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Abstract. The related-key statistical saturation (RKSS) attack is a
cryptanalysis method proposed by Li et al. at FSE 2019. It can be seen as
the extension of previous statistical saturation attacks under the related-
key setting. The attack takes advantage of a set of plaintexts with some
bits fixed, while the other bits take all possible values, and considers the
relation between the value distributions of a part of the ciphertext bits
generated under related keys. Usually, RKSS distinguishers exploit the
property that the value distribution stays invariant under the modifi-
cation of the key. However, this property can only be deterministically
verified if the plaintexts cover all possible values of a selection of bits.
In this paper, we propose the probabilistic RKSS cryptanalysis which
avoids iterating over all non-fixed plaintext bits by applying a statis-
tical method on top of the original RKSS distinguisher. Compared to
the RKSS attack, this newly proposed attack has a significantly lower
data complexity and has the potential of attacking more rounds. As an
illustration, for reduced-round Piccolo, we obtain the best key recovery
attacks (considering both pre- and post-whitening keys) on both ver-
sions in terms of the number of rounds. Note that these attacks do not
threaten the full-round security of Piccolo.
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1 Introduction

Integral cryptanalysis is a cryptanalytic method for symmetric-key ciphers. First
proposed by Daemen et al. as a dedicated attack on the Square cipher [10],
the technique was later generalized by Knudsen and Wagner as the integral
attack [21]. The integral distinguisher used in such an attack exploits the prop-
agation of well-chosen sets of plaintexts through the cipher. In practice, a part
of the plaintext bits is often fixed to some constant while all possible values
are taken for the other bits, and the evolution of the variable bits in the cipher



state is tracked. To reduce its data complexity, the statistical integral attack [36]
was proposed by Wang et al. at FSE 2016. It avoids iterating over all non-fixed
plaintext bits by applying a statistical technique on top of the original integral
attack. In [14], Dobraunig et al. introduced a related-tweak square attack on
KIASU-BC that extends the single-key attack by one round.

The statistical saturation attack [8] was proposed by Collard and Standaert.
It uses the same set of plaintexts as integral distinguishers, however, it tracks the
evolution of a non-uniform value distribution of the ciphertext. At FSE 2019,
Li et al. introduced the related-key statistical saturation (RKSS) attack [22] for
key-alternating ciphers [11]. It also takes advantage of a set of plaintexts with
some bits fixed while the others take all possible values, however, it considers the
relation between the value distributions of a part of the ciphertext bits generated
under related keys. RKSS distinguishers exploit the property that a part of the
ciphertexts keeps their value distribution invariant under the modification of the
key. However, this property can only be deterministically verified if the plaintexts
cover all possible values of a selection of bits.

In this paper, we revisit the RKSS cryptanalysis and propose a new method
that can address such limitations with the help of a statistical model. This
new method is referred to as probabilistic RKSS cryptanalysis. Compared to the
original method, the data complexity here can be much smaller with only a small
decrease in success probability. An intuitive comparison of these two methods is
shown by their applications on Piccolo [31].

We now provide a detailed overview of the contributions of this paper.

Probabilistic RKSS Cryptanalysis. In Sect. 3, we will introduce the probabilistic
RKSS cryptanalysis method, which avoids iterating over all non-fixed plaintext
bits. In this way, we require less data than the original RKSS method, but the
same value distribution property of the original RKSS will not strictly hold.

However, we can still distinguish between a right key guess and a wrong key
guess by choosing an appropriate statistic that considers the different distribu-
tions in these two cases. First, we recall the value distribution property that the
original RKSS method relies on. Let s be the number of plaintext bits that take
all possible values while the other bits are fixed. For all these 2s plaintexts, we
encrypt them under related-key pairs and obtain two sets of ciphertexts. Denote
t as the number of ciphertext bits whose value distribution is considered here.
For any t-bit value of this part, we have the same number of occurrences in these
two sets of ciphertexts. When less than 2s plaintexts are available, the occur-
rences of each t-bit value may not be the same anymore, but their differences
may be small if enough plaintexts are given. Hence, the statistic is constructed
by summing all 2t squared differences of the number of occurrences counted un-
der these two related keys. With the help of Stuart-Maxwell tests for marginal
homogeneity [26,33], we can prove that such a statistic follows a χ2-distribution
with different parameters for right and wrong key guesses. The validity of this
statistical model is also confirmed experimentally on a toy cipher.
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With this statistical model, the data complexity of the RKSS attack can be
reduced from 2s to

N = 2s − (2s − 1)
q
(2t−1)
α1

q
(2t−1)
1−α0

,

where q
(2t−1)
α1 and q

(2t−1)
1−α0

represent the quantiles of the central χ2-distribution
with each having a degree of freedom equal to 2t−1. Meanwhile, α0 (resp. α1) is
the probability of rejecting the right key (resp. of accepting a wrong key). This
new attack has a success probability of Prs = 1 − α0. Note that the trade-off
between the success probability Prs and the data complexity N allows the attack
to cover more rounds than the original RKSS method.

Improved Key Recovery Attacks on Round-Reduced Piccolo with both Whitenings.
Piccolo [31] is a 64-bit ultra-lightweight key-alternating block cipher designed by
Shibutani et al. at CHES 2011. It is suitable for constrained environments such
as RFID tags and sensor nodes. The cipher supports 80-bit and 128-bit keys,
denoted as Piccolo-80 and Piccolo-128, respectively.

Since its proposal, many key recovery attacks have been introduced such
as (conditional) linear attacks [2], (multidimensional) zero-correlation linear at-
tacks [1,17], meet-in-the-middle attacks [18,23,24,35], and (related-key) impos-
sible differential attacks [4,27,34]. In addition, there are some other results such
as biclique attacks [19, 37]. However, there is a consensus in the literature that
biclique attacks are not a threat to a cipher, as they require an exhaustive search
over a reduced number of rounds of the cipher.

From all these attacks, we find that the security resistance of Piccolo is
different depending on whether the pre/post-whitening key layers are included
or not. Specifically, when both whitenings are considered, the best-known at-
tack on Piccolo-80 is on 8 rounds [2], not including biclique attacks. Meanwhile,
the best result on Piccolo-128 with both whitenings is a biclique attack [19].
When including none or only one of these two whitening key layers, the best
key recovery attack can cover 14 rounds for Piccolo-80 [23,35] and 18 rounds for
Piccolo-128 [23]. This confirms that key whitening may strengthen the security
of Piccolo. Thus, we are motivated to investigate its real impact on security, and
try to narrow the gap between the cryptanalytic results in the above two cases.

In Sect. 4, we mount several key recovery attacks on both variants of Piccolo
using the probabilistic RKSS method. To show the effectiveness of this new
method, we also propose attacks using the RKSS method in Sect. 4. All these
results are presented in Table 1. Compared to previous results, they are the best
key recovery attacks containing both pre- and post-whitening keys on Piccolo.

From Table 1, for 16-round Piccolo-128, we can see that the probabilistic
RKSS method needs only 3.44% of the number of plaintexts required in the
RKSS attack with only a little decrease in its success probability from 100%
to 99%. Moreover, the probabilistic RKSS method can cover one more round
than the RKSS method. As for Piccolo-80, the data complexity used in the new
method is only 10% of that required in the RKSS method where its success
probability is 99%.
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Table 1. Comparison of attacks on Piccolo containing both pre- and post-whitening
key layers. Time complexities are evaluated in encryption units, while memory costs
are evaluated in bits, and #k denotes the number of different keys used.

Cipher Attacks Rounds Data Time Memory #k Ref.

Piccolo-128
RKSS 16 249 2114.19 238 2 Sect. 4.2

Prob. RKSS 16 244.14 2114.18 238 2 Sect. 4.2
Prob. RKSS 17 260.14 2115.44 267.14 2 Sect. 4.3

Piccolo-80
Cond. Linear 8 254 254 N.A. 1 [2]

RKSS 10 241 274.49 233.81 2 Sect. 4.1
Prob. RKSS 10 237.68 274.48 233.81 2 Sect. 4.1

2 Preliminaries

Key-alternating ciphers form a significant subset of modern block ciphers, which
was introduced by Daemen and Rijmen in [11]. Many block ciphers, including
almost all Substitution-Permutation Networks (SPNs) and some Feistel ciphers,
belong to this subset [12].

Definition 1. (Key-Alternating Block Cipher [11]) Given an r-round it-
erative block cipher E, let ki represent its i-th round key with 1 ≤ i ≤ r. If ki is
XORed into the state at the end of the i-th round and there exists a subkey k0
introduced by XORing with the plaintext before the first round, the block cipher
E is a key-alternating block cipher.

The related-key statistical saturation (RKSS) attack [22] is a new cryptana-
lytic method for key-alternating ciphers proposed by Li et al. at FSE 2019. This
method can be regarded as an extension of statistical saturation attack [8] in
the related-key setting. As pointed out in [22], this method is also applicable for
tweak/tweakey-alternating ciphers, where related-tweak/tweakey are taken into
consideration, since tweak/tweakey can be seen as a kind of key. For simplicity,
all of these are referred to as RKSS attacks in this paper. The main idea of the
RKSS attack is that we fix a part of the plaintext bits and take all possible
values for the other bits, and then consider the relation between the value distri-
butions of a part of the ciphertext bits under related-key pairs (z, z′ = z ⊕∆z),
where ∆z is a fixed value for all possible values of the key z. To obtain such
RKSS distinguishers, Li et al. [22] introduced a conditional equivalent property
between the KDIB distinguisher [7] and the RKSS distinguisher.

The KDIB technique [7] is another method proposed for key-alternating ci-
phers, which can be seen as an extension of linear cryptanalysis [25]. Linear
cryptanalysis typically uses a linear trail. Denote θ = (θ0, θ1, · · · , θr) as an r-
round linear trail, where θi−1 is the input mask of round i (1 ≤ i ≤ r) and θi is
the output mask. Its bias εθ is related to the unknown key z. For key-alternating
ciphers, only the sign of εθ is affected by z. A linear hull (u,w) consists of all
trails satisfying u = θ0 and w = θr [29], whose bias is evaluated by summing
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all biases of these trails under the same key z. Hence, the bias of a linear hull
can be invariant if it is evaluated under related-key pairs (z, z′) fulfilling some
specific key difference ∆z. This is the fact that the KDIB distinguisher exploits.

To explain the conditional equivalent property between KDIB and RKSS
distinguishers, we adopt the same notation used in [22]. Denote Fn

2 as the space
of n-dimensional binary vectors over F2 = {0, 1}. Let H : Fn

2 × Fk
2 → Fn

2 be the
target block cipher with block size n and key size k. The n-bit input of H is split
into two parts (x, y), where x is the part fixed and y is the part taking all pos-
sible values. Note that these two parts can be composed of arbitrary input bits.
Similarly, the output of H is also divided into two parts (H1(x, y, z), H2(x, y, z))
and only the value distribution of H1(x, y, z) is considered. Thus, we have

H : Fr
2 × Fs

2 × Fk
2 → Ft

2 × Fu
2 , H(x, y, z) = (H1(x, y, z), H2(x, y, z)).

Fixing x to a constant value I and only focusing on the H1 part of the output, we
can obtain the function TI : Fs

2 × Fk
2 → Ft

2, TI(y, z) = H1(I, y, z). In an RKSS
distinguisher, we will consider the relation between the value distributions of
TI(y, z) and TI(y, z

′) after encrypting all possible values of y.
Given the above notation, the conditional equivalent property between the

KDIB and the RKSS distinguishers can be described in Theorem 1 and illus-
trated in Fig. 1. Once the KDIB distinguisher is found, an RKSS distinguisher
covering the same rounds can also be obtained using Theorem 1.

Theorem 1. (Conditional Equivalent Property [22]) Let (Γ,Λ) be the lin-
ear hull of the target block cipher with Γ = (Γin, 0) and Λ = (Λout, 0), where
Γin ∈ Fr

2 and Λout ∈ Ft
2\{0}. Given a fixed ∆z, if for all possible mask pairs

(Γin, Λout), the bias is invariant under related-key pairs (z, z′ = z⊕∆z), TI(y, z)
will have the same value distribution as TI(y, z

′) when y takes all possible values
and vice versa. In other words, for any c ∈ Ft

2, we have #{y ∈ Fs
2 | TI(y, z) =

c} = #{y ∈ Fs
2 | TI(y, z

′) = c}. Note that this holds for any I ∈ Fr
2.

Note that in Theorem 1, the restriction to masks of the form (Γin, 0) and
(Λout, 0), where the last bits are fixed to zeros, is solely for the simplicity of
notation. As pointed out in [22], the positions of the zero bits do not affect the
applicability of this property.

same value
distributionsame bias

Fig. 1. Equivalence between KDIB and RKSS distinguishers [22].

From Theorem 1, we can see that the RKSS distinguisher exploits the prop-
erty that the value distribution of some ciphertext bits stays invariant under
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the modification of the key. When mounting the RKSS key recovery attack, we
have to traverse all possible values of y under a fixed value of x, and ask for
ciphertexts under z and z′. Thus, we can observe whether TI(y, z) has the same
value distribution with TI(y, z

′) after guessing the corresponding key bits. If so,
the guessed key bits will be taken as the right key bits. Otherwise, they will be
discarded. According to Theorem 1, for a right key guess, TI(y, z) always has
the same value distribution with TI(y, z

′). Hence, the probability of rejecting
the right key α0 is zero. As for the probability of accepting a wrong key α1,
they proved that log2(α1) is no more than (2t − 1− t) 2s+1−2s(2

t−1)/2, which is
extremely small. For instance, when Li et al. [22] attacked 10-round QARMA-64 [3]
with s = 56 and t = 4, it was found that log2(α1) ≤ −2.7× 10126, which implies
that α1 ≈ 0.

3 Probabilistic Related-Key Statistical Saturation Attack

3.1 Introducing a Statistical Model into RKSS Cryptanalysis

In this subsection, we adopt the notation introduced in Sect. 2. Let qj (resp.
q′j) denote the probability that TI(y, z) = j (resp. TI(y, z

′) = j) when iterating

over all possible values of y ∈ Fs
2. Thus,

∑2t−1
j=0 qj = 1 and

∑2t−1
j=0 q′j = 1. Note

that in the RKSS attack, qj and q′j can take various values for different wrong
key candidates z and z′, while qj = q′j holds for any j for a right key guess. Let

χ2 (l, λ) represent the noncentral χ2-distribution with degree of freedom l and
noncentrality parameter λ. For an RKSS distinguisher, we can obtain Lemma 1
for both wrong and right key guesses, according to Stuart-Maxwell [26,33] tests
for marginal homogeneity.

Lemma 1. When 2s is sufficiently large, for a wrong key guess, the statistic

γ =

2t−1∑
j=0

(
2sqj − 2sq′j

)2
2sqj + 2sq′j

approximately follows χ2 (2t − 1, 0). For the right key guess, the statistic γ = 0.

Proof. For the right key guess, γ = 0 holds according to Theorem 1. While for
a wrong key guess, we can prove it as follows.

Denote δj1,j2 as the probability that TI(y, z) = j1 and TI(y, z
′) = j2 si-

multaneously holds for all possible 2s values of y. Thus, qj =
∑2t−1

j2=0 δj,j2 and

q′j =
∑2t−1

j1=0 δj1,j . Given an RKSS distinguisher, we want to test whether qj = q′j
holds for any 0 ≤ j ≤ 2t − 1 after obtaining 2s samples. Thus, it is equivalent to
testing for marginal homogeneity of the frequency table described in Table 2.

To test for marginal homogeneity, we can use the Stuart-Maxwell statistic
W = dTM−1d,6 under the null hypothesis H0 : 2sqj = 2sq′j ,∀ 0 ≤ j ≤ 2t − 1.

6 Note that the Stuart-Maxwell test relies on the assumption that all paired
data (TI(y, z), TI(y, z

′)) evaluated under the same sample y are pairwise in-
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Table 2. Frequency table used to prove Lemma 1.

TI(y, z)
TI(y, z

′)
0 1 · · · j2 · · · 2t − 1 Total

0 2sδ0,0 2sδ0,1 · · · 2sδ0,j2 · · · 2sδ0,2t−1 2sq0
1 2sδ1,0 2sδ1,1 · · · 2sδ1,j2 · · · 2sδ1,2t−1 2sq1
...

...
...

...
...

...
...

...
j1 2sδj1,0 2sδj1,1 · · · 2sδj1,j2 · · · 2sδj1,2t−1 2sqj1
...

...
...

...
...

...
...

...
2t − 1 2sδ2t−1,0 2sδ2t−1,1 · · · 2sδ2t−1,j2 · · · 2sδ2t−1,2t−1 2sq2t−1

Total 2sq′0 2sq′1 · · · 2sq′j2 · · · 2sq′2t−1 2s

In the statistic W, d is a (2t − 1)-dimensional vector (2sq1 − 2sq′1, · · · , 2sq2t−1 −
2sq′2t−1)

T . M is a (2t − 1)× (2t − 1) matrix and its elements are

Mi,i = 2sqi + 2sq′i − 2 · 2sδi,i, Mi,j = −2sδi,j − 2sδj,i,

where 1 ≤ i ≤ 2t − 1 and 1 ≤ j ≤ 2t − 1. According to [26,33], W approximately
follows χ2(2t − 1, 0) when 2s is sufficiently large.

Denote M̃ as the following (2t − 1)× (2t − 1) matrix
1

2sq1+2sq′1
1

2sq2+2sq′2
. . .

1
2sq2t−1+2sq′

2t−1

+
Y

2sq0 + 2sq′0
,

and Y is a (2t − 1) × (2t − 1) matrix where all entries are equal to one. Thus,

MM̃ = I + A where I is the identity matrix and A is a matrix where the
element is

Ai,j =
2sδi,0 + 2sδ0,i
2sq0 + 2sq′0

− 2sδi,j + 2sδj,i
2sqj + 2sq′j

,

where 1 ≤ i ≤ 2t − 1 and 1 ≤ j ≤ 2t − 1. For each i and j, Ai,j can be

approximated7 by 0. Therefore, γ = dTM̃d ≈ dTM−1d approximately follows

χ2 (2t − 1, 0) since MM̃ ≈ I. ⊓⊔

The only way to reduce the data complexity of an RKSS attack is to reduce
the number of y that are chosen. However, the same value distribution property

dependent. That is, given any two different samples y1 and y2, the paired
data (TI(y1, z), TI(y1, z

′)) collected in the wrong-key case is independent of
(TI(y2, z), TI(y2, z

′)). This assumption has been verified experimentally. We refer
to Appendix B for an illustration.

7 We have experimentally verified this in Appendix B.
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under a right key guess will not hold if we choose some random values for y.
The advantage is that we can distinguish a right key guess from a wrong one by
constructing a statistic with the information of similar frequencies of each pos-
sible output under related-key pairs (z, z′), if a considerable number of distinct
values of plaintexts are reachable. This new kind of RKSS attack with reduced
data complexity will be referred to as a probabilistic RKSS attack hereafter.

Assume that we have obtained two independent randomly chosen distinct
plaintext sets S and S′ with the same size N . All plaintexts share the same
fixed I. For each y ∈ S (resp. y′ ∈ S′), we can get a t-bit value TI(y, z) (resp.
TI(y

′, z′)) that is computed under z (resp. z′). Then we respectively add one
to the counter V [j1] and V ′[j2], where j1 = TI(y, z) and j2 = TI(y

′, z′). After
traversing all these N values of y and N values of y′, we can construct an efficient
distinguisher by investigating the distribution of the following statistic

C =

2t−1∑
j=0

(V [j]− V ′[j])2

2N · 2−t
,

where V [j] = #{y ∈ S | TI(y, z) = j} and V ′[j] = #{y′ ∈ S′ | TI(y
′, z′) = j}.

This statistic C considers different distributions determined by whether we
are dealing with an actual cipher (right key guess) or a random permutation
(wrong key guess). These two distributions of C are derived under Hypothesis 1.
The validity of this hypothesis has been verified experimentally in Appendix B.

Hypothesis 1 For any 0 ≤ i ≤ 2t − 1, 0 ≤ j ≤ 2t − 1, we assume that
qiqj ≈ (2−t)2, q′iq

′
j ≈ (2−t)2, and qi + q′j ≈ 2 · 2−t hold when 2s is sufficiently

large8.

Proposition 1. Denote Crandom as the statistic C for a wrong key guess and
Ccipher as the statistic C for the right key guess. Under Hypothesis 1, for suffi-
ciently large N , the statistic

2s − 1

2s −N
Ccipher ∼ χ2

(
2t − 1, 0

)
,

while the statistic
Crandom ∼ χ2

(
2t − 1, 0

)
.

To prove this proposition, we have to recall the following lemma.

Lemma 2. (See [13]) Let X = (X1, X2, · · · , Xd)
T be a d-dimensional statistic

vector that follows the multivariate normal distribution with expectation µ and
covariance matrix Σ, where Σ is a symmetric matrix of rank r ≤ d. If Σ2 = Σ
and Σµ = µ, we have XTX ∼ χ2

(
r,µTµ

)
.

With Hypothesis 1 and Lemmas 1 and 2, we can prove Proposition 1 as
follows.
8 In our experimental verification, s = 12 and it is enough to ensure the validity of
this hypothesis, as well as other assumptions used in this paper.
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Proof. Recall that when mounting probabilistic RKSS attacks, the counters
V [TI(y, z)] and V ′[TI(y

′, z′)] are generated by encrypting two independently
chosen values y and y′ under z and z′. Therefore, these two counters are inde-
pendent of each other.

Since we choose distinct values of y (sampling without replacement), the
statistic vector (V [0], V [1], · · · , V [2t − 1]) follows a multivariate hypergeometric
distribution with parameters (K, 2s, N) where K = (Nq0, Nq1, · · · , Nq2t−1).
Similarly, the vector (V ′[0], V ′[1], · · · , V ′[2t − 1]) also follows a multivariate hy-
pergeometric distribution however the parameters are (K ′, 2s, N) where K ′ =
(Nq′0, Nq′1, · · · , Nq′2t−1). When N is sufficiently large, both hypergeometric dis-
tributions can be approximated into multivariate normal ones.

For any 0 ≤ j ≤ 2t − 1, define X̃j = V [j] − V ′[j]. Then we have that

X̃ = (X̃0, X̃1, · · · , X̃2t−1) also follows a multivariate normal distribution. Since

expectation of X̃j is E(V [j] − V ′[j]) = E(V [j]) − E(V ′[j]) = Nqj − Nq′j , the

expectation of X̃ can be obtained. The covariance between X̃i and X̃j can be
computed by

Cov(X̃i, X̃j) = E(X̃i · X̃j)−E(X̃i) ·E(X̃j) = E((V [i]− V ′[i]) · (V [j]− V ′[j]))

− (E(V [i])−E(V ′[i])) · (E(V [j])−E(V ′[j]))

= E(V [i] · V [j]) +E(V ′[i] · V ′[j])−E(V [i] · V ′[j])−E(V ′[i] · V [j])−
E(V [i]) ·E(V [j])−E(V ′[i]) ·E(V ′[j]) +E(V [i]) ·E(V ′[j]) +E(V ′[i]) ·E(V [j])

= Cov(V [i], V [j]) +Cov(V ′[i], V ′[j])−Cov(V [i], V ′[j])−Cov(V ′[i], V [j])

= Cov(V [i], V [j]) +Cov(V ′[i], V ′[j]),

where the last equality comes from the independence of the counters V [TI(y, z)]
and V ′[TI(y

′, z′)].

Let Xj = X̃j/
√
2N2−t 2s−N

2s−1 . Then X = X̃/
√
2N2−t 2s−N

2s−1 also follows a

multivariate normal distribution with expectation µ = (µ0, µ1, · · · , µ2t−1) where

µj = E(X̃j)/

√
2N2−t

2s −N

2s − 1
= (Nqj −Nq′j)/

√
2N2−t

2s −N

2s − 1
,

and covariance matrix Σ where

Σi,i =
qi(1− qi) + q′i(1− q′i)

2 · 2−t
, Σi,j =

−qiqj − q′iq
′
j

2 · 2−t
.

Due to Hypothesis 1,Σi,i ≈ 1−2−t andΣi,j ≈ −2−t. Notice thatΣ is symmetric
and its rank is 2t − 1. It is easy to verify that Σ2 = Σ and Σµ = µ. According
to Lemma 2, we can conclude that

2s − 1

2s −N

2t−1∑
j=0

(V [j]− V ′[j])
2

2N2−t
∼ χ2(2t−1, λ) with λ =

2s − 1

2s −N

2t−1∑
j=0

(
Nqj −Nq′j

)2
2N2−t

.
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Under Hypothesis 1, γ in Lemma 1 can be approximated as

γ ≈
2t−1∑
j=0

(
2sqj − 2sq′j

)2
2 · 2s · 2−t

and then λ ≈ 2s−1
2s−N

N
2s γ. Thus, for a right key guess, λ = 0 since γ = 0. In other

words,
2s − 1

2s −N
Ccipher ∼ χ2

(
2t − 1, 0

)
.

While for a wrong key guess, 2s

N
2s−N
2s−1 λ ∼ χ2(2t − 1, 0) according to Lemma 1.

Thus, the distribution of Crandom can be obtained with the characteristic func-
tions of χ2-distributions.

For a noncentral χ2-distribution U ∼ χ2(l, λ), the characteristic function is

CFU (it) =
1

(1− 2it)l/2
exp

{
it

1− 2it
λ

}
with i being the imaginary unit. If λ is a random variable, we will denote the
characteristic function as CFU |λ for clarity. Moreover, by the definition of char-
acteristic functions, for any a, CFaU is the same as CFU with ait substituted
everywhere for it. Therefore,

CFCrandom|λ(it) =

exp

{
2s−N
2s−1 it

1−2 2s−N
2s−1 it

λ

}
(1− 2 2s−N

2s−1 it)
(2t−1)/2

, CFλ(it) =
1

(1− 2N
2s

2s−1
2s−N it)(2t−1)/2

.

Replacing it by
2s−N
2s−1 it

1−2 2s−N
2s−1 it

in CFλ, we can integrate out λ from CFCrandom|λ.

Thus,

CFCrandom
(it) =

1

(1− 2 2s−N
2s−1 it)

(2t−1)/2
CFλ(

2s−N
2s−1 it

1− 2 2s−N
2s−1 it

)

=
1

(1− 2( 2
s−N
2s−1 + N

2s )it)
(2t−1)/2

≈ 1

(1− 2it)(2t−1)/2
.

In other words, Crandom follows χ2(2t − 1, 0). ⊓⊔

To decide whether the obtained statistic C is computed from the cipher (a
right key guess) or the random permutation (a wrong key guess), we have to
perform a statistic test. In this test, we compare C to a threshold value τ . If
C ≤ τ , we conclude that C is obtained from the cipher; otherwise, it is from a
random permutation. The data complexity needed to perform the statistic test
and the threshold value τ can be computed as follows, given error probabilities.

10



Corollary 1. Denote α0 as the probability of rejecting the right key and α1 as
the probability of accepting a wrong key. Under the assumption of Proposition 1,
the number of distinct plaintexts encrypted under a single key is

N = 2s − (2s − 1)
q
(2t−1)
α1

q
(2t−1)
1−α0

,

and the threshold value is τ = q
(2t−1)
α1 = 2s−N

2s−1 q
(2t−1)
1−α0

, where q
(2t−1)
α1 and q

(2t−1)
1−α0

are the respective quantiles of χ2(2t − 1, 0).

Proof. By the definition of α0 and our statistic test, we have Pr {Ccipher > τ} =
α0. Then

Pr

{
2s − 1

2s −N
Ccipher >

2s − 1

2s −N
τ

}
= α0.

By the definition of a quantile, we know that 2s−1
2s−N τ = q

(2t−1)
1−α0

. Similarly, we can

obtain τ = q
(2t−1)
α1 due to Pr {Crandom < τ} = α1. Hence, we see that

2s − 1

2s −N
q(2

t−1)
α1

= q
(2t−1)
1−α0

holds by eliminating τ from the above two equations. In this case, N can be
obtained. ⊓⊔

According to Corollary 1, we can see that the data encrypted under a single
key in the probabilistic RKSS attack is less than 2s, which is the data collected
under a single key of the original RKSS attack. In other words, our newly pro-
posed method needs less data than the original one. Meanwhile, the success
probability of this attack is Prs = 1 − α0. Note that such a trade-off between
Prs and N can make it possible to mount attacks that cover more rounds than
the original RKSS method. Further comparisons between these two methods are
shown in Appendix C.

3.2 Experimental Verification of the Statistical Model

To verify the theoretical model, we implement a distinguishing attack on a mini
version of an SPN cipher denoted as SmallSPN (a variant of Mini-AES [30]).9

SmallSPN is a 20-round key-alternating cipher with a block size of 16 bits. Its
round function contains four operations, i.e., SB, SR, MC, and AK. Addition-
ally, there is another AK operation before the first round. The 16-bit plaintext

P = P0||P1||P2||P3 is arranged into a 2 × 2 matrix

[
P0 P1

P2 P3

]
and SB uses 4-bit

S-box in QARMA-64 [3]. SR is the operation interchanging P2 and P3. The matrix

9 SmallSPN has a structure that is similar to Mini-AES, but they have a different
number of rounds, S-box, linear matrix, and key schedule.
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used in MC is

[
0 1
1 1

]
. Denote rki as the round key in the i-th round, 0 ≤ i ≤ 20,

and rkij is the j-th nibble of rki where 0 ≤ j ≤ 3. Each subkey rki will be
XORed with the nibbles in AK operations, all of which are chosen uniformly at
random.

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
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Fig. 2. Experimental results related to the statistical model using SmallSPN.

The 20-round RKSS distinguisher used here can be described as follows:
when we fix P3 and iterate over all 212 possible values of P0||P1||P2, the value
distributions of C3 obtained underK and C ′

3 obtained underK ′ will be the same.
K ′ and K only have non-zero differences on rk00, rk

0
1, rk

0
2, rk

1
1, rk

1
2, rk

1
3, rk

2
1,

rk23, rk
3
3, rk

18
1 , rk190 , rk183 , rk200 , rk201 , and rk202 . Now we mount the probabilistic

RKSS attack using the statistical model described in Proposition 1 where s =
12 and t = 4. Setting α0 = 0.2 and choosing different values for N , we can
obtain α1 and τ according to Corollary 1. In each experiment, we independently
and randomly collect two plaintext sets with size N , where all plaintexts share
the same fixed I, and query their ciphertexts generated with SmallSPN. After
computing the statistic C and comparing it with τ , we can decide whether we are
facing the real cipher. By launching this experiment 1000 times, we can obtain
the empirical error probability α̂0. Similarly, if we generate these ciphertexts with
random permutations, we can obtain the empirical error probability α̂1 following
the same procedure. Thereafter, we can compare these error probabilities with
theoretical ones α0 and α1, which is illustrated in Fig. 2. From Fig. 2, we can
see that the test results for error probabilities are in good accordance with those
for the theoretical model. Thus, our statistical model is accurately constructed.
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4 Improved Key Recovery Attacks on Piccolo
Considering Pre- and Post-Whitening

At CHES 2011, Piccolo was proposed by Shibutani et al. [31] as a lightweight
block cipher with a 64-bit block size. The key size can be either 80 or 128 bits,
and we will denote these variants as Piccolo-80 and Piccolo-128, respectively. A
brief introduction to Piccolo is presented in Appendix A.

In this section, we provide the best key recovery attacks on Piccolo (contain-
ing both pre- and post-whitening key layers) in terms of the number of rounds,
compared to previous results. When no whitening keys or only either pre- or
post-whitening is considered, the best attacks on Piccolo are meet-in-the-middle
(MITM) attacks [23, 24]. However, according to [16, 31], whitening keys are es-
sential to construct ciphers that are resistant to MITM attacks. Thus, to check
the resistance of Piccolo against MITM attacks when both whitening keys are
included, we had a private communication with the authors of [23,24]. We both
agree that MITM cannot attack 10-round Piccolo-80 and 16-round Piccolo-128
in this case since almost all key bits have to be guessed. Hence, to the best of
our knowledge, our key recovery attacks are the best-known attacks on Piccolo.

4.1 Probabilistic RKSS Attack on 10-Round Piccolo-80

The first step to mount attacks is to find an RKSS distinguisher. As explained
in Sect. 2, Li et al. [22] constructed a search algorithm for KDIB distinguishers,
and then RKSS distinguishers covering the same rounds can be obtained using
Theorem 1. To make our paper self-contained, we briefly recall the principle of
this automatic search algorithm. For more details, we refer to [22].

Their search algorithm is based on STP,10 which is a Boolean Satisfiability
Problem (SAT) [9]/Satisfiability Modulo Theories (SMT) problem [5] solver. The
application of STP as an automatic search tool for differential cryptanalysis was
first suggested by Mouha and Preneel in [28]. It takes a set of equations as input
and decides whether or not they have a valid solution. Therefore, when using
STP to find KDIB distinguishers, we have to build some equations that describe
the propagation properties of each operation. More specifically, for operations
in the round function, the word-level mask propagation properties should be
described; while for each operation in the key schedule, we have to describe its
bit-level difference propagation property. Moreover, there are also some equa-
tions required to describe the relation between the masks and the key difference.
Inserting all these equations into STP, we can obtain a KDIB distinguisher for
a fixed number of rounds or conclude that no KDIB distinguishers exist.

Like other related-key attacks, the starting round of the distinguisher has an
impact on the length of the distinguisher. Using this automatic search algorithm,
we found an 8-round KDIB distinguisher with the pre-whitening key layer start-
ing from the third round, which is illustrated in Fig. 11 of Appendix D. The key
difference of this distinguisher is ∆k4[1] = β which can be any non-zero value

10 http://stp.github.io/
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in F4
2. Denote the 16-bit value X as X = X[0]||X[1]||X[2]||X[3] with X[i] ∈ F4

2,
and let X[i, j] represents X[i]||X[j]. Combining the 8-round KDIB distinguisher
with Theorem 1 leads to the following RKSS distinguisher.

8-Round Distinguisher (R3 ~ R10)

R11

R12

Fig. 3. Probabilistic RKSS attack on 10-round Piccolo-80 with full whitening, where •
are active nibbles and × are nibbles that we need to know in the key recovery procedure.

Corollary 2. With the notation of Fig. 3, for the 8-round Piccolo-80 including
pre-whitening key layer, when we take all 240 plaintexts with P0[0, 2, 3]||P2[0, 2, 3]
fixed, the value distribution of the 12-bit value W1[0, 2, 3] ⊕ k2[0, 2, 3] stays in-
variant under (K,K ′), where K and K ′ only differ at k4[1].

Proof. By Theorem 1, W3[0, 2, 3] encrypted under K has the same value distri-
bution as W ′

3[0, 2, 2] encrypted under K ′. Since k2[0, 2, 3] = k′2[0, 2, 3], we can
conclude that W3[0, 2, 3] ⊕ k2[0, 2, 3] also has the same value distribution with
W ′

3[0, 2, 3]⊕k′2[0, 2, 3]. Therefore, we can avoid guessing k2[0, 2, 3] in key recovery
attacks. ⊓⊔

Using this distinguisher, a probabilistic key recovery attack on 10-round
Piccolo-80 can be carried out by adding two rounds and the post-whitening
key layer at the end. Algorithm 1 and Fig. 3 show the details of this attack. As
usual, we collect N plaintexts P with P0[0, 2, 3] and P2[0, 2, 3] fixed. For each
plaintext, we can query its corresponding ciphertext. Since wk2 and wk3 have
been guessed, we can compute x1 and increase V1[x1] by one. With a similar
procedure, another counter V ′

1 can be obtained from another N plaintexts P ′

where P ′
0[0, 2, 3] = P0[0, 2, 3] and P ′

2[0, 2, 3] = P2[0, 2, 3]. With another guess of
kR0 and kL1 , we can obtain the counters V2 and V ′

2 from V1 and V ′
1 , respectively.

Using the statistical model proposed in Sect. 3, we can get the right key after
checking its validity with two new plaintext-ciphertext pairs.

Suppose that one memory access to an array of size 228 costs less than one
encryption of 10-round Piccolo-80. Then, the time complexity of this key recovery
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attack is at most T = 232N ·2 · (1+1)+232 ·216 ·228 ·2 · (1/2) · (1/10)+2 ·280α1,
where N can be computed using Corollary 1 after choosing the values of α0

and α1. Here, we set α0 = 0.01 and α1 = 2−7.16. In this way, N ≈ 236.68,
τ ≈ 211.92. Hence, the data complexity is D = 2N ≈ 237.68 chosen plaintext-
ciphertext pairs, while the time complexity is T = 274.48 10-round encryptions.
The memory requirements are M = 2 · 228 · 28 ≈ 233.81 bits needed for arrays.

To show the advantages of our newly proposed method, we also give the
complexity of the original RKSS attack using the same distinguisher. Since we
have to iterate over all possible values of P0[1]||P1||P2[1]||P3 in the original RKSS
attack, the data complexity will be D̃ = 241 chosen plaintext-ciphertext pairs.
The time complexity can be computed as before except that it is 232 rather
than 280α1 and N = 240, which is T̃ = 274.49 times a 10-round encryption.
The memory requirement is M̃ = M . As we can see, D < D̃. More precisely,
D = 10%× D̃.

4.2 Probabilistic RKSS Attack on 16-Round Piccolo-128

In this subsection, we provide a probabilistic RKSS key recovery attack on 16-
round Piccolo-128 containing both pre- and post-whitening layers. This attack
is based on the 11-round RKSS distinguisher starting from the 14-th round
described in Corollary 3.

Corollary 3. With the notation of Fig. 4, for the 11-round Piccolo-128, when
we take all 248 input values of 14-th round with X0[0, 1]||X2[2, 3] fixed, the value
distribution of the 16-bit value W3 ⊕ k3 stays invariant under (K,K ′), where K
and K ′ only differ at k0[2, 3] = β ∈ F8

2\{0}.

The probabilistic RKSS attack on 16-round Piccolo-128 can be mounted by
adding the pre-whitening key layer before the distinguisher and five rounds,
as well as the post-whitening key layer at the end. The detailed key recovery
procedure is illustrated in Fig. 4 and described in Algorithm 2. One thing we
should mention here is that to get the same value distribution property, we
have to encrypt two independent data sets with X0[0, 1] and X2[2, 3] fixed under
related keys. Since wk1[2, 3] = k0[2, 3] has a non-zero known difference β, we can
obtain the same fixed X2[2, 3] by setting P ′[2, 3] = P [2, 3]⊕ β.

Suppose that one memory access to an array of size 232 costs less than one
encryption of 16-round Piccolo-128. Then, the time complexity of this key re-
covery attack can be computed as T = 264N · 2 · (1 + 4/16 + 1) + 264 · 216 ·
232 · 2 · (1/2) · (1/16) + 2 · 2128α1. By setting α0 = 0.01 and α1 = 2−14.89,
we can obtain N ≈ 243.14 with τ ≈ 215.97 according to Corollary 1. Thus, the
data complexity is D ≈ 244.14 chosen plaintext-ciphertext pairs, while the time
complexity is T ≈ 2114.18 16-round encryptions. The memory requirements are
M = 2 · 232 · 32 = 238 bits needed for these arrays.

Compared to the RKSS key recovery attack using the same distinguisher,
which needs D̃ = 249 chosen plaintext-ciphertext pairs and T̃ ≈ 2114.19 16-
round encryptions, the probabilistic RKSS method performs much better than
the original one. Specifically, D = 3.44%× D̃.
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Algorithm 1: Key recovery attack procedure of 10-round Piccolo-80
containing both pre- and post-whitening keys.

1 for 216 wk2 and 216 wk3 do
2 Allocate and initialize two arrays V1[x1] and V ′

1 [x
′
1] with |x1| = 28 = |x′

1|;
3 wk′

2 = wk2 ⊕ 0x0β00 and wk′
3 = wk3;

4 for N plaintexts P with P0[0, 2, 3] and P2[0, 2, 3] fixed do
5 Query the ciphertexts C under K;
6 Decrypt C0, C2 to get Y0[2, 3], Z0[0], Y1[0, 1] and Z2[2, 3];
7 Let x1 ← Z0[0]||(Y0[2, 3]⊕ C1[2, 3])||Z2[2, 3]||(Y1[0, 1]⊕ C3[0, 1]) and

V1[x1]← V1[x1] + 1;
8 for N plaintexts P ′ with P ′

0[0, 2, 3] = P0[0, 2, 3] and P ′
2[0, 2, 3] = P2[0, 2, 3]

do
9 Query the ciphertexts C′ under K′;

10 Decrypt C′
0, C

′
2 to get Y ′

0 [2, 3], Z
′
0[0], Y

′
1 [0, 1] and Z′

2[2, 3];
11 Let x′

1 ← Z′
0[0]||(Y ′

0 [2, 3]⊕ C′
1[2, 3])||Z′

2[2, 3]||(Y ′
1 [0, 1]⊕ C′

3[0, 1]) and
V ′
1 [x

′
1]← V ′

1 [x
′
1] + 1;

12 for 28 kR
0 and 28 kL

1 do
13 Allocate V2[x2] and V ′

2 [x
′
2] with |x2| = 12 = |x′

2|, and initialize them to
zeros;

14 (k′
0)

R = kR
0 and (k′

1)
L = kL

1 ;
15 for 228 x1 and x′

1 do
16 Decrypt half-round for x1 and x′

1 to get W1[0, 2, 3]⊕ k2[0, 2, 3] and
W ′

1[0, 2, 3]⊕ k′
2[0, 2, 3];

17 Let x2 ←W1[0, 2, 3]⊕ k2[0, 2, 3] and V2[x2]← V2[x2] + V1[x1];
18 Let x′

2 ←W ′
1[0, 2, 3]⊕ k′

2[0, 2, 3] and V ′
2 [x

′
2]← V ′

2 [x
′
2] + V ′

1 [x
′
1];

19 C = 0;
20 for 212 x do

21 C← C+
∑212−1

x=0

(
(V2[x]− V ′

2 [x])
2/(2N · 2−12)

)
;

22 if C ≤ τ then
23 The guessed key bits are possibly right;

24 for 216 k2, 2
8 kL

0 and 28 kR
1 do

25 Use two plaintext-ciphertext pairs to check if they are right;

4.3 Probabilistic RKSS Attack on 17-Round Piccolo-128

Using the same distinguisher introduced in Corollary 3, we can mount a 17-
round key recovery attack on Piccolo-128 by adding an extra round before it.
This key recovery attack is the best one on Piccolo-128 considering both pre-
and post-whitening keys in terms of the number of rounds, compared to previous
known results.

Due to Corollary 3, to guarantee that W3⊕k3 has the same value distribution
with W ′

3 ⊕ k′3, we need to iterate over all possible values of the input of 14-th
round X = X0||X1||X2||X3 with X0[0, 1]||X2[2, 3] fixed, which is equivalent to
all possible values of U = U0||U1||U2||U3 with U1 fixed (See Fig. 5). In other
words, s = 48 and t = 16 here. Under α0 = 0.01 and α1 = 2−14.89, we need
N ≈ 243.14 U with the same U1 and the threshold value τ ≈ 215.97. To generate

16



Algorithm 2: Key recovery attack procedure of 16-round Piccolo-128
with both pre- and post-whitening keys.

1 for 216 k4, 2
16 k7, 2

16 k0 and 216 k1 do
2 wk2 = kL

4 ||kR
7 and wk3 = kL

7 ||kR
4 ;

3 wk′
2 = wk2, wk′

3 = wk3, k
′
4 = k4, k

′
7 = k7, k

′
0 = k0 ⊕ 0x00β and k′

1 = k1;
4 Allocate and initialize two arrays V1[x1] and V ′

1 [x
′
1] with |x1| = 32 = |x′

1|;
5 for N plaintexts P with P0[0, 1] and P2[2, 3] fixed do
6 Query the ciphertext C for P under K;
7 Decrypt C to get Z0[2, 3], Z1[0, 1], Z2[0, 1], Z3[2, 3], Y0[0, 1] and Y1[2, 3];
8 Let x1 ← Z0[2, 3]||(Z1[0, 1]⊕ Y0[0, 1])||Z2[0, 1]||(Z3[2, 3]⊕ Y1[2, 3]) and

V1[x1]← V1[x1] + 1;
9 for N plaintexts P ′ with P ′

0[0, 1] = P0[0, 1] and P ′
2[2, 3] = P2[2, 3]⊕ β do

10 Decrypt C′ to get Z′
0[2, 3], Z

′
1[0, 1], Z

′
2[0, 1], Z

′
3[2, 3], Y

′
0 [0, 1] and

Y ′
1 [2, 3];

11 Let x′
1 ← Z′

0[2, 3]||(Z′
1[0, 1]⊕ Y ′

0 [0, 1])||Z′
2[0, 1]||(Z′

3[2, 3]⊕ Y ′
1 [2, 3]) and

V ′
1 [x

′
1]← V ′

1 [x
′
1] + 1;

12 for 28 kL
2 and 28 kR

5 do
13 (k′

2)
L = kL

2 and (k′
5)

R = kR
5 ;

14 Allocate and initialize two arrays V2[x2] and V ′
2 [x

′
2] with

|x2| = 16 = |x′
2|;

15 for 232 x1 and x′
1 do

16 Decrypt half-round for x1 and x′
1 to get W3 ⊕ k3 and W ′

3 ⊕ k′
3;

17 Let x2 ←W3 ⊕ k3, and V2[x2]← V2[x2] + V1[x1];
18 Let x′

2 ←W ′
3 ⊕ k′

3, and V ′
2 [x

′
2]← V ′

2 [x
′
2] + V ′

1 [x
′
1];

19 C = 0;
20 for 216 x do

21 C← C+
∑216−1

x=0

(
(V2[x]− V ′

2 [x])
2/(2N · 2−16)

)
;

22 if C ≤ τ then
23 The guessed key bits are possibly right;

24 for 28 kR
2 , 2

16 k3, 2
8 kL

5 and 216 k6 do
25 Use two plaintext-ciphertext pairs to check if they are right;

these N values of U , we traverse all possible values of P0 and P2, randomly
choose 211.14 values for P3, and set P2 = F (P0⊕wk0) after guessing wk0. U

′ can
be obtained similarly. All key bits can then be recovered following Algorithm 3.

Suppose that one memory access to an array of size 232 or of size 259.14 costs
less than one encryption of 17-round Piccolo-128. Then, the time complexity of
this attack is T = 259.14 ·2+259.14 ·4+264 ·243.14 ·4+264 ·243.14 ·2 · (4/17+1)+
264 · 216 · 232 · 2 · (1/2) · (1/17) + 2 · 2128α1 ≈ 2115.44 17-round encryptions. The
data complexity is D = 2 · 216N ≈ 260.14 chosen plaintext-ciphertext pairs. The
dominant memory requirements are to store these plaintext-ciphertext pairs,
about M = 4 · 259.14 · 64 = 267.14 bits are needed for these arrays.

To show the advantage of this new method, we also try to mount an RKSS
attack based on the same distinguisher. However, we have to use D̃ = 2·216·248 =
265 chosen plaintext-ciphertext pairs in such an attack. In other words, the full
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Algorithm 3: Key recovery attack procedure of 17-round Piccolo-128
with both pre- and post-whitening keys.

1 Allocate and initialize four arrays VP [], V
′
P [], VC [] and V ′

C [] with size 259.14;
2 Take 211.14 distinct random values of P3 and store them in a set S;
3 Choose another 211.14 distinct random values of P ′

3 and store them in a set S′;
4 a← 0;
5 for 216 P0, 2

16 P1, and 216 P2 do
6 for 211.14 P3 in set S do
7 Query the ciphertexts C for P under K;
8 VP [a] = P , VC [a] = C, and increase a by one;

9 a← 0;
10 for 216 P0, 2

16 P1, and 216 P2 do
11 for 211.14 P ′

3 in set S′ do
12 Query the ciphertexts C′ for P ′ under K′;
13 V ′

P [a] = P ′, V ′
C [a] = C′, and increase a by one;

14 for 216 k4, 2
16 k7, 2

16 k0, and 216 k1 do
15 wk0 = kL

0 ||kR
1 , wk2 = kL

4 ||kR
7 , and wk3 = kL

7 ||kR
4 ,wk′

0 = wk0, wk′
2 = wk2,

wk′
3 = wk3, k

′
4 = k4, k

′
7 = k7, k

′
0 = k0 ⊕ 0x00β1β2, and k′

1 = k1;
16 Allocate and initialize two arrays V1[x1] and V ′

1 [x
′
1] with |x1| = 32 = |x′

1|;
17 for 216 P0, 2

16 P2, and 211.14 P3 in set S do
18 Compute P1 = F (P0 ⊕ wk0); // We have 243.14 U with the same U1

19 Access VP [] with P0||P1||P2||P3 and get the index a, then access VC [a]
to get the corresponding ciphertexts C;

20 Decrypt C to get Z0[2, 3], Z1[0, 1], Z2[0, 1], Z3[2, 3], Y0[0, 1] and Y1[2, 3];
21 Let x1 ← Z0[2, 3]||(Z1[0, 1]⊕ Y0[0, 1])||Z2[0, 1]||(Z3[2, 3]⊕ Y1[2, 3]) and

V1[x1]← V1[x1] + 1;
22 for 216 P0, 2

16 P2, and 211.14 P ′
3 in set S′ do

23 Compute P1 = F (P0 ⊕ wk0);// We have 243.14 U ′ with U ′
1 = U1

24 Access V ′
P [] with P0||P1||P2||P ′

3 and get the index a, then access V ′
C [a]

to get the corresponding ciphertexts C′;
25 Decrypt C′ to get Z′

0[2, 3], Z
′
1[0, 1], Z

′
2[0, 1], Z

′
3[2, 3], Y

′
0 [0, 1], Y

′
1 [2, 3];

26 Let x′
1 ← Z′

0[2, 3]||(Z′
1[0, 1]⊕ Y ′

0 [0, 1])||Z′
2[0, 1]||(Z′

3[2, 3]⊕ Y ′
1 [2, 3]) and

V ′
1 [x

′
1]← V ′

1 [x
′
1] + 1;

27 for 28 kL
2 and 28 kR

5 do
28 (k′

2)
L = kL

2 and (k′
5)

R = kR
5 ;

29 Allocate and initialize two arrays V2[x2] and V ′
2 [x

′
2] with

|x2| = 16 = |x′
2|;

30 for 232 x1 and x′
1 do

31 Decrypt half-round for x1 and x′
1 to get W3 ⊕ k3 and W ′

3 ⊕ k′
3;

32 Let x2 ←W3 ⊕ k3, and V2[x2]← V2[x2] + V1[x1];
33 Let x′

2 ←W ′
3 ⊕ k′

3, and V ′
2 [x

′
2]← V ′

2 [x
′
2] + V ′

1 [x
′
1];

34 C = 0;
35 for 216 x do

36 C← C+
∑216−1

x=0

(
(V2[x]− V ′

2 [x])
2/(2N · 2−16)

)
;

37 if C ≤ τ then
38 The guessed key bits are possibly right;

39 for 28 kR
2 , 2

16 k3, 2
8 kL

5 and 216 k6 do
40 Use two plaintext-ciphertext pairs to check if they are right;
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11-Round Distinguisher (R14 ~ R24)

R25

R26

R27

R28

R29

Fig. 4. Probabilistic RKSS attack on 16-round Piccolo-128 with full whitening, where
• are active nibbles and × are nibbles that we need to know in the key recovery
procedure.

codebook is used, and the attack would not be valid. Therefore, the probabilistic
RKSS method can make it possible to cover one more round than the original
RKSS method.

5 Conclusion and Future Work

In this paper, we revisited the RKSS cryptanalysis technique and proposed a
new method called probabilistic RKSS cryptanalysis, which requires a lower
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11-Round Distinguisher (R14 ~ R24)

R13

Fig. 5. One round added before the distinguisher when attacking 17-round Piccolo-128,
where • are active nibbles and × are nibbles that we need to know in the key recovery
procedure.

data complexity and has the potential of attacking more rounds than the orig-
inal RKSS method. This new method was proposed by adopting an appropri-
ate statistic that considers different χ2-distributions under right and wrong key
guesses. The statistic is constructed as the squared Euclidean distance between
the partial-value distributions of two ciphertext sets obtained from encrypting
two independently chosen plaintext sets under related keys. The distributions of
this statistic have been proved rigorously under several reasonable assumptions
and confirmed experimentally using a toy cipher.

To show the effectiveness of this new method, we have applied it to the
reduced-round Piccolo. As a result, we obtained the best key recovery attacks
containing both pre- and post-whitening keys on 10-round Piccolo-80 and 17-
round Piccolo-128. Note that we only use 10% of the number of plaintexts re-
quired for RKSS attacks on the 10-round Piccolo-80 and the success probabil-
ity only decreases by 1%. Meanwhile, the data complexity needed in the new
method on 16-round Piccolo-128 is only 3.44% of that required in the RKSS
method. Moreover, we can cover one additional round on Piccolo-128 using the
new method.

To make a more clear comparison between the probabilistic RKSS method
and the original RKSS method, some theoretical discussions, as well as key
recovery attacks on reduced-round SKINNY-128-256 and full-round LiCi-2, are
given in the Appendix due to space constraints.

The probabilistic RKSS method has shown its advantage compared to the
original RKSS by new cryptanalysis results on Piccolo, SKINNY-128-256 and
LiCi-2. The applications of this new method on other primitives are an interest-
ing topic to explore in future work.
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A Brief Introduction to Piccolo

Piccolo [31] is a 64-bit lightweight block cipher proposed at CHES 2011. The two
variants Piccolo-80 and Piccolo-128 have key sizes of 80 and 128 bits, respectively.

These two variants have the same iterative structure which is a type of gen-
eralized Feistel network, but the number of rounds is different. The number of
rounds for Piccolo-80 and Piccolo-128 is 25 and 31, respectively. Fig. 6 shows the
detailed structure of Piccolo. A 64-bit plaintext P is first divided into four 16-bit
parts P0, P1, P2 and P3. Then P0 and P2 will be XORed with the pre-whitening
keys wk0 and wk1, respectively. After that, 25 or 31 rounds will be evaluated
to get the corresponding ciphertext C. At last, a part of the ciphertext C0 and
C2 will be XORed with the post-whitening keys wk2 and wk3, respectively. The
round function F consists of two S-box layers, which are composed of four par-
allel 4-bit S-boxes, separated by an MDS matrix M . M is a circulant matrix
defined as circ(2, 3, 1, 1) where the multiplications are performed over the Ga-
lois Field GF (24) defined by an irreducible polynomial x4 + x + 1. The round
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permutation RP takes a 64-bit input value X = (x0, x1, x2, x3, x4, x5, x6, x7) and
outputs a 64-bit value Y = (x2, x7, x4, x1, x6, x3, x0, x5).

.....

.....

.....

.....

Pre-Whitening Key Layer

Post-Whitening Key Layer

RP

RP

RP

RP

Fig. 6. The detailed structure of Piccolo.

The key schedule of Piccolo is linear. Denote kj = kLj ||kRj as a 16-bit key

word, where kj ∈ F16
2 , kLj ∈ F8

2 and kRj ∈ F8
2. The round constants con80

j and

con128
j are used in Piccolo-80 and Piccolo-128, respectively. For the 80-bit key

K = k0||k1||k2||k3||k4, the whitening keys are

wk0 = kL0 ||kR1 , wk1 = kL1 ||kR0 , wk2 = kL4 ||kR3 , wk3 = kL3 ||kR4
and the round keys for the (i+ 1)-th round (0 ≤ i ≤ 24) are

(rk2i, rk2i+1) = (con80
2i , con

80
2i+1)⊕


(k2, k3) if i mod 5 = 0 or 2

(k0, k1) if i mod 5 = 1 or 4

(k4, k4) if i mod 5 = 3.

For a 128-bit key K = k0||k1||k2||k3||k4||k5||k6||k7, the whitening keys are

wk0 = kL0 ||kR1 , wk1 = kL1 ||kR0 , wk2 = kL4 ||kR7 , wk3 = kL7 ||kR4 .

Before extracting rkj (0 ≤ j ≤ 61), a word-wise permutation h will operate on
K only when (j + 2) mod 8 = 0, where h(K) = k2||k1||k6||k7||k0||k3||k4||k5.
Hence, rkj = con128

j ⊕ k(j+2) mod 8.
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B Experimental Verification of Assumptions Adopted

In this section, we use the same toy cipher and follow the same procedure as
introduced in Sect. 3.2 to verify whether these assumptions used in Section 3.1
are acceptable.

On the Assumption of Stuart-Maxwell Test. Given 2s paired data (TI(y, z),
TI(y, z

′)) evaluated under y ∈ Fs
2, we have to test whether these pairs are inde-

pendent. This is equivalent to checking the autocorrelation of the sequence:

(TI(y1, z), TI(y1, z
′)), (TI(y2, z), TI(y2, z

′)), (TI(y3, z), TI(y3, z
′)), · · · .

In statistics, testing the autocorrelation of sequences [32] where only one
element is involved each time, rather than a pair, can be described as follows.
For a given sequence of samples {x1, x2, x3, · · · , xn}, we evaluate its correlation
with the sequence {xt+1, xt+2, xt+3, · · · , xn} that omits the first t samples
(i.e., from x1 to xt). The autocorrelation of this sequence under the distance t
is then defined as

R(t) =

n−t∑
i=1

(xi − µ)(xi+t − µ)∑n
i=1(xi − µ)2

,

where µ is the average value of all samples xi. If these n samples are collected
independently, the absolute value of R(t) should fulfill |R(t)| ≈ 0 for any t > 0.

In order to use the above theory to test the sequence of paired data, we
mapped each pair into an integer. In experiments, since TI(y, z) ∈ F4

2 and
TI(y, z

′) ∈ F4
2, we can transform the paired data (TI(y, z), TI(y, z

′)) into 16 ×
TI(y, z) + TI(y, z

′). Note that the independence of the transformed samples is
equivalent to that of the original ones since it is a bijective mapping. For each
t, we evaluate R(t) in 1000 experiments and compare its value with zero. Since
there are a lot of possible t, we only present a few of them in Fig. 7. We can
see that Pr{|R(t)| ≤ 0.04} ≥ 98%. Therefore, |R(t)| ≈ 0. In other words, the
independence assumption used in the Stuart-Maxwell test is fulfilled.

We also implemented the above experiments when the key difference has
a low Hamming weight. In this case, the key difference of each round is set
to 0x1. The corresponding results are illustrated in Fig. 8. Similarly, we have
Pr{|R(t)| ≤ 0.04} ≥ 98% and thus the assumption is also fulfilled.

On Ai,j ≈ 0 Used in the Proof of Lemma 1. We collect 1000 values of Ai,j here
under each 1 ≤ i ≤ 2t−1 and 1 ≤ j ≤ 2t−1. Some of these experimental results
are presented in Fig. 9. Since Pr{|A1,1| ≤ 0.04} ≥ 95%, Pr{|A1,2| ≤ 0.04} ≥ 98%
and Pr{|A1,3| ≤ 0.04} ≥ 98%, we can say |A1,1| ≈ 0, |A1,2| ≈ 0 and |A1,3| ≈ 0.

So, the assumption Ai,j ≈ 0 is reasonable, and then MM̃ ≈ I.

On Hypothesis 1. We collect 1000 values of qiqj , q
′
iq

′
j and qi + q′j under each

0 ≤ i ≤ 2t − 1 and 0 ≤ j ≤ 2t − 1. Then we compare them with (2−t)2, (2−t)2

and 2 · 2−t, respectively. Since there are 256 combinations of (i, j) pairs, we only
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Fig. 7. Experimental verification of the assumption of the Stuart-Maxwell test when
the key difference is randomly chosen.
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Fig. 8. Experimental verification of the assumption of the Stuart-Maxwell test when
the key difference has a low Hamming weight.
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Fig. 9. Experimental results related to Ai,j ≈ 0.

present several of them here in Fig. 10. For cases (a), (b), (d) and (e), we have
Pr{|qiqj − (2−t)2| ≤ 0.001} ≥ 97% and Pr{|q′iq′j − (2−t)2| ≤ 0.001} ≥ 97%; for
case (c) and (f), we have Pr{|qi + q′j − 2 · 2−t| ≤ 0.01} ≥ 94%. Thus, all these
values can be approximated by 0. Hence, Hypothesis 1 is reasonable.
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Fig. 10. Experimental results related to Hypothesis 1.

C Further Discussion on the Probabilistic RKSS Method

As we can see from our applications on Piccolo, the probabilistic RKSS method
has shown its ability to require less data and even cover more rounds than the
original RKSS method, with only a small reduction in the success probability.

To make a clear comparison between these two methods, we also mounted
key recovery attacks on reduced-round SKINNY-128-256 [6] and the full-round
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LiCi-2 [20]. Due to space constraints, we omit the details of these two attacks
and only list our results here.

Best Integral-Like Attacks on Round-Reduced SKINNY-128-256 in the Basic Re-
lated Tweakey Setting. SKINNY [6] is a well-known lightweight tweakable block
cipher family designed by Beierle et al. at CRYPTO 2016. The cipher sup-
ports two kinds of block sizes n ∈ {64, 128} and three main tweakey sizes n,
2n and 3n, which are usually referred to as SKINNY-n-n, SKINNY-n-2n, and
SKINNY-n-3n, respectively. Here, we only focus on SKINNY-128-256. Apart
from the self-analysis by its designers [6], SKINNY has been evaluated under
many cryptanalytic methods. Among all of these, the best tweakey recovery
attacks on SKINNY-128-256 are given by [15].

Using the probabilistic RKSS method, we can mount tweakey recovery at-
tacks on 20-round and 21-round SKINNY-128-256. While with the original RKSS
method, we can only proceed the 20-round attack with much higher data com-
plexities and cannot mount valid 21-round attacks. Note that our attacks are
not the best known but they are the best integral-like attack results when the
number of distinct tweakeys is limited to 2.

Much Faster Key Recovery Attacks on Full-Round LiCi-2. LiCi-2 [20] is a 64-
bit lightweight block cipher designed by Khairnar et al. for IoT devices that
supports a 128-bit key. Its full-round security has been recently broken by [38].
However, their attack requires 2123.44 full-round encryptions.

Using the (probabilistic) RKSS method, we can mount key recovery attacks
costing only 293.36 full-round encryptions. Compared with the original RKSS
method, the probabilistic RKSS method also needs much lower data complexity.

Further Discussion. As we can see from the above applications, the data com-
plexities can be reduced using the probabilistic RKSS method. However, the
reduction of the data complexity is different. Denote Qs,t,α0,α1

as the reduction
of the data complexity, i.e.,

Qs,t,α0,α1
=

2 · 2s − 2 ·N
2 · 2s

=

(
1− 1

2s

)
q
(2t−1)
α1

q
(2t−1)
1−α0

.

For several ciphers, Qs,t,α0,α1 along with other information are compared in
Table 3.

From Table 3, we can see that the most important parameter for the data
reduction is t, i.e., a larger t often leads to a larger Qs,t,α0,α1

. However, when α1

is chosen to be extremely small, we may not obtain a larger Qs,t,α0,α1 even if t
is larger. This is the case for the parameters in Piccolo-80 and LiCi-2. Hence, to
reduce the amount of data, we have to choose a larger t and α1. The parameter
t is determined by the RKSS distinguisher used, while α1 is mainly influenced
by the time complexity.
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Table 3. Parameters in all proposed attacks, where α0 and α1 are error probabilities,
s and t are determined by the RKSS distinguisher.

Cipher s t Data Reduced Qs,t,α0,α1 Chosen α1 Maximum of α1

SKINNY-128 96 8 44.52% 2−32.1 2−22.97

Piccolo-80 40 12 90% 2−7.16 2−7

LiCi-2 61 14 88.34% 2−60 2−35.64

Piccolo-128 48 16 96.56% 2−14.89 2−14.83

Usually, a larger α1 leads to a larger time complexity. Let T and T̃ denote
the time complexity costs in the probabilistic and original RKSS attacks, respec-
tively. More precisely, T can be computed as

T = l1 ·N + l2 + l3 · 2κ−κg2κgα1,

where l1 ·N denotes the cost of generating ciphertexts, l2 is the cost of recovering
round key bits, κ is the full key length, κg is the number of guessed key bits, and
l3 is the number of plaintext-ciphertext pairs used to filter out the right key. For
the original RKSS attack, since we have to use 2s chosen plaintexts and α1 ≈ 0,
T̃ can be evaluated as

T̃ = l1 · 2s + l2 + l3 · 2κ−κg .

Usually, we lean toward choosing α1 fulfilling T ≤ T̃ , since in this case, the new
method can reduce the data complexity without increasing the time complexity.
When increasing α1, we should assure that the term l3 ·2κ−κg2κgα1 should never
be larger than the maximum between l1 · 2s, l2 and l3 · 2κ−κg . Thus,

α1 ≤ max

{
l1 · 2s

l3 · 2κ
,

l2
l3 · 2κ

,
l3 · 2κ−κg

l3 · 2κ

}
.

That is,

α1 ≤ 1

l3 · 2κ
max

{
l1 · 2s, l2, l3 · 2κ−κg

}
.

This indicates that, when T̃ is close to 2κ (i.e., the cost of exhaustive search),
it may be possible to choose a larger α1, so that the probabilistic RKSS method
works efficiently. The maximum of α1 in our attacks is given in Table 3.

Another important point to discuss, is the effectiveness of our new method
on QARMA-64 [3], since the RKSS method was originally proposed to attack 10-
round QARMA-64. The attack uses four different RKSS distinguishers where s = 56
and t = 4 [22]. We can follow a similar procedure shown in [22, Algorithm 2]
to recover the 128-bit key using the probabilistic RKSS method. In this case,
the time complexity of this attack is T ≈ 2N · 4 + 2128α4

1 encryption units.
The data needed is D = 2N · 4 = 8N chosen plaintext-tweak pairs, while the
memory requirement is the same as the original attack. The success probability
is decreased to Prs = (1 − α0)

4. Taking Prs = 99% and α1 = 2−18.45, we can
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obtain that N ≈ 255.94. Hence, T ≈ 258.99 and D ≈ 258.94. The original method
costs T̃ ≈ 259 and D̃ ≈ 259. Thus, D ≈ 95.9% × D̃, which means that the data
complexity is reduced only a little bit. This may be due to the fact that we have
to use four distinguishers when mounting such attacks. Hence, compared to the
case where only one RKSS distinguisher is used, α0 is chosen to be much smaller.
Otherwise, the success probability Prs will be too small. Meanwhile, t = 4 is also
too small compared to those used in attacks on Piccolo and LiCi-2.

All in all, we suggest trying the probabilistic RKSS method if: (1) T̃ is close
to 2κ; or, (2) t ≥ 8 in the RKSS distinguisher; or, (3) we want to add some
rounds before the distinguisher in order to attack more rounds (or reduce the
time complexity).

D KDIB Distinguisher for Piccolo

In this section, we present the KDIB distinguisher (Fig. 11) for Piccolo-80, from
which the RKSS distinguisher in Corollary 2 is derived. The 11-round KDIB
distinguisher for Piccolo-128 related to the RKSS distinguisher in Corollary 3 is
omitted as it follows a similar strategy.

R3

R4

R5

R6

R7

R8

R9

R10

Fig. 11. 8-Round KDIB distinguisher with pre-whitening keys for Piccolo-80, where
• are active nibbles and • are nibbles that can be active or non-active (related to
Corollary 2). The validity of this distinguisher can be verified by checking the diffusion
of masks in both sides without contradiction in the middle state and the key difference
should be zero when its mask is possibly active (• or •) according to [7, Condition 1].
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