), (𝑢0, 𝑢1) ∈ {(0, 0), (1, 1)}.

Rule 3 (COPY [10,11]) Let x = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) and y = (𝑥0, 𝑥0, 𝑥1, 𝑥2,
. . . , 𝑥𝑛−1) be the input and output vector of a COPY function. Considering a
monomial of x as xu, the monomials yv of y meet the condition that xu → yv

only when v satisfies

v =

{
(0, 0, 𝑢2, . . . , 𝑢𝑛−1), if 𝑢0 = 0.
(0, 1, 𝑢2, . . . , 𝑢𝑛−1), (1, 0, 𝑢2, . . . , 𝑢𝑛−1), (1, 1, 𝑢2, . . . , 𝑢𝑛−1), if 𝑢0 = 1.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 25

MILP Models of the Propagation Trails. The propagation trails of the
monomial prediction can be traced using the following MILP models:

Model 1 (XOR [10,11]) Let (𝑎0, 𝑎1, . . . , 𝑎𝑛−1)
XOR−−−−→ 𝑏 be a propagation trail

of XOR. The following inequalities suffice to describe all the valid trails for
XOR: {

M .𝑣𝑎𝑟 ← 𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑏 as binary;

M .𝑐𝑜𝑛← 𝑏 = 𝑎0 + 𝑎1 + · · · + 𝑎𝑛−1.

Model 2 (AND [10,11]) Let (𝑎0, 𝑎1, . . . , 𝑎𝑛−1)
AND−−−−→ 𝑏 be a propagation trail

of AND. The following inequalities suffice to describe all the valid trails for
AND: {

M .𝑣𝑎𝑟 ← 𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑏 as binary;

M .𝑐𝑜𝑛← 𝑏 = 𝑎𝑖 , ∀𝑖 ∈ {0, 1, . . . 𝑛 − 1}.

Model 3 (COPY [10,11]) Let 𝑎
COPY−−−−−→ (𝑏0, 𝑏1, . . . , 𝑏𝑛−1) be a propagation

trail of COPY. The following inequalities suffice to describe all the valid trails
for COPY:

M .𝑣𝑎𝑟 ← 𝑎, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1 as binary;

M .𝑐𝑜𝑛← 𝑏0 + 𝑏1 + · · · + 𝑏𝑛−1 ≥ 𝑎;

M .𝑐𝑜𝑛← 𝑎 ≥ 𝑏𝑖 , ∀𝑖 ∈ {0, 1, . . . , 𝑛 − 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by: {

M .𝑣𝑎𝑟 ← 𝑎, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1 as binary;

M .𝑐𝑜𝑛← 𝑎 = 𝑏0 ∨ 𝑏1 ∨ · · · ∨ 𝑏𝑛−1.

26 H.Lei et al.

C Some Experimental Data for Observation 1

For 825 rounds of Trivium, we selected fifty 51-dimensional balanced cubes and
fifty 51-dimensional unbalanced cubes to test. And measured the number of
its 50-dimensional balanced subcubes for each selected cube. The experimental
results are shown in Figure 1.

Fig. 1. The number of balanced 50-dimensional subcubes for fifty 51-dimensional
balanced cubes and fifty 51-dimensional unbalanced cubes.

0 10 20 30 40 50

0

2

4

6

8

sample number

#
b
a
la
n
ce
d
5
0
-d

su
b
cu

b
es

o : 51-d balanced cubes
x : 51-d unbalanced cubes

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 27

D Balanced Cubes for Attacking 810- and 825-round
Trivium

Table 4. Balanced cubes for attacking 810-round Trivium. Sorted by the deducing
order. 𝐼1 are the cube indices of 𝑆𝑎4.

Cube indices Independent bits Cube indices Independent bits

𝐼1\{2, 14, 29, 45} 𝑝76 𝐼1\{0, 60, 64} 𝑝24, 𝑝29, 𝑝66
𝐼1\{19, 22, 29, 52} 𝑝61 𝐼1\{12, 15, 30, 39} 𝑝8, 𝑝35
𝐼1\{11, 47, 53, 67} 𝑝64 𝐼1\{34, 37, 62} 𝑝16
𝐼1\{11, 19} 𝑝61, 𝑝74 𝐼1\{4, 11, 54} 𝑝8, 𝑝52, 𝑝53
𝐼1\{11, 34, 52, 54} 𝑝62 𝐼1\{0, 36, 55, 64} 𝑝23, 𝑝26, 𝑝38, 𝑝50, 𝑝53, 𝑝65
𝐼1\{2, 50, 57} 𝑝41 𝐼1\{11, 19, 54, 60} 𝑝14, 𝑝23
𝐼1\{2, 11, 15, 30} 𝑝46, 𝑝76 𝐼1\{0, 17, 48, 54} 𝑝16, 𝑝25, 𝑝43, 𝑝52
𝐼1\{12, 15, 30, 57} 𝑝11 𝐼1\{0, 47, 79} 𝑝68
𝐼1\{41, 47, 62} 𝑝37, 𝑝64 𝐼1\{0, 25, 62} 𝑝52, 𝑝55
𝐼1\{15, 48, 57, 62} 𝑝34, 𝑝61 𝐼1\{34, 62, 67} 𝑝40, 𝑝55, 𝑝67

𝐼1\{29, 53, 54, 62} 𝑝21, 𝑝48
𝐼1\{29, 34, 75}
+𝐼1\{34, 52, 55}

𝑝71

𝐼1\{29, 48, 67, 70} 𝑝22, 𝑝64 𝐼1\{23, 25, 47} 𝑝27, 𝑝29, 𝑝63
𝐼1\{11, 27, 43, 47} 𝑝21, 𝑝48, 𝑝54 𝐼1\{4, 11} 𝑝3, 𝑝12, 𝑝30𝑝75
𝐼1\{23, 47, 55} 𝑝24, 𝑝66 𝐼1\{0, 34, 48, 62} 𝑝4, 𝑝31

𝐼1\{0, 37, 54, 79} 𝑝23, 𝑝50 𝐼1\{0, 29, 67, 70}
𝑝6, 𝑝12, 𝑝15, 𝑝38, 𝑝39, 𝑝42
𝑝51, 𝑝60, 𝑝74, 𝑝75, 𝑝78

𝐼1\{0, 20, 62} 𝑝12, 𝑝39 𝐼1\{19, 52, 54, 60} 𝑝1
𝐼1\{34, 48, 62} 𝑝36, 𝑝63 𝐼1\{11, 19, 41, 60} 𝑝32, 𝑝68
𝐼1\{2, 14, 57, 60} 𝑝19, 𝑝46 𝐼1\{0, 19}

𝑝8, 𝑝13, 𝑝17, 𝑝24, 𝑝32, 𝑝35
𝑝42, 𝑝51, 𝑝75

𝐼1\{11, 30, 62} 𝑝65 𝐼1\{0, 19, 43} 𝑝72, 𝑝77
𝐼1\{0, 29, 55} 𝑝5, 𝑝41, 𝑝47, 𝑝56

𝐼1 = {0, 2, 4, 6, 8, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 34, 36, 37,
39, 41, 43, 45, 47, 50, 52, 54, 55, 60, 62, 64, 70, 72, 75, 79, 68, 57, 53, 48}.

28 H.Lei et al.

Table 5. Balanced cubes for attacking 825-round Trivium. Sorted by the deducing
order. 𝐼2 are the cube indices of 𝑆𝑏3.

Cube indices Independent bits Cube indices Independent bits

𝐼2\{0, 18} 𝑝73 𝐼2\{9, 15} 𝑝13, 𝑝22, 𝑝40, 𝑝49, 𝑝61, 𝑝73
𝐼2\{0, 35, 41} 𝑝75 𝐼2\{17, 26} 𝑝15, 𝑝60, 𝑝63, 𝑝73
𝐼2\{7, 13, 35} 𝑝77 𝐼2\{10, 15} 𝑝50, 𝑝71
𝐼2\{25, 35, 50} 𝑝63 𝐼2\{25, 34, 38, 63} 𝑝29, 𝑝42, 𝑝69
𝐼2\{15, 69} 𝑝14, 𝑝77 𝐼2\{0, 19, 22} 𝑝6, 𝑝15, 𝑝57
𝐼2\{0, 1, 38} 𝑝31 𝐼2\{13, 19, 39} 𝑝7, 𝑝34
𝐼2\{2} 𝑝11 𝐼2\{8, 13, 19} 𝑝18, 𝑝45
𝐼2\{15, 23, 34, 36} 𝑝35, 𝑝62, 𝑝77 𝐼2\{17, 19, 22} 𝑝68
𝐼2\{17, 22, 25, 69} 𝑝27 𝐼2\{13, 39, 66} 𝑝24
𝐼2\{21, 22}
+𝐼2\{4, 17, 51}

𝑝33
𝐼2\{1, 13, 51, 53}
+𝐼2\{4, 17, 33, 51}

𝑝23

𝐼2\{15, 23} 𝑝12, 𝑝63 𝐼2\{1, 13, 17, 38} 𝑝2, 𝑝4, 𝑝7, 𝑝23, 𝑝50, 𝑝74

𝐼2\{17, 25} 𝑝41, 𝑝75 𝐼2\{25, 63, 69}
𝑝0, 𝑝13, 𝑝50, 𝑝51, 𝑝69, 𝑝71
𝑝72, 𝑝78

𝐼2\{9, 15, 17} 𝑝3, 𝑝30 𝐼2\{0, 3, 34} 𝑝1, 𝑝19, 𝑝43
𝐼2\{7, 22, 63} 𝑝65 𝐼2\{13, 15, 39} 𝑝6, 𝑝23, 𝑝27, 𝑝30, 𝑝36, 𝑝64
𝐼2\{33, 63, 69} 𝑝38 𝐼2\{17, 26, 33} 𝑝21
𝐼2\{17, 26, 41} 𝑝1

𝐼2 = {2, 5, 8, 10, 12, 15, 17, 19, 23, 29, 31, 41, 44, 46, 51, 55, 63, 66, 72, 78, 3, 0, 69, 6, 26, 7, 50,
68, 25, 48, 33, 4, 21, 76, 36, 16, 14, 37, 38, 39, 59, 61, 18, 53, 34, 74, 40, 1, 57, 9, 13, 22, 35}.

Cube Attacks on 810- and 825-Round Trivium with Practical Complexities 29

E MILP Model for New Secret Variables after Variable
Substitute

Algorithm 3: MILP model for new secret variables (𝑝0, . . . , 𝑝80)

1 Procedure TriviumCore(M, x0 , . . . , x287 , i1 , i2 , i3 , i4 , i5):
2 M.𝑣𝑎𝑟 ← y𝑖1 , yi2 , y𝑖3 , y𝑖4 , y𝑖5 , z1 , z2 , z3 , z4 as binary
3 M.con ← a = z3
4 M.con ← a = z4
5 M.con ← yi5 = xi5 + a + z1 + z2
6 M.con ← xij

= yij
∨ zj for all j ∈ {1, 2, 3, 4}

7 for 𝑖 ∈ {0, 1, . . . , 287} without 𝑖1 , 𝑖2 , 𝑖3 , 𝑖4 , 𝑖5 do
8 yi = xi

9 return (M, y0 , y1 , . . . , y287)
10 Procedure TriviumCorep(M, x0 , . . . , x287 , p):
11 M.𝑣𝑎𝑟 ← y170 , z as binary
12 M.con ← x170 = y170 ∨ z
13 M.con ← y92 = z + p
14 for 𝑖 ∈ {0, 1, . . . , 287} without 92, 170 do
15 yi = xi

16 return (M, y0 , y1 , . . . , y287)
17 Procedure ModelNewVariables(round 𝑅, cube indices 𝐼):
18 Prepare empty MILP Model M

19 M. var ← s0
𝑖
for 𝑖 ∈ {0, 1, . . . , 287}

20 for 𝑖 = 0 to 68 do
21 pi ← s0i

22 for 𝑖 = 69 to 80 do
23 M.var ← pi

24 for 𝑖 = 69 to 92 and 𝑖 = 93 + 80 to 284 do
25 M.con ← s0i = 0

26 for 𝑖 = 93 to 172 do
27 M · con ← s0

𝑖
= 1∀𝑖 − 93 ∈ 𝐼

28 M · con ← s0
𝑖
= 0∀𝑖 − 93 ∉ 𝐼

29 for 𝑟 = 0 to 𝑟 = 𝑅 − 1 do
30 if 𝑟 > 11 and 𝑟 < 24 then
31 (M, x0 , . . . , x287)= TriviumCorep(M, sr1 , . . . , s

r
288 , 𝑝92−𝑟)

32 else
33 (M, x0 , . . . , x287)= TriviumCore(M, sr1 , . . . , s

r
288 , 65, 170, 90, 91, 92)

34 (M, y0 , . . . , y287)=TriviumCore(M, x1 , . . . , x288 , 161, 263, 174, 175, 176)
35 (M, z0 , . . . , z287)=TriviumCore(M, y1 , . . . , y288 , 242, 68, 285, 286, 287)

36 (sr+10 , . . . , s𝑖+1287)=TriviumCore(z287 , z0 , . . . , z286)

37 for 𝑖 ∈ {0, 1, . . . , 287} without 65, 92, 161, 176, 242, 287 do
38 M · con ← sR−1

𝑖
= 0

39 M · con ← sR−165 + sR−192 + sR−1161 + sR−1176 + sR−1242 + sR−1287 = 1
40 return (M, p0 , p1 , . . . , p80)

