
Fast and Efficient Hardware Implementation of
HQC

Sanjay Deshpande1, Chuanqi Xu1, Mamuri Nawan2, Kashif Nawaz2, and
Jakub Szefer1

1 CASLAB, Department of Electrical Engineering, Yale University, New Haven, USA
sanjay.deshpande@yale.edu, chuanqi.xu@yale.edu, jakub.zefer@yale.edu

2 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
mamuri@tii.ae, kashif.nawaz@tii.ae

Abstract. This work presents a hardware design for constant-time im-
plementation of the HQC (Hamming Quasi-Cyclic) code-based key en-
capsulation mechanism. HQC has been selected for the fourth round of
NIST’s Post-Quantum Cryptography standardization process and this
work presents the first, hand-optimized design of HQC key generation,
encapsulation, and decapsulation written in Verilog targeting implemen-
tation on FPGAs. The three modules further share a common SHAKE256
hash module to reduce area overhead. All the hardware modules are
parametrizable at compile time so that designs for the different secu-
rity levels can be easily generated. The design currently outperforms the
other hardware designs for HQC, and many of the fourth-round Post-
Quantum Cryptography standardization process, with one of the best
time-area products as well. For the combined HighSpeed design target-
ing the lowest security level, we show that the HQC design can perform
key generation in 0.09ms, encapsulation in 0.13ms, and decapsulation
in 0.21ms when synthesized for an Xilinx Artix 7 FPGA. Our work
shows that when hardware performance is compared, HQC can be a
competitive alternative candidate from the fourth round of the NIST
PQC competition.

Keywords: HQC · Hamming Quasi-Cyclic · PQC · KEM · Key Encapsulation
Mechanism · Post-Quantum Cryptography · FPGA · Hardware Implementation

1 Introduction

Since 2016 NIST has been conducting a standardization process with the goal
to standardize cryptographic primitives that are secure against attacks aided
by quantum computers. There are today five main families of post-quantum
cryptographic algorithms: hash-based, code-based, lattice-based, multivariate,
and isogeny-based cryptography. Very recently NIST has selected one algo-
rithm for standardization in the key encapsulation mechanism (KEM) category,
CRYSTALS-Kyber, and four fourth-round candidates that will continue in the
process. One of the four fourth-round candidates is HQC. It is a code-based
KEM based on structured codes.

As the standardization process is coming to an end after the fourth round, the
performance as well as hardware implementations of the algorithms are becoming
very important factor in selection of the algorithms to be standardized. The mo-
tivation for our work is to understand how well hand-optimized HQC hardware
implementation can be designed and realized on FPGAs. To date, most of the
post-quantum cryptographic hardware has focused on lattice-based candidates,
with code-based algorithms receiving much less attention. All existing hardware
implementations for HQC are based on either high-level synthesis (HLS) [1,3]
or are hardware-software co design [22]. Our design is first full hardware, hand-
optimized design of HQC. While HLS can be used for rapid prototyping, in our
experience it cannot yet outperform Verilog or other hand optimized designs.
Indeed, as we show in this work, our design outperforms the existing HQC HLS
design. Further, our design beats the existing hardware-software co-design im-
plementation in terms of time taken to perform key generation, encapsulation,
and decapsulation.

In addition, our hardware design competes very well with the hardware de-
signs for other candidates currently in the fourth round of NIST’s process: BIKE,
Classic McEliece, and SIKE. The presented design has best time-area product as
well as time for key generation and decapsulation compared to the hardware for
these designs. We also achieve similar time-area product for encapsulation when
compared to BIKE. Due to limited breakdown of data for SIKE’s hardware [17]
comparison to SIKE for all aspects is more difficult, but we believe our design
is better since for similar area cost, their combined encapsulation and decapsu-
lation times are two orders of magnitude larger. Detailed comparison to related
work is given in Section 3. As this work aims to show, code-based designs such
as HQC can be realized very efficiently when optimized hardware is developed.
Further, our design is constant-time, eliminating timing-based attacks. We be-
lieve our work shows that HQC can be a strong contender in the fourth round
of NIST’s process. The list of contributions our design includes:

– We provide the first hand-optimized, fully specification-compliant FPGA imple-
mentation of HQC, that includes key generation, encapsulation, and decapsulation,
as well as a joint design of all three operations, adherent to the latest (fourth-round)
HQC specification.

– We provide an improved SHAKE256 module which is based on Keccak module
given in [25]. With our improvement, our hash module design runs two time faster
than the existing one from [25]. Also, improving the overall time-area product.

– We provide first hardware implementations and evaluation for two variants of
constant-time fixed-weight vector generation, namely Constant Weight Word fixed-
weight vector generation [24] and a novel Fast and Non-Biased fixed-weight vector
generation algorithm, which is based on fixed-weight vector generation process
given in [1].

– We also provide an implementation of a parameterized binary field polynomial
multiplication unit that uses half the Block RAM when compared to the existing
state-of-the-art while providing better performance.

– Our designs are constant-time providing protection against the timing side-channel
attacks and providing compile-time parameters to switch between different security
levels and performances.

2

We evaluate the resource requirements and performance numbers of our de-
signs on a Xilinx Artix 7 FPGA as it is a defacto standard for the evaluation
of NIST PQC hardware designs. For all our hardware designs, we report the
resource utilization in terms of Slices, Look Up Tables (LUTs)3, Digital-Signal
Processing Units (DSPs), FlipFlops (FF) Block RAM (BRAM). We also report
Time which is computed by dividing the number of clock cycles taken per op-
eration by design with the maximum clock frequency of the design. In order
to consolidate the overall performance and for comparison with other hardware
designs from the literature, we use Time Area Product (T×A = Time×Slices)
as a metric. Functional correctness of our modules is ensured by generating the
testvectors from the reference software implementation (provided in [2]). These
testvectors are then fed into our design via testbenches performing pre- and post-
synthesis simulations. The hardware design generated output is then compared
with the reference software implementation output.

1.1 Open-Source Design

All our hardware designs reported in this paper are fully reproducible. The
source code of our hardware designs is available under an open-source license at
https://github.com/caslab-code/pqc-hqc-hardware.

2 Hardware Design of HQC

HQC Key Encapsulation Mechanism (HQC-KEM) consists of three main prim-
itives: Key Generation, Encapsulation, and Decapsulation. The algorithms for
each primitive are shown in Appendix 1.A: Algorithm 2, Algorithm 5, and Al-
gorithm 6, respectively. These primitives are built upon the HQC Public Key
Encryption (HQC-PKE) primitives shown in Appendix 1.A: Algorithm 2, Algo-
rithm 3, and Algorithm 4, which in turn are composed of more basic building
blocks. In this work, we implement optimized and parameterizable hardware de-
signs for all the primitives and the building blocks from scratch. In the following
subsections, we briefly discuss all the building blocks and provide comparisons
with any existing designs. The main building blocks involved for each of the
primitives are as follows:

– Key Generation: Fixed weight vector generator, PRNG based random vector gen-
erator, polynomial multiplication, modular addition, and SHAKE256

– Encapsulation: Encrypt, SHAKE256
– Decapsulation: Decrypt, Encrypt, SHAKE256

2.1 Modules Common Across the Design

In this section, we give a high-level overview of hardware designs of the building
blocks that are used across the HQC-KEM and HQC-PKE.

3
We report both Slices and LUTs in our tables since slices can be often partially used based on the
optimization strategy of the synthesis tool, which makes slice utilization not a complete indication
of the density of the design.

3

https://github.com/caslab-code/pqc-hqc-hardware

SHAKE256 HQC uses SHAKE256 for multiple purposes e.g., as a PRNG for
fixed weight vector generation and random vector generation in Key Generation,
as a PRNG for fixed weight vector generation in Encryption, and for hashing
in encapsulation and decapsulation. We improve the SHAKE256 module de-
scribed in [8] (which was originally designed based on Keccak design from [25])
to perform SHAKE256 operations. We further tailor the SHAKE256 hardware
module as per the requirement for our hardware design. Following is a list of
improvements we make to the design of the SHAKE256 module:

The SHAKE256 from [25] module has a fixed 32-bit data input and output
ports, and has a performance parameter (parallel slices) which represents
the number of combinatorial logic units that can be run in parallel inside the
round function. The SHAKE256 from [25] did not work for parallel slices

> 16. We made significant changes in the control logic to fix this issue. The
design now supports up to parallel slices = 32. The time and area results
can be seen in Table 1. We note from Table 1, that the time area product
improves as we increase the parallel slices. However, we could not add the
support parallel slices beyond 32 due to the other constraints of the state
size of SHAKE256 (1600 bits) and fixed data port sizes (32 bits) in the way that
SHAKE256 is used in our HQC implementation.

The existing SHAKE256 module from [25] operates with a command-based
interface where the number of input bits to be processed, and the number of
output bits required is specified before starting the hash operation. Based on
the required weight, the fixed weight vector generation process requires pseu-
dorandom bits to be generated from the SHAKE256 module for a specified input
seed. Suppose the generated pseudorandom bits fail to satisfy the conditions to
achieve the necessary weight or need a second fixed-weight vector generated from
the same seed. In that case, another round of pseudorandom bits is generated
from SHAKE256. As per the HQC specification, the internal SHAKE256 state
is maintained as starting point for generation of the next set of pseudorandom
bits. The original SHAKE256 module from [25] was not optimized nor designed
to support preserving of the SHAKE256 state between invocations. We modified
parts of datapath and the control logic to preserve the state. Since our modifi-
cation of SHAKE256 holds the current state and does not automatically return to
its new input loading state, we modify the operation of the existing forced exit
signal to return the SHAKE256 module to the default state.

Using the existing module from [25] directly, it was not possible to implement
the constant-time solution for the fixed weight vector generation since there is
no command to request for additional bytes. We modify the existing design and
add an additional command that can request additional bytes. The purpose
of adding this command is to support and optimize the overall time taken to
generate pseudo-random bits required for the fixed weight vector generation
process described in Section 2.1. This optimization gives a significant amount of
improvement in terms of clock cycles (time), for e.g., in the case of the hqc128

parameter set, the number of clock cycles taken by the SHAKE256 module from
[25] to facilitate the random bits needed for generating the second fixed weight

4

Table 1: SHAKE256module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip. The formula for the time-area product,
T×A, is (SLICES * Time).

Resources

Parallel Slices Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

1 496 1,437 0 498 0 163 2,408 14.77 7,325
2 537 1,558 0 466 0 167 1,206 7.22 3,877
4 560 1,625 0 370 0 157 604 3.85 2,156
8 675 1,958 0 280 0 158 302 1.91 1,289
16 972 2,819 0 236 0 164 150 0.91 884

Our Improvement
32 1,654 4,797 0 191 0 166 74 0.45 744

vector is equal to 639 clock cycles. With our improvements to the module, we
achieve the same in 434 clock cycles (i.e., 32% improvement in time). And this
improvement is up to 65% in larger parameter sets of HQC.

In addition to the aforementioned changes, we further explored options for
optimizing the maximum clock frequency by pipelining the critical path. We note
that there are several such critical paths throughout the design, and pipelining
each path added severe overhead in terms of clock cycles with minimal improve-
ment in the maximum clock frequency. Consequently, the results presented in
Table 1 are optimal time and area results for the given hardware architecture. We
use a similar performance parameter parallel slices as described in the orig-
inal keccak/SHAKE256 design in [25]. The SHAKE256 module has a fixed 32-bit
data ports, and data input and output is based on typical ready-valid protocol.
The results targeting Xilinx Artix 7 xc7a200t FPGA are shown in Table 1. The
clock cycle numbers provided in the Table 1 are for processing 320-bits input
(sample input size chosen as per the seed size used in HQC) and generating one
block of output (where each block size is 1088-bits). There are six options for
the parallel slices, which provide different time-area trade-offs. We choose
parallel slices = 32 as it provides the best time-area product. An interface
diagram of the SHAKE256 module is shown in Figure 7a. For brevity, we represent
all the ports interfacing with the SHAKE256 module with ⇔ in all further block
diagrams in this paper.

Polynomial Multiplication HQC uses polynomial multiplication operation
in all the primitives of HQC-KEM. The polynomial multiplication operation is
multiplication of two polynomials with n components in F2. After profiling all
the polynomial multiplication operations from the HQC specification document
and the reference design [2], we note that in all the polynomial multiplication
operations, one of the inputs is a sparse fixed weight vector (with weight w or
wr in Table 14) of width n-bits. Consequently we design a sparse polynomial
multiplication technique with an interleaved reduction Xn − 1 (values of n can
be found in Table 14).

The motivation behind our polynomial multiplication unit is as follows: we
represent the non-sparse arbitrary polynomial as arb poly and the sparse fixed-

5

weight polynomial by sparse poly. For sparse poly, rather than storing the full
polynomial we only store the indices for non-zero values. Then, the multiplication
is performed by left shifting arb poly with each index of sparse poly and then
performing reduction of the resultant vector in an interleaved fashion. Since the
value of n is large in all parameter sets of HQC, we take a sequential approach for
performing the left shift. We implement a sequential left shift module similar to
one in [12]. The shift module described [12] uses a register based approach and is
not scalable when the length of the input is as large as the n value for the HQC
parameters (due to a larger resource utilization and complex routing). This issue
is circumvented in our design by implementing a block RAM based sequential
variable shift module with a dual port BRAM and small barrel rotation unit.
The barrel rotation unit and the block RAM widths are used as performance
parameter (BW - Block Width) for the shift module and in turn for the whole
polynomial multiplication unit. A similar implementation of sequential variable
shift module was previously described in [10], however we could not readily use
their implementation because the shift module is tightly embedded with the
other modules for a different application and we re-implemented our version.

The hardware design of our polynomial multiplication module (poly mult)
is shown in Figure 7b. The arb poly input to the poly mult module is loaded
sequentially and the width is of each chunk of arb poly is equal to BW (making
total number of chunks in polynomial equal to RAMDEPTH = ceil(n/BW)). We
store the least significant part of the polynomial at the lowest address of the block
RAM and the most significant part at the highest address. Since the polynomial
length in HQC parameters is equal to n and is not divisble by BW (n is a prime) we
pad the most significant part of the polynomial with zeros. For sparse poly, one
index is loaded at a time. While performing the shift operation we also perform
the reduction (Xn − 1) in an interleaved fashion. As the result of multiplying
two n-bit polynomials could be a 2n-bit polynomial and reduction of 2n-bit
polynomial to (Xn − 1) in F2 is equivalent to slicing of the 2n-bit polynomial
into two parts of n-bit polynomials and then performing a bitwise XOR. As
result, when the shift operation is performed on each chunk we also compute
the address value (ADDR 2N) (signifying the degree of the resultant polynomial).
If we notice that this degree of the resultant polynomial is greater that n we
perform XOR of this chunk to the lower chunk by decoding the address based on
the value of ADDR 2N. We perform similar operation over all the indices of the
sparse poly to achieve the final multiplied resultant value.

The clock cycles taken by our poly mult module for one polynomial multipli-
cation can be computed using the following formula where WSPARSE is weight
of the sparse polynomial, n is length of the polynomial, BW is the block width,
3 cycles represents the number of pipeline stages and 2 cycles are for the start
and done synchronization with interfacing modules. The clock cycles taken for
shift and interleaved reduction for one index is (3+ceil(n/BW)). Our poly mult

module is constant time and we achieve that by fixing the WSPARSE to a specific
value (w and wr) based on the parameter set.

6

Table 2: Comparison of our area and timing information poly mult module with the
other sparse polynomial multiplication units targeting Artix 7 board with xc7a200t

FPGA chip.

Resources

BW Logic Memory F Cycles Time T x A
(bits) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

Our poly mult module, Polynomial Length∗ = 12,323, W∗
SPARSE = 71

32 134 396 0 181 1 270 27,621 0.10 14
64 202 599 0 205 2 277 13,918 0.05 10
128 486 1,438 0 456 4 238 7,102 0.03 14

General Sparse Multiplier, Polynomial Length∗ = 12,323, W∗
SPARSE = 71 [19]

32 132 319 0 127 2 234 27,691 0.12 16
64 197 549 0 190 4 222 13,988 0.06 12
128 378 1,136 0 381 8 185 7,172 0.04 15

Sparse Multiplier, Polynomial Length∗ = 10,163, W∗
SPARSE = 71 [15]

32 100 — — 2 240 158,614 0.66 66
64 157 — — 3 220 90,880 0.41 64
128 292 — — 5 210 51,688 0.24 70

†= Slices (no info on LUTs), + Length of the non-sparse arbitrary polynomial, ∗ = Weight of the sparse polynomial
input

latencypoly mult = WSPARSE × (3 + ceil(n/BW)) + 2

Table 2 shows the results for our poly mult module compared with the re-
lated work. We note that our sparse polynomial multiplication module performs
better in terms of time while utilizing half the Block RAM resources when com-
pared to the existing designs. Table 3 shows results for our poly mult module
for the parameter sizes used for HQC hardware design.

Polynomial Addition/Subtraction HQC uses polynomial addition/ subtrac-
tion in all of its primitives. Since all addition and subtraction operations happen
in F2, the addition and subtraction could be realized as the same operation.
We design two variants of constant-time adders namely xor based adder and
location based adder that could be attached with our polynomial multiplica-
tion module described in Section 2.1. We design our adder modules as an exten-
sion for polynomial multiplication because the addition/subtraction always ap-
pears with the polynomial multiplication as shown in Algorithm 2, Algorithm 3,
and Algorithm 4. The adders operate on contents of block RAM since the poly-
nomials are stored inside the block RAM. Both of the adder module designs do
not use any additional block RAM resources, they load the polynomial multipli-
cation output, perform the addition, and write the value back to the same block
RAM inside the polynomial.

The xor based adder design performs addition in a regular F2 fashion by
performing bit-wise exclusive-OR operation. The module performs addition
sequentially by generating one block RAM address per clock cycle to load inputs
from two block RAMs and then performs addition and writes them back to one
of the specified block RAMs at the same block RAM address.

7

Table 3: Time and area information of our poly mult module for different HQC para-
mater sizes with different performance parameter (BW) sizes, data based on synthesis
results for Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Input
Length+

W∗
sparse Logic Memory F Cycles Time T x A

(bits) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

Our poly mult module (BW = 32)
17,669 (hqc128) 66 139 412 0 189 1 287 36,698 0.13 18
35,851 (hqc192) 100 131 387 0 193 2 257 112,402 0.44 57
57,637 (hqc256) 131 134 397 0 199 2 267 236,457 0.89 119

Our poly mult module (BW = 64)
17,669 (hqc128) 66 209 620 0 245 2 270 18,482 0.07 14
35,851 (hqc192) 100 219 649 0 249 2 286 56,402 0.20 43
57,637 (hqc256) 131 218 644 0 223 2 283 118,426 0.42 91

Our poly mult module (BW = 128)
17,669 (hqc128) 66 486 1,439 0 496 4 238 9,374 0.04 19
35,851 (hqc192) 100 488 1,445 0 500 4 240 28,402 0.12 58
57,637 (hqc256) 131 489 1,448 0 474 4 245 59,476 0.24 119

+ Length of the non-sparse polynomial, ∗ = Weight of the sparse polynomial input

Table 4: Polynomial addition modules (xor based adder and loc based adder with
datapath width 128-bits) area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Input Length Logic Memory F Cycles Time T x A
(bits) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

xor based adder (BW = 128)
17,669 74 143 0 159 0 330 142 0.43 31
35,851 73 142 0 161 0 318 284 0.89 65
57,637 73 142 0 161 0 311 455 1.46 106

loc based adder (BW = 128)
17,669 86 160 0 174 0 316 69 0.22 18
35,851 88 161 0 174 0 300 103 0.34 30
57,637 92 161 0 175 0 300 134 0.45 41

The location based adder is an optimized adder designed to perform addi-
tion when one of the input is a sparse vector. This module is mainly designed to
perform operations x+h·y from Algorithm 2 and r1+h·r2 and s·r2+e from Al-
gorithm 3. In these operations the values of x, r1, and e are sparse, fixed-weight
vectors so the addition is optimized by only flipping the bits of the other input
in the position of one. The location based adder module takes location of ones
from the sparse vector as input and computes the address to load out the part of
non-sparse polynomial from the block RAM and flips the bit on the appropriate
location and writes it back to the same location. The process is repeated until
all locations with ones are covered. Since there are a fixed, and known number of
ones in the fixed-weight vector, there is a fixed number of operations and timing
does not reveal any sensitive information. Results of our polynomial addition
location based adder module for one performance parameter (width = 128)
are shown in Table 4.

Fixed-Weight Vector Generator The fixed-weight vector generator func-
tion generates a uniformly random n-bit fixed-weight vector of a specified input

8

S
H
A
K
E
2
5
6

seed
BRAM

pos_
BRAM

p
i
p
e
l
i
n
e
d
_

B
a
r
r
e
t
t
_

R
e
d
u
c
t
i
o
n

Control Logic to
handle SHAKE
communication

Control Logic for check
and duplicate swapping

o
u
t
p
u
t

seed_in

s
h
a
k
e
_
o
u
t
p
u
t

+

Precomp_
m_BRAM

Pipelined_
Karatsuba_
Multiplier

a

Pipelined_
Karatsuba_
Multiplier

R
E
G

N
_
m
i
n
u
s
_
i

SubtractR
E
G

ADDR
E
G

R
E
G

a_mod_n_minus_i

Fig. 1: Hardware design of Constant Weight Word Fixed-Weight vector generator
(fixed weight vector cww) module.

weight (w). The algorithm for a fixed-weight generation as specified in [1] first
generates 24×w random bits. These random bits are then arranged into w 24-bit
integers. These 24-bit integers undergo a threshold check and are rejected if the
integer value is beyond the threshold. (949× 17, 669, 467× 35, 851, 291× 57, 637
for hqc-128, hqc-192 and hqc-256 respectively). After the threshold check, these
integers are reduced modulo n. After the threshold check and reduction process,
if the weight is not equal to w, then more random bits are drawn from RNG,
and the process is repeated until w integers are achieved. After the threshold
check and reduction then, a check for duplicates is performed over all the re-
duced integers. In case any duplicate is found, that integer is discarded, and
more random bits are requested drawn from the RNG, which again undergoes
threshold check, reduction, and duplicate check. This process is repeated until a
uniform fixed-weight vector is generated.

The main pitfall with the fixed-weight vector approach proposed in [1] is
that it may show non-constant-time behavior in the rejection sampling process
(i.e., the threshold check and duplicate detection as discussed earlier). A timing
attack on existing software reference implementation of HQC [1] was performed
in [13]. The authors use the information of rejection sampling routine (that
is part of fixed-weight generation) being invoked during the deterministic re-
encryption process in decapsulation and show that this leaks secret-dependent
timing information. The timing of the rejection sampling routine depends upon
the given seed. This seed is derived for the encrypt function in encapsulation
and decapsulation procedures using the message. The decapsulation operation
is dependent on the decoded message and this dependency allows to construct a
plaintext distinguisher (described in detail in [13]) which is then used to mount
the timing attack.

Although the attack has not been demonstrated on a hardware implementa-
tion of HQC yet, we implement two variants of fixed-weight generation to pre-
vent the attack from being possible in hardware. The two variants are Constant
Weight Word Fixed-Weight Vector Generation and Fast and Non-Biased Fixed-
Weight Vector Generation; discussed in Appendix 1.B due to limited space.

Constant Weight Word (CWW) Fixed Weight Vector Generation: The CWW
fixed-weight vector generation variant comes as a fourth-round recommendation

9

Table 5: Constant Weight Word (CWW) and Fast Non-Biased (FNB) fixed-weight
vector module area and timing information, data based on synthesis results for Artix
7 board with xc7a200t-3 FPGA chip. For FNB design (discussed in Appendix 1.B),
the wr parameter is derived from Table 14. The CWW design is fully constant-time so
no ACCEPTABLE REJECTIONS parameter is required.

Resources

Design Weight Logic Memory F Cycles Time T x A Failure+

(wr) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us) Prob.

Constant Weight Word (CWW)
hqc128 75 67 201 4 229 1.0 201 3,062 15.23 1,020 0
hqc192 114 71 211 5 245 1.0 200 6,817 34.09 2,420 0
hqc256 149 72 216 5 248 1.0 204 11,487 56.31 4,054 0

Fast and Non-Biased Design with ACCEPTABLE REJECTIONS = wr (discussed in Appendix 1.B)

hqc128 75 106 316 0 124 2.0 223 1,479 6.63 702 2.8× 2−199

hqc192 114 100 295 0 125 2.0 236 2,226 9.43 1,075 1.1× 2−280

hqc256 149 107 314 0 192 2.5 242 3,248 13.42 1,435 4.9× 2−355

+ = Probability of our design failing to behave constant-time.

Algorithm 1 Constant Weight Word Fixed Weight Vector Generation

Input: N , w, seed
Output: w distinct elements in range 0 to N − 1

1: rand bits← prng(input = seed, output size = 32× w)
2: for i← w − 1 to 0 do
3: pos[i] = i + (rand bits[32 + 32 ∗ i− 1 : 32 ∗ i])%(N − i)
4: end for
5: for j ← w − 1 to 0 do
6: duplicate found← 0
7: for k ← j + 1 to w − 1 do
8: if pos[j] == pos[k] then
9: duplicate found← 1
10: end if
11: end for
12: if duplicate found == 1 then
13: pos[j] = j
14: end if
15: end for
16: return pos

from the HQC authors ([2]). It was introduced as a fix for the non-constant
time behavior of the earlier fixed-weight algorithm (given in [1]) at the cost
of small bias. The CWW was originally proposed by Sendrier in (Algorithm
5 of [24]). Shown in Algorithm 1, we rewrite the CWW fixed-weight vector
generation algorithm as implemented in our hardware design. The CWW fixed-
weight algorithm first generates 32 × w random bits. These random bits are
arranged into 32-bit integer array with indices 0 to w − 1. Each 32-bit integer
from the array is then modulo-reduced to N - ARRAY INDEX, and the reduced
number is then added with the ARRAY INDEX. After the reduction, a compare and
swap is performed, as shown in steps 5-14 of Algorithm 1. This compare and swap
step ensures no duplicate elements exist in the final fixed-weight vector.

Our hardware design uses the SHAKE256 module (described in Section 2.1)
as the PRNG. The 32-bit interface from our SHAKE256 module helps us avoid the
32-bit arrangement of random bits (given in steps 2-4 of Algorithm 1). We design

10

a pipelined Barrett reduction [6] unit to perform the modular reduction (where
both the input and modulo value can be changed at runtime, note that in most
other design the modulo is fixed at compile time which makes the design of the
reduction unit simpler). The operation is shown in step 3 of Algorithm 1. To per-
form the integer multiplication inside the Barrett reduction, we design karatsuba
multiplication [7] unit using the Digital Signal Processing (DSP) units available
on the target FPGA. If the DSP resources are unavailable on the target FPGA,
we note that our design can naturally be synthesized to use LUTs. We store the
reduced values in a dual-port BRAM (pos BRAM shown in Figure 1) of depth w.
Once the BRAM is filled, we perform the compare and swap step with the help of
the control logic interfaced with the two ports on the BRAM. We note that the
pseudorandom number generation, Barrett reduction is performed in constant-
time and since the compare and swap procedure is always over a fixed number
of memory locations, we achieve a fully constant time hardware implementation
for the fixed-weight vector generation process. Although the CWW algorithm
ensures the constant time behavior in generating fixed-weight vectors, there is
a small bias between the uniform distribution and the algorithm’s output. The
security analysis performed in [24] for BIKE’s parameters [4] shows that this
bias has negligible impact on security.

The time and area results for our hardware design are given in Table 5.
Because the compare and swap operation requires combinatorial logic between
two ports of the dual port BRAM, this becomes the critical path for the design.
The compare and scan step takes w × (w − 1)/2 clock cycles. Consequently, as
shown in the Table 5, as w increases, the number clock cycles also increases.

2.2 Encode and Decode Modules

The encode and decode modules are building blocks of the encrypt and decrypt
modules, respectively. We describe the encode and decode modules here, before
describing the bigger encrypt and decrypt modules in Section 2.3.

Encode Module As specified in [2], HQC Encode uses concatenation of two
codes namely Reed–Muller and Reed–Solomon codes. The hardware design of
our encode module is shown in Figure 2. The Encode function takes K-bit
input and first encodes it with the Reed–Solomon code. The Reed–Solomon en-
coding process involves systematic encoding using a linear feedback shift register
(LFSR) with a feedback connection based on the generator polynomial (shown
on page 23, section 2.5.2 of [2]). The Reed–Solomon code generates a n1-bit
output (as given in [2] the value for n1 is 368, 448, and 720 for hqc128, hqc192,
and hqc256 respectively). For the Galois field multiplication unit (for the field
F2[x]/(x

8+x4+x3+x2+1)) we design an LFSR-based optimized multiplication
unit similar to the one described in [21]. The number of Galois field multiplica-
tion units we run in parallel is equal to the degree of the generator polynomial.
The outputs from Galois field multipliers are fed in to a LFSR after each cycle.
At the end of encoding process the module generates a n1-bit output.

11

Control Logic

start

g
x

m_in

done

SHIFT_REG

0

REG
8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

…

CODEWORD_LFSR

MSB LSB

8 8 8

8
8 8

K

Control Logicstart

done cdw_out

SHIFT_REG

8

…

CW_
RAM

G
m
_
R
0

N1

0 0

G
M
_
R
1

0

G
M
_
R
7

XOR

cdw_out_addr

128 128

128

128

128

Reed Solomon Encode Reed Muller Code

Fig. 2: Hardware design of encode module (formed by concatenating two encode func-
tionalities, Reed-Solomon on the left side and Reed-Muller on the right side).

Table 6: encode module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 280 858 0 922 2 270.34 97 0.36 100
hqc192 358 1,011 0 1,088 2 298.32 131 0.44 157
hqc256 514 1,503 0 1,689 2 293.51 189 0.64 331

HLS design - {Reed–Solomon Encode + Reed–Muller Encode} [3]
hqc128 — 2,019 0 603 0 — 7,244 47.18 —

The n1-bit output from Reed–Solomon code is then encoded by Reed–Muller
code. The Reed–Muller encoding is achieved by performing vector-matrix multi-
plication where each byte from input is the vector and the matrix is the generator
matrix (G) shown in Appendix 1.A. In our design we store the generator matrix
rows (each row is of length 128-bits) in ROM and we select the matrix rows
based on each input byte. We store the output after multiplying input byte into
a block RAM in chunks of 128-bits. Based on the security parameter set the
code word output from Reed–Muller code has a multiplicity value (i.e., number
of times a code word or in our case number of times each block RAM location
is repeated). As per the specification [2], hqc128 has multiplicity value of 3 and
hqc192 and hqc256 have multiplicity value of 5. To optimize the storage, we only
store one copy of code word, and while accessing the code word we compute the
block RAM address in a way that the multiplicity is achieved. The time and area
results for our encode module targeting Artix 7 board with xc7a200t-3 FPGA
are shown in Table 6.

Decode Module As given in the specification [2], the ciphertext is first decoded
with duplicated Reed-Muller code and then with shortened Reed-Solomon code.
To decode duplicated Reed-Muller code, the transformation module expands
and adds multiple code words into expanded code word, and then the Hadamard
transformation is applied to the expanded code word. Finally, Find Peak module
finds the location of the highest absolute value of the Hadamard Transformation

output. Figure 6 describes detailed hardware design of Reed-Muller Decoder.

12

Control Logic

start

expand_
and_
sum_

Hadamard_
transform

find_
peaks

128

0

1

0

1

din

8

comp_
syndrome

comp_
error_

locator_
poly

comp_
Z_

poly

comp_
root

comp_
error_
values

fix_
messages

K

m_out

Control Logic
Reed Solomon DecodeReed Muller Decode

done

Fig. 3: Hardware design of decode module (formed by concatenating two decode func-
tionalities, Reed-Muller on the the left side and Reed-Solomon on the right side).

expand and sum module collects data inputs into m x 128-bit shift register, then
add and shift the last 2-bit lsb of each shift register to produce a pair of data
outputs. The data pair is then processed in hadamard transformation module
which consist of 7 layers of similar blocks of radix-2 butterfly structure. With
the outputs from hadamard transformation coming in pairs, finding peak can
be done in parallel inside the Find Peak module and compare the peaks of each
to be the final peak. The whole processes then repeated n1 times to produce n1

data output to Reed-Solomon Decoder.
To decode Reed-Solomon code, we need to sequentially compute syndromes

Si, coefficients σi of error location polynomial σ(x), roots of error location poly-
nomial (αi)−1, pre-defined helper polynomial Z((αi)−1), errors ei, and finally
correct the output of decode of Reed-Muller code based on the errors.

Evaluation Table 6 and Table 7 show time and area results for our decodemod-
ule. Out of the existing other hardware designs [2,3,22] (i.e., HLS and hardware-
software codesign), only [3] provides a breakdown of the performance for encode
and decode modules. As shown in Table 7 and Table 6 our hardware design
outperforms the other designs by a significant margin in all aspects. To the
best of our knowledge our implementation of encode and decode is the first
hand-optimized hardware implementation of concatenated encode (shortened
Reed–Solomon encode + duplicated Reed–Muller encode) and decode (dupli-
cated Reed–Muller decode and shortened Reed–Solomon decode) modules. There
are other hand-optimized hardware designs in the literature for Reed–Solomon
and Reed–Muller encode and decode (given in [23,5,14]), but their target was
not a cryptographic application. Hence, the implementation strategy is highly
focused on timing, throughput, and area performance rather than a secure im-
plementation (e.g., constant-time). Consequently, although our design is very
efficient, it will not be fair to compare our hardware implementations with them.

2.3 Encrypt and Decrypt Modules

The encrypt and decrypt modules are building blocks of the encapsulation and
decapsulation modules, respectively. We describe the encrypt and decrypt mod-
ules here, before describing the bigger encapsulation and decapsulation mod-
ules later.

13

Table 7: decode module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 952 2,817 0 3,779 2.5 205 4,611 0.02 19
hqc192 1,100 3,257 0 4,727 2.5 212 5,485 0.03 33
hqc256 1,243 3,679 0 5,574 2.5 206 9,199 0.04 50

HLS design - {Reed–Muller Decode + Reed–Solomon Decode} [3]
hqc128 — 10,154 0 2,569 3 — 68,619 592.00 —

fixed_
weight_
vector

Control Logic

theta_in

poly_
mult

encode

location_
based_
adder

m_in

u_
RAM

v_addr

v_out

u_out

s_inh_in

r1_
RAM

r2_
RAM

xor_
based_
adder

S
H
A
K
E
2
5
6

hs_addr_out

start done u_addr

(a) encrypt module.

Control
Logic

poly_mult

decode

dout
u
_
a
d
d
r
_
o
u
t v

_
a
d
d
r
_
o
u
t

u_in y_in

xor_based
_adder

v_in

v-u.y

y
_
a
d
d
r
_
o
u
t

s
t
a
r
t

done

(b) decrypt module.

Fig. 4: Hardware design of encrypt and decrypt modules.

Encrypt Module The encrypt module (shown in Algorithm 3) takes public
key (h, s), message m, and seed (θ) and generates a ciphertext (u,v) as the
output. The hardware design for the encrypt module is shown in Figure 4a.
We use our CWW fixed-weight vector module (fixed weight vector cww) de-
scribed in Section 2.1.A to generate r1, r2, and e fixed-weight vectors of weight
wr by expanding theta in and in parallel we run encode module (described
in Section 2.2). After the generation of r2 we start the polynomial multiplica-
tion of h.r2 in parallel to the e generation. For polynomial multiplication, we
use the poly mult module with BW = 128 described in Section 2.1. The ad-
dition of r1 in u computation and e in v computation is performed by our
location based adder and addition with t is performed by xor based adder

(described in Section 2.1).

From Algorithm 3, we observe that both h.r2 and s.r2 multiplications can
be performed in parallel, consequently we design a parallel encrypt module
targeting higher performance where we use two polynomial multiplications in
parallel (shown in Figure 8a). We provide a choice of using either encrypt or
parallel encrypt module as a parameter. Table 8 shows results for both the
encrypt hardware implementations targeting Xilinx Artix 7 xc7a200t FPGA.
We note that the major contributor to the overall time in encrypt operation is
due to polynomial multiplication and using two poly mult modules in parallel
reduces the overall time by 40-60% across different parameter sets. The area
results do not include the SHAKE256 module as the SHAKE256 is shared among

14

Table 8: encrypt module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

encrypt module – uses one poly mult module with with BW = 128
hqc128 1,230 3,642 4 1,773 10 179 28,217 0.16 194
hqc192 1,283 3,797 5 1,966 10 182 79,889 0.44 563
hqc256 1,438 4,256 5 2,542 10 192 160,489 0.84 1,202

parallel encrypt module – two poly mult modules with BW = 128 running in parallel
hqc128 1,734 5,132 4 2,179 12 179 17,202 0.10 173
hqc192 1,793 5,308 5 2,376 12 196 46,857 0.24 429
hqc256 1,934 5,725 5 2,931 12 196 91,862 0.47 908

† = Given resources does not include the area for SHAKE256 module.

Table 9: decrypt module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 2,146 6,352 0 5,730 10.5 194 14,198 0.07 150
hqc192 2,378 7,038 0 6,787 10.5 187 34,313 0.18 428
hqc256 2,886 8,544 0 8,740 13 186 69,356 0.37 1,067

all primitives. Figure 3 shows the hardware block design on our module and
Table 7 shows the time and area results for our module.

Decrypt Module The decrypt module (shown in Algorithm 4) takes secret
key (x, y), ciphertext (u,v), and generates the message (m’). Figure 4b shows
our hardware design for decrypt module. The module accepts part of the secret
key (y) as locations with ones (since it is a sparse fixed weight vector). We use
our poly mult module with BW = 128 described in Section 2.1 to compute u.y
and use xor based adder module (described in Section 2.1) to compute v−u.y.
We then use the decode module (described in Section 2.2) to decode v − u.y
and retrieve the message. Table 9 shows our hardware implementation results
for decrypt module targeting Xilinx Artix 7 xc7a200t FPGA.

2.4 Key Generation

We now begin to describe the top-level modules, starting with the key generation,
followed in later sections with encapsulation and decapsulation.

The key generation (shown in Algorithm 2) takes the secret key seed and pub-
lic key seed as an input and generates secret key (x, y) and public key (h, s)
respectively as output. Figure 8b shows the hardware design of our keygen

module. Our keygen module assumes that the public key seed and the se-
cret key seed are generated by some other hardware module implementing a
true random number generator. We use our CWW fixed-weight vector mod-
ule (fixed weight vector cww) module described in Section 2.1.A to generate
(x, y) from the secret key seed. x and y are fixed weight vectors of weight w

15

Table 10: keygen module area and timing information, data based on synthesis
results for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 809 2,396 4 901 10 179 15,759 0.09 72
hqc192 791 2,342 5 926 10 189 42,106 0.22 177
hqc256 791 2,342 5 942 10 188 82,331 0.44 347

hqc128-perf HLS∗[2] 3,900 12,000 0 9,000 3 150 40,000 0.27 1,053
hqc128-comp. HLS∗[2] 1,500 4,700 0 2,700 3 129 630,000 4.80 7,200

hqc128-optimized. HLS∗[3] 3,921 11,484 0 8,798 6 150 40,427 0.27 1,058
hqc128-pure HLS∗[3] 8,359 24,746 0 21,746 7 153 40,427 0.27 2,256

† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

and length n-bits. To optimize the storage, rather than storing full n-bit sparse
vector we only output locations of ones. There is also an optional provision to
output the full vector as described in Section 2.1. The vector set random uses
the SHAKE256 module to expand the public key seed and generates h. We then
use poly mult module with BW = 128 (described in Section 2.1) to compute
(h.y and finally use location based adder module (described in Section 2.1)
to compute s. We note that in the Figure 8b only a block RAM for x stor-
age (X RAM) is visible because the y,h, s are stored in the block RAMs which
are inside fixed weight vector, poly mult, and location based adder mod-
ules respectively.

Table 10 shows the results for the keygen module. The area results do not
include the SHAKE256 module because it is shared among all other primitives.
When we compare our hqc128 keygen design with existing designs from liter-
ature, we note that our design runs at least 3× faster than existing hardware
designs while utilizing 80% lesser FPGA footprint. We highlight that this im-
provement is due to our optimized fixed weight vector cww and poly mult

modules discussed in Section 2.1 and Section 2.1 respectively.

2.5 Encapsulation Module

The encapsulate operation (shown in Algorithm 5) takes public key (h, s) and
message m as an input and generates shared secret (K) and ciphertext (c =
(u,v)) and d. The hardware design of the encap module is shown in Figure 9a.
Our encap module assumes that m is generated by some other hardware module
implementing a true random number generator and provided as an input to our
module. Since the SHAKE256 module is extensively used in encapsulate operation
we design a HASH processor module which handles all the communication with
the SHAKE256 module. HASH processor modules reduces the multiplexing logic
of inputs to the SHAKE256 module significantly.

The Hash processor modules helps in expanding m to generate θ. We then
use our encrypt module (described in Section 2.3) to encrypt m using θ and
the public key as inputs and generates ciphertext. After the generation of r1,
r2, and e inside the encrypt module (described in Section 2.3) we then run

16

Table 11: encap module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

our encap module with encrypt
hqc128 1,400 4,145 4 2,128 13 179 33,438 0.19 262
hqc192 1,445 4,278 5 2,412 15 182 90,346 0.50 716
hqc256 1,625 4,809 5 3,041 15 182 177,154 0.97 1,582

our encap module with parallel encrypt
hqc128 1,969 5,828 4 2,531 15 179 22,423 0.13 247
hqc192 2,174 6,434 5 2,821 17 196 57,314 0.29 636
hqc256 2,330 6,898 5 3,417 17 196 108,527 0.55 1,292

hqc128 perf HLS∗[2] 5,500 16,000 0 13,000 5 151 89,000 0.59 3,245
hqc128 comp. HLS∗[2] 2,100 6,400 0 4,100 5 127 1,500,000 12.00 25,200

hqc128 optimized HLS∗[3] 5,575 16,487 0 13,390 10 152 89,110 0.59 3,289
hqc128 pure HLS∗[3] 9,955 29,496 0 26,333 11 148 89,131 0.59 5,873

† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

HASH processor module in parallel to encrypt module to generate d. After the
encryption of m we then use the HASH processor to compute K(m, c) to gen-
erate the shared secret K. Our design is constant-time since all the underlying
modules are constant-time and the control logic from the encap module does
not depend on any secret input. Table 11 shows the results for the encap mod-
ule with our encrypt and parallel encrypt. The area results do not include
the SHAKE256 module because it is shared among all other primitives. We note
that our hqc128 encap with parallel encrypt design runs at least 4.5× faster
than existing hardware designs from the literature while using 64% lesser FPGA
footprint. Hence, achieving the best Time-Area product. We highlight that this
improvement comes mainly from our optimized encode, and poly mult hard-
ware designs discussed in Section 2.2, and Section 2.1 respectively.

2.6 Decapsulation Module

The decapsulate operation (shown in Algorithm 6) takes secret key (x, y), public
key (h, s), ciphertext (c = (u, v)), d as an input and generates shared secret
(K). Figure 9b shows hardware design the decap module. We use our decrypt
module (described in Section 2.3) to decrypt the input ciphertext using secret key
(y) and generate the m′. We then use encap module to perform re-encryption of
m′ and generate u′, v′ and d′. We then pause the encap module to verify the u′,
v′ and d′ against u, v and d. After the verification we set a signal (optional port
mprime fail) if the verification fails. Irrespective of verification result we still
continue with the generation of the shared secret K to maintain the constant-
time behavior. Table 12 shows the results for the decap module using encrypt

and parallel encrypt (for performing the rencryption). The area results do
not include the SHAKE256 module because it is shared among all the primitives.
When we compare our hqc128 decap with parallel encrypt design with the
existing designs from literature, we note that our design runs at least 5.7× faster

17

Table 12: decap module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

our decap module with encrypt
hqc128 3,035 8,984 4 6,596 20 192 48,212 0.25 758
hqc192 3,368 9,969 5 7,911 22 186 125,805 0.68 2,290
hqc256 3,693 10,931 5 9,424 22 186 248,338 1.33 4,911

our decap module with parallel encrypt
hqc128 3,702 10,959 4 7,003 22 179 37,197 0.21 777
hqc192 4,025 11,915 5 8,320 24 186 92,773 0.50 2,012
hqc256 4,347 12,868 5 9,794 24 186 179,711 0.97 4,216

hqc128 perf HLS∗[2] 6,200 19,000 0 15,000 9.0 152 190,000 1.20 7,440
hqc128 comp. HLS∗[2] 2,700 7,700 0 5,600 10.5 130 2,100,000 16.00 43,200

hqc128 optimized HLS∗[3] 6,223 18,739 0 15,243 18.0 152 193,082 1.27 7,903
hqc128 pure HLS∗[3] 8,434 24,898 0 21,680 18.0 150 193,004 1.27 10,711

† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

while using 40% lower FPGA footprint. Hence, achieving the best Time Area
product. We highlight that this improvement comes mainly from our optimized
decode, encode, and poly mult designs discussed in Section 2.2, Section 2.2,
and Section 2.1 repectively.

3 HQC Joint Design and Related Work

In this section, we present our joint hardware design of a HQC combining our
keygen, encap, and decap modules (described in Section 2.4, Section 2.5, and
Section 2.6 respectively) into one overall design. Following that we compare
our joint design with other HQC combined designs from the literature in Sec-
tion 3.2. In addition to that, we also conduct a comprehensive literature survey
focusing on full hardware designs of the other three fourth-round public-key en-
cryption and key-establishment algorithms in NIST’s standardization process:
BIKE, Classic McEliece, and SIKE. We also include the CRYSTALS-Kyber, a
public-key encryption and key-establishment algorithm selected for standardiza-
tion at the end of the prior third round. Due to limited space we discuss this
part in Appendix 1.C.

3.1 HQC Joint Design

In this work, we present two designs, Balanced and HighSpeed. The main differ-
ence between our Balanced and HighSpeed designs is that our Balanced design
uses the regular encrypt module (shown in Figure 4a), and our HighSpeed
design uses the parallel encrypt module (shown in Figure 8a) for performing
the encryption and re-encryption operations in encapsulation and decapsulation.
The In order to build a resource-efficient yet performant joint design, we start
by identifying the common sub-modules among the three keygen, encap, and
decap by using hqc128 parameter set as an example:

18

SHAKE256: The SHAKE256 module is used in all the primitives (keygen, encap,
and decap) in HQC. As shown in Table 1, the SHAKE256 with parallel slices

= 32 has a high area utilization. Consequently, we share one SHAKE256 module
among all the primitives.

Polynomial Multiplication: The poly mult module is also common among all
the primitives. Table 3 shows the area utilization of the poly mult module. In
our Balanced design, we use only one poly mult module which takes up 60%,
35% and 16% of area resources in overall keygen, encap, and decap modules
respectively. And in our HighSpeed design, we use two poly mult modules for
faster Encrypt and Re-encrypt operations as described in Section 2.5 and Sec-
tion 2.6 this takes up 50% and 26% of overall area resources in encap, and decap

modules respectively.

Encapsulation: As specified in Section 2.6, we use the encap module (described
in Section 2.5) inside decap module to perform re-encryption and hash compu-
tation. This encap module takes up 46% of the overall decap resources in the
Balanced design and 53% in the HighSpeed design. Consequently, sharing one
encap module to perform both encapsulation and decapsulation would save a
significant amount of area.

In order to save the resource overhead due to the duplication of modules,
we decide to share the aforementioned modules between the three primitives
in our joint design. To differentiate between different operations, we provide a
2-bit port in the interface, which helps in choosing the operation between Key
Generation, Encapsulation, and Decapsulation. The results for our combined
Balanced and HighSpeed implementations are shown in Table 13 in comparison
with the most recent related work. Our results are generated targeting the Artix
7 (xc7a100t-csg324-3) FPGA. This is the same target FPGA family type as
used in the related works [22,3,2]. Our data is from synthesis and implementation
reports, while data for the other related works are from the cited papers.

3.2 Evaluation and Comparison to Existing HQC Hardware Designs

Previously, a hardware design for HQC has been generated using high-level syn-
thesis (HLS) [2], and code targeting Artix-7 is available online.4 The gener-
ated code can obtain the performance numbers: 0.3ms for key generation, 0.6ms
for encapsulation, and 1.2ms for decapsulation, the times correspond to the
HighSpeed implementation of the lowest security level. Authors also provide
LightWeight version for the lowest security level, but did not provide hardware
designs for other security levels. A different HLS-based design with better results
has been presented in [3]. This HLS design can achieve the performance of: 0.27
ms for key generation, 0.59 ms for encapsulation, and 1.27 ms for decapsulation
with their HighSpeed version. Apart from the HLS designs, a recent hardware
design [22] presented a hardware-software codesign approach and reports bet-
ter performance numbers than that of LightWeight versions of both the HLS
designs. Note, however, that there is area overhead of the CPU core. The HLS

4 https://pqc-hqc.org/implementation.html

19

https://pqc-hqc.org/implementation.html

Table 13: Comparison of our HQC hardware design with the related work.

Resources

Design Logic Memory F Encap Decap KeyGen

(Slices) (LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security

HQC – Our Work, HDL design, Artix 7 (xc7a100t)
Balanced 4,684 13,865 8 6,897 22 164 0.03 0.20 0.05 0.29 0.02 0.10
HighSpeed 5,246 15,214 8 7,293 24 178 0.02 0.13 0.04 0.21 0.02 0.09

HQC – [22], HW/SW codesign, Artix 7 (xc7a100t)
HW/SW — 8,000 0 2,400 3 100 0.13 1.3 0.56 5.6 0.06 0.56

HQC – [3], HLS design, Artix 7 (xc7a100t)
LightWeight — 8,876 0 6,405 28.0 132 1.48 11.85 2.15 17.21 0.62 5.01
HighSpeed — 20,169 0 16,374 25 148 0.09 0.59 0.19 1.27 0.04 0.27

HQC – [2], HLS design, Artix 7 (xc7a100t)
LightWeight 3,100 8,900 0 6,400 14.0 132 1.50 12.00 2.10 16.00 0.63 4.80
HighSpeed 6,600 20,000 0 16,000 12.5 148 0.09 0.60 0.19 1.20 0.04 0.30

HW/SW = Hardware-Software CoDesign, FF = flip-flop, F = Fmax, BR = BRAM

designs and hardware-software codesign only provide the lowest security level
version. Meanwhile, both Balanced and HighSpeed variants of our design are
faster for all three operations when compared to all existing designs. We also
achieve the best time area product, and cover all three security levels.

4 Conclusion

This work presented two performance-targeted and constant-time hardware de-
signs of the HQC KEM. This work presented first, hand-optimized design of
HQC key generation, encapsulation, and decapsulation written in Verilog tar-
geting FPGAs and provides compile-time parameters to switch between all se-
curity levels and performances. This work also presented a memory-optimized
Polynomial Multiplication module and a SHAKE256 module, which runs two
times faster when compared to the existing work. This work also presented the
first hardware implementation of two variants of constant-time solutions for the
fixed-weight vector generation process. Our HQC design currently outperforms
the other existing hardware designs for HQC. As this work showed, code-based
designs such as HQC can be realized very efficiently in optimized hardware.

Acknowledgement

We would like to thank the reviewers for the valuable feedback and Dr. Cuauhte-
moc Mancillas López for constructive comments and shepherding our article. We
would like to thank Dr. Victor Mateu and Dr. Carlos Aguilar Melchor for helpful
discussions. The work was supported in part by research grant from Technology
Innovation Institute.

20

References

1. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., Zémor, G., Bos, J.: HQC. Tech. rep., National
Institute of Standards and Technology (2020), available at https://pqc-hqc.org/
doc/hqc-specification 2021-06-06.pdf

2. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Persichetti, E., Zémor, G., Bos, J.: HQC. Tech. rep., National
Institute of Standards and Technology (2023), available at http://pqc-hqc.org/
doc/hqc-specification 2023-04-30.pdf

3. Aguilar-Melchor, C., Deneuville, J.C., Dion, A., Howe, J., Malmain, R., Migliore,
V., Nawan, M., Nawaz, K.: Towards automating cryptographic hardware imple-
mentations: a case study of hqc. Cryptology ePrint Archive, Paper 2022/1425
(2022), https://eprint.iacr.org/2022/1425, https://eprint.iacr.org/2022/1425

4. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Gueron, S., Guneysu, T., Aguilar Melchor, C., Misoczki, R., Per-
sichetti, E., Sendrier, N., Tillich, J.P., Zémor, G., Vasseur, V., Ghosh, S.: BIKE.
Tech. rep., National Institute of Standards and Technology (2020), available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

5. Azad, A.A., Shahed, I.: A compact and fast fpga based implementation of encoding
and decoding algorithm using reed solomon codes. International Journal of Future
Computer and Communication pp. 31–35 (2014)

6. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) Advances
in Cryptology — CRYPTO’ 86. pp. 311–323. Springer Berlin Heidelberg, Berlin,
Heidelberg (1987)

7. Bernstein, D.D.: Fast multiplication and its applications (2008)

8. Chen, P., Chou, T., Deshpande, S., Lahr, N., Niederhagen, R., Szefer, J., Wang,
W.: Complete and improved FPGA implementation of Classic Mceliece. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022(3), 71–113
(2022). https://doi.org/10.46586/tches.v2022.i3.71-113, https://doi.org/10.46586/
tches.v2022.i3.71-113

9. Dang, V.B., Mohajerani, K., Gaj, K.: High-speed hardware architectures and fpga
benchmarking of crystals-kyber, ntru, and saber. Cryptology ePrint Archive, Pa-
per 2021/1508 (2021), https://eprint.iacr.org/2021/1508, https://eprint.iacr.org/
2021/1508

10. Deshpande, S., del Pozo, S.M., Mateu, V., Manzano, M., Aaraj, N., Szefer, J.:
Modular inverse for integers using fast constant time gcd algorithm and its appli-
cations. In: Proceedings of the International Conference on Field Programmable
Logic and Applications. FPL (August 2021)

11. Galimberti, A., Galli, D., Montanaro, G., Fornaciari, W., Zoni, D.: On the
use of hardware accelerators in qc-mdpc code-based cryptography. In: Pro-
ceedings of the 19th ACM International Conference on Computing Frontiers.
p. 193–194. CF ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3528416.3530243, https://doi.org/10.1145/
3528416.3530243

12. Gigliotti, P.: Implementing barrel shifters using multipliers. Tech. Rep.
XAPP195, Xilinx (2004), https://www.xilinx.com/support/documentation/
application notes/xapp195.pdf

21

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.46586/tches.v2022.i3.71-113
https://eprint.iacr.org/2021/1508
https://eprint.iacr.org/2021/1508
https://eprint.iacr.org/2021/1508
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243
https://www.xilinx.com/support/documentation/application_notes/xapp195.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp195.pdf

13. Guo, Q., Hlauschek, C., Johansson, T., Lahr, N., Nilsson, A., Schröder, R.L.: Don’t
reject this: Key-recovery timing attacks due to rejection-sampling in hqc and bike.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2022,
Issue 3, 223–263 (2022). https://doi.org/10.46586/tches.v2022.i3.223-263, https:
//tches.iacr.org/index.php/TCHES/article/view/9700

14. Hashemipour-Nazari, M., Goossens, K., Balatsoukas-Stimming, A.: Hard-
ware implementation of iterative projection-aggregation decoding of reed-
muller codes. In: ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 8293–8297 (2021).
https://doi.org/10.1109/ICASSP39728.2021.9414655

15. Hu, J., Wang, W., Cheung, R.C., Wang, H.: Optimized polynomial multiplier
over commutative rings on fpgas: A case study on bike. In: 2019 International
Conference on Field-Programmable Technology (ICFPT). pp. 231–234 (2019).
https://doi.org/10.1109/ICFPT47387.2019.00035

16. Jati, A., Gupta, N., Chattopadhyay, A., Sanadhya, S.K.: A configurable
CRYSTALS-Kyber hardware implementation with side-channel protection. Cryp-
tology ePrint Archive (2021)

17. Massolino, P.M.C., Longa, P., Renes, J., Batina, L.: A compact and scal-
able hardware/software co-design of SIKE. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(2), 245–271 (Mar 2020).
https://doi.org/10.13154/tches.v2020.i2.245-271, https://tches.iacr.org/index.
php/TCHES/article/view/8551

18. Montanaro, G., Galimberti, A., Colizzi, E., Zoni, D.: Hardware-
software co-design of bike with hls-generated accelerators (2022).
https://doi.org/10.48550/ARXIV.2209.03830, https://arxiv.org/abs/2209.03830

19. Richter-Brockmann, J., Chen, M.S., Ghosh, S., Güneysu, T.: Racing bike: Im-
proved polynomial multiplication and inversion in hardware. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(1), 557–588
(Nov 2021). https://doi.org/10.46586/tches.v2022.i1.557-588, https://tches.iacr.
org/index.php/TCHES/article/view/9307

20. Richter-Brockmann, J., Mono, J., Guneysu, T.: Folding bike: Scalable hardware im-
plementation for reconfigurable devices. IEEE Transactions on Computers 71(5),
1204–1215 (2022). https://doi.org/10.1109/TC.2021.3078294

21. Sandoval-Ruiz, C.: Vhdl optimized model of a multiplier in finite fields. Ingenieria y
Universidad 21(2), 195–212 (Jun 2017). https://doi.org/10.11144/Javeriana.iyu21-
2.vhdl, https://revistas.javeriana.edu.co/index.php/iyu/article/view/195

22. Schöffel, M., Feldmann, J., Wehn, N.: Code-based cryptography in
iot: A HW/SW co-design of HQC. CoRR abs/2301.04888 (2023).
https://doi.org/10.48550/arXiv.2301.04888, https://doi.org/10.48550/arXiv.
2301.04888

23. Scholl, S., Wehn, N.: Hardware implementation of a reed-solomon soft
decoder based on information set decoding. In: 2014 Design, Automa-
tion Test in Europe Conference Exhibition (DATE). pp. 1–6 (2014).
https://doi.org/10.7873/DATE.2014.222

24. Sendrier, N.: Secure sampling of constant-weight words – application to bike. Cryp-
tology ePrint Archive, Paper 2021/1631 (2021), https://eprint.iacr.org/2021/1631,
https://eprint.iacr.org/2021/1631

25. Wang, W., Tian, S., Jungk, B., Bindel, N., Longa, P., Szefer, J.: Pa-
rameterized hardware accelerators for lattice-based cryptography and their
application to the hw/sw co-design of qTESLA. IACR Transactions on

22

https://doi.org/10.46586/tches.v2022.i3.223-263
https://tches.iacr.org/index.php/TCHES/article/view/9700
https://tches.iacr.org/index.php/TCHES/article/view/9700
https://doi.org/10.1109/ICASSP39728.2021.9414655
https://doi.org/10.1109/ICFPT47387.2019.00035
https://doi.org/10.13154/tches.v2020.i2.245-271
https://tches.iacr.org/index.php/TCHES/article/view/8551
https://tches.iacr.org/index.php/TCHES/article/view/8551
https://doi.org/10.48550/ARXIV.2209.03830
https://arxiv.org/abs/2209.03830
https://doi.org/10.46586/tches.v2022.i1.557-588
https://tches.iacr.org/index.php/TCHES/article/view/9307
https://tches.iacr.org/index.php/TCHES/article/view/9307
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.11144/Javeriana.iyu21-2.vhdl
https://doi.org/10.11144/Javeriana.iyu21-2.vhdl
https://revistas.javeriana.edu.co/index.php/iyu/article/view/195
https://doi.org/10.48550/arXiv.2301.04888
https://doi.org/10.48550/arXiv.2301.04888
https://doi.org/10.48550/arXiv.2301.04888
https://doi.org/10.7873/DATE.2014.222
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631

Cryptographic Hardware and Embedded Systems 2020(3), 269–306 (Jun
2020). https://doi.org/10.13154/tches.v2020.i3.269-306, https://tches.iacr.org/
index.php/TCHES/article/view/8591

26. Xing, Y., Li, S.: A compact hardware implementation of cca-secure
key exchange mechanism crystals-kyber on fpga. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021(2), 328–356 (Feb
2021). https://doi.org/10.46586/tches.v2021.i2.328-356, https://tches.iacr.org/
index.php/TCHES/article/view/8797

27. Zhu, Y., Zhu, W., Chen, C., Zhu, M., Li, Z., Wei, S., Liu, L.: Compact gf(2) sys-
temizer and optimized constant-time hardware sorters for key generation in classic
mceliece. Cryptology ePrint Archive, Paper 2022/1277 (2022), https://eprint.iacr.
org/2022/1277, https://eprint.iacr.org/2022/1277

Appendix 1.A Preliminaries

In this section, we briefly introduce HQC. We first introduce notations used
in this paper. Then HQC public key encryption (PKE) and key encapsulation
mechanism (KEM) algorithms are described. We refer to the specification of
HQC [2] for more detailed information.

1.A.1 Notation

In this paper, we denote F2 the binary finite field, and R = F2[X]/(Xn − 1)
the quotient ring on which vectors and operations of HQC are defined. For
any field or ring, Fl

2 or Rl denotes the field or ring of l dimensional vectors
over F2 or R. An element x ∈ R can be represented as either a vector x :=
(x0, x1, . . . , xn−1) or a polynomial x :=

∑n−1
i=0 xiX

i. The Hamming weight of x is

defined as
∑n−1

i=0 xi, i.e., the number of non-zero coefficients in x. x← R denotes

x is chosen uniformly random from R, while x
w←− R denotes x is randomly

chosen from R and the Hamming weight of x is w. Optionally, a random seed
can be specified for the sampling process, and the sampling process with random

seed θ is denoted as x
w,θ←−− R. For x,y ∈ R, the addition a = x + y ∈ R and

is defined as ai = xi + yi mod 2 or ai = xi xor yi for i = 0, . . . , n − 1. The
multiplication a = x · y ∈ R and is defined as ak =

∑
i+j≡k mod n xi · yj mod 2

for k = 0, . . . , n−1. Encode(·) and Decode(·) are the encode and decode function
of concatenated Reed–Muller and Reed–Solomon codes [2]. G(·),H(·),K(·) are
hash functions with domain separation bytes 3, 4, 5 respectively. Parameters n,
w, wr depend on the security level, which can be found on Table 14.

1.A.2 HQC PKE and KEM Schemes

Encode of duplicated Reed–Muller code. Encode of duplicated Reed–
Muller code is to directly perform a matrix vector multiplication. The generator

23

https://doi.org/10.13154/tches.v2020.i3.269-306
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://doi.org/10.46586/tches.v2021.i2.328-356
https://tches.iacr.org/index.php/TCHES/article/view/8797
https://tches.iacr.org/index.php/TCHES/article/view/8797
https://eprint.iacr.org/2022/1277
https://eprint.iacr.org/2022/1277
https://eprint.iacr.org/2022/1277

matrix is shown below (note that numbers are big endian and in hexadecimal):

G =

aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
cccccccc cccccccc cccccccc cccccccc
f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0
ff00ff00 ff00ff00 ff00ff00 ff00ff00
ffff0000 ffff0000 ffff0000 ffff0000
00000000 ffffffff 00000000 ffffffff
00000000 00000000 ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff

If the message is m = (m0, . . . ,m7) ∈ F28 , then c = mG, and the codeword is
given by duplicating c 3 or 5 times, depending on the security level.

Algorithm 2 HQC.PKE.KeyGen() and HQC.KEM.KeyGen()

1: h ← R
2: (x, y)

w←− R2

3: s := x + h · y
4: return (pk := (h, s), sk := (x, y))

Algorithm 3 HQC.PKE.Encrypt(pk = (h, s), m, θ)

1: (r1, r2, e)
ωr,θ←−−− R3

2: u := r1 + h · r2
3: t := Encode(m)
4: v := t + s · r2 + e
5: return c := (u,v)

Algorithm 4 HQC.PKE.Decrypt(sk = (x, y), c = (u,v))

1: m′ := Decode(v− u · y)
2: return m′

Algorithm 5 HQC.KEM.Encapsulate(pk = (h, s))

1: m ← Fk
2

2: salt ← F128
2

3: θ := G(m||pk||salt)
4: c := (u,v) = HQC.PKE.Encrypt(pk,m, θ)
5: K := K(m, c)
6: d := H(m)
7: return (K, (c, d, salt))

Algorithm 6 HQC.KEM.Decapsulate(sk = (x, y), c, d, salt)

1: m′ := HQC.PKE.Decrypt(sk, c)
2: θ′ := G(m′||pk||salt)
3: c′ := (u′,v′) = HQC.PKE.Encrypt(pk,m′, θ′)
4: d′ := H(m′)
5: K′ := K(m′, c)
6: if c ̸= c′ or d ̸= d′ then
7: return (K′, 0)
8: else
9: return (K′, 1)
10: end if

24

ctx
_RAM

Control Logic Seed
Handling

seed_
RAM

p
r
e

p
r
o
c
e
s
s loca

tion
_RAM

T
h
r
e
s
h
o
l
d

C
h
e
c
k
 a
n
d

R
e
d
u
c
t
i
o
n

duplicate_
detection

Control Logic to handle
SHAKE communication

Control Logic to
handle Threshold

check and Reduction

outputseed_in

Vector
BRAM

(init.
with
all 0)

=

c
o
l
l
i
s
i
o
n

A
d
d
r
e
s
s

D
e
c
o
d
e
r

Position
Decoder

l
o
c
a
t
i
o
n

Put 1

Control Logic

vector_output
(optional)

shake_output

SHAKE256

Control Logic to
handle Context

Fig. 5: Hardware design of Fast and Non-Biased (FNB) fixed-weight vector generation
(fixed weight vector fnb) module.

Table 14: Parameter sets for HQC. n is the length of the vector (polynomial). n1 is the
length of the Reed–Solomon code. n2 is the length of the Reed–Muller code. w is the
weight of vectors x,y. wr is the weight of vectors r1, r2, e. [n, k, d] of Reed–Solomon
and Reed–Muller codes are shown in the last two columns, and they are the length, the
dimension, and the minimum distance of the code. In HQC, shortened Reed–Solomon
code and duplicated Reed–Muller code are used. The multiplicity for duplicated Reed–
Muller code is 3, 5, 5 for hqc-128, hqc-192, hqc-256.

Instance n w wr security pfail Reed–Solomon Reed–Muller

hqc128 17,669 66 75 128 < 2−128 [46, 16, 15] [384, 8, 192]

hqc192 35,851 100 114 192 < 2−192 [56, 24, 16] [640, 8, 320]

hqc256 57,637 131 149 256 < 2−256 [90, 32, 29] [640, 8, 320]

Appendix 1.B Fast and Non-Biased (FNB) Fixed-Weight
Vector Generation:

Although the CWW design is constant in time, it does have a small bias. As
an alternative, we propose a new FNB fixed-weight vector generation design
which is based on fixed-weight vector generation technique given in [1]. Our
FNB fixed-weight generation module can be parametrized to create design with
an arbitrarily small probability of timing attack being possible. In our hard-
ware module, have a parameter ACCEPTABLE REJECTIONS, which can be used to
specify how many indices could be rejected in either rejection sampling or in du-
plicated detection and still, the design will behave constant time. The parameter
(ACCEPTABLE REJECTIONS) can be set based on user’s target failure probability.
If the actual failures are within the failure probability set by the selected pa-
rameter value, then the timing side channel given in [13] is not possible.

The hardware design of our FNB fixed-weight vector generation module
fixed weight vector fnb is shown in Figure 5. We use SHAKE256 module described
in Section 2.1 to expand 320-bit seed to a 24×w-bit string. Since the SHAKE256

25

module has 32-bit interface, the seed is loaded in 32-bit chunks, and the seed is
stored in seed RAM as shown in the Figure 5. The 32-bit chunk from SHAKE256
is broken into 24-bit integer by preprocess unit and stored in the ctx RAM then
threshold check and reduction are performed. For the reduction, we use Barrett
reduction [6]. Unlike the variable Barrett reduction discussed in Section 2.1.A,
this specific Barrett reduction is optimized as we always reduce the inputs to a
specific fixed value (n). After the reduction, the integer values are stored in the
locations RAM. Once the locations RAM is filled, the duplicate detection

module is triggered. The duplicate detection module helps detect potential
duplicates values in the location RAM by traversing through all address loca-
tions of location RAM and updating the value stored in a dual-ported RAM
VectorBRAM. While the duplicate detection module checks for duplicates, the
SHAKE256 module generates the next 24 × w-bit string to tackle any potential
duplicates and stores them in the ctx RAM. This way, we can mask any clock
cycles taken for seed expansion.

Our hardware design uses a PRNG to generate the uniformly random bits
required for the fixed weight vector generation from an input seed of length
320-bits. Our hardware design includes this PRNG in the form of SHAKE256
and assumes that the seed will be initialized by some other hardware module
implementing a true random number generator.

Our FNB fixed-weight generation module can be parametrized to create de-
sign with an arbitrarily small probability of timing attack being possible. In our
hardware module, have a parameter name is ACCEPTABLE REJECTIONS, which
can be used to specify how many indices could be rejected, and still, the de-
sign will behave constant time (at the cost of extra area for more storage and
extra cycles). The extra area is needed because we generate additional (based
on parameter value) uniformly random bits in advance and store them in the
ctx RAM (shown in Figure 5). The extra clock cycles are needed because even
after we found the required number of indices that are under the threshold value,
we still go over all the ctx RAM locations. And for the duplicate detection logic
inside duplicate detection module (shown in Figure 5), the control logic is
programmed to take the same cycles in both cases of duplicate being detected or
not. The parameter (ACCEPTABLE REJECTIONS) can be set based on user’s target
failure probability. If the actual failures are within the failure probability set by
the selected parameter value, then the timing side channel given in [13] is not
possible.

Table 5 shows the comparison of our new FNB design to the CCW design.
The area results shown in Table 5 exclude SHAKE256 module as the SHAKE256
is shared among all primitives. The reported frequency in Although the CWW
algorithm ensures the constant time behavior in generating fixed-weight vectors,
there is a small bias between the uniform distribution and the algorithm’s output.
Meanwhile, for the new FNB algorithm, there is no bias. Further, FNB is faster
than CWW, and the time-area product is better. These benefits come at the
cost of extremely small probabilities that the design is not constant time, but
only if it happens that there are more rejections than wr. Table 5 shows that

26

Table 15: Comparison of the time and area of state-of-the-art hardware implementa-
tions of other (NIST PQC competition) round 4 KEM candidates.

Resources

Design Logic Memory F Encap Decap KeyGen

(SLICES) (LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security

HQC – Our Work, HDL design, Artix 7 (xc7a200t)
BAL 4,560 13,481 8 6,897 22 164 0.03 0.20 0.05 0.29 0.02 0.10
HS 5,133 15,195 8 7,293 24 178 0.02 0.13 0.04 0.21 0.02 0.09

BIKE – [20], HDL design, Artix 7 (xc7a35t)
LW 4,078 12,868 7 5,354 17.0 121 0.20 1.2 1.62 13.3 2.67 21.9
HS 15,187 52,967 13 7,035 49.0 96 0.01 0.1 0.19 1.9 0.26 2.7

BIKE – [19], HDL design, Artix 7 (xc7a200t)
LW 3,777 12,319 7 3,896 9.0 121 0.05 0.4 0.84 6.89 0.46 3.8
TO 5,617 19,607 9 5,008 17.0 100 0.03 0.3 0.42 4.2 0.18 1.9
HS 7,332 25,549 13 5,462 34.0 113 0.01 0.1 0.21 1.9 0.19 1.7

Classic McEliece – [8], HDL design, Artix 7 (xc7a200t)
LW — 23,890 5 45,658 138.5 112 0.13 1.1 0.17 1.5 8.88 79.2
HS — 40,018 4 61,881 177.5 113 0.03 0.3 0.10 0.9 0.97 8.6

SIKE – [17], HDL design, Artix 7 (xc7a100t)
LW 3,415 — 57 7,202 21 145 — 25.6 — 27.2 — 15.1
HS 7,408 — 162 11,661 37 109 — 15.3 — 16.3 — 9.1

Kyber – [16], HDL design, (xc7a35t-2)
CB — 5,269 2 2,422 6 — 0.67 2.67 0.73 2.93 0.69 2.75
RB — 7,151 2 2,422 5 — 0.03 0.10 0.03 0.12 0.04 0.15

Kyber – [9], HDL design, (xc7a200t)
HS — 9,457 4 8,543 4.5 220 0.003 0.01 0.004 0.02 0.002 0.01

Kyber – [26], HDL design, (xc7a12t-1)
BAL 2,126 7,412 2 4,644 3 161 0.005 0.23 0.006 0.04 0.003 0.02

CB = CoProcessorBased, RB = RoundBased, LW=LightWeight, HS=HighSpeed, TO=TradeOff, BAL=Balanced,
FF = flip-flop, F = Fmax, BR = BRAM

that the probability of non-constant time behavior for FNB can be 2−200 or even
smaller. To compute the failure probability (given in Table 5) for each parameter
set, we take into account both threshold check failure and duplicate detection
probabilities for the respective parameter sets.

Appendix 1.C Comparison to Hardware Designs for
Other Round 4 Algorithms

We also provide Table 15 where we tabulate latest hardware implementations of
all other post-quantum cryptographic algorithm hardware implementations from
the fourth round of NIST’s standardization process, plus the to-be standardized
Kyber algorithm. We focus on comparison of the hardware designs for lowest
level of security, Level 1, as all publications give clear time and area numbers.
Majority of related work provides hardware designs for more than the lowest
security level, but the timing and area numbers are not clearly broken down in
the respective publications, so we focus only on comparing among the lowest
security level designs.

27

Among the other existing designs, a hardware design for BIKE has been pre-
sented in [20]. The work investigated different strategies to efficiently implement
the BIKE algorithm on FPGAs. The authors improved already existing polyno-
mial multipliers, proposed efficient designs to realize polynomial inversions, and
implement the Black-Gray-Flip (BGF) decoder. The authors provided VHDL
designs for key generation, encapsulation, and decapsulation. For the fastest
design, the authors showed 2.7ms for the key generation, 0.1ms for the encapsu-
lation, and 1.9ms for the decapsulation, the times correspond to the high-speed
implementation for the lowest security level. The authors also provide data for
light-weight implementation for the lowest security level. Their paper further
discusses Level 3 parameters for BIKE, but does not give final hardware data
for the that security level. The authors provide free, non-commercial license
for the hardware code.5 Another BIKE hardware implementation in [19] pro-
vides similar results but at much smaller area for their high-speed version. Two
key arithmetic components from BIKE, polynomial multiplication and inversion
were improved by implementing a sparse polynomial multiplier and extended
euclidean algorithm based inversion unit due to which substantial amount of
improvement was seen in all the primitives. The authors provided verilog designs
for key generation, encapsulation, and decapsulation and they are available free
under non-commercial license. 6

Apart from earlier mentioned BIKE hardware implementations, [11] presents
a practical approach of client (decapsulation and keygen) - server(Encapsulation)
based model for generating the shared secret using BIKE. The presented design
outperforms [20] in terms of time for all primitives but has significantly larger
area footprint. [18] presents a comparison between pure software implementation,
pure HLS design, and HLS based HW/SW codesign for BIKE. However the
performance of any of these design do not outperform the performance results
tabulated in Table 15.

Classic McEliece has been most recently implemented in [8]. This is the first
complete implementation of Classic McEliece KEM. The design provided Ver-
ilog code for encapsulation and decapsulation modules as well as key generation
module with seed expansion. The authors presented three new algorithms that
can be used for systemization of the public key matrix during key generation.
The authors showed that the complete Classic McEliece design can perform key
generation in 8.6ms, encapsulation in 0.3ms, and decapsulation in 0.9ms, the
times correspond to the high-speed implementation for the lowest security level.
The authors also provide hardware implementation for other security levels,
and light-weight and high-speed versions for all the levels. The authors provide
open-source code for the hardware.7 Apart from the earlier implementation, [27]
presented a high-throughput and compact key generation module. The authors
presented improvements in Gaussian elimination, sorting unit and other hard-
ware optimizations such as algorithm level pipelining. Overall, 11% reduction in

5 https://github.com/Chair-for-Security-Engineering/BIKE
6 https://github.com/Chair-for-Security-Engineering/RacingBIKE
7 https://caslab.csl.yale.edu/code/pqc-classic-mceliece/

28

https://github.com/Chair-for-Security-Engineering/BIKE
https://github.com/Chair-for-Security-Engineering/RacingBIKE
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/

clock cycles, 31% reduction in BRAM utilization was observed with 11% increase
in the logic utilization.

Hardware implementation of SIKE has been provided in [17]. The authors
created VHDL implementation of SIKE as a hardware co-processor. Their design
can realize any of the SIKE security levels. For the high-speed design for the
lowest security level, authors report the time for encapsulation, decapsulation,
and keygen as 15.3ms, 16.3ms, and 9.1ms respectively. The authors make the
code available under Creative Commons public domain license.8

Different hardware implementations of CRYSTALS-Kyber are available in [16],
[9], and [26]. The authors presented designs configurable for different perfor-
mance, area requirements, and parameter sets. The high-speed design provided
in [9] outperforms all other algorithms in terms of time for key generation, encap-
sulation, and decapsulation. For the lowest security level, the authors reported
0.02ms for key generation, 0.03ms for encapsulation, and 0.04ms for decapsula-
tion. The authors did not provide access to the code for their hardware design.

HAD
Layer0

0

1

HAD
Layer1

0

1

HAD
Layer6

0

1

… FIX
DOUT

0

1

dout0

dout1

0

1

0

1

0

1

din0

din1

+

-

n

n

n+1

n+1

FIFO
F0

FIFO
F1

FIFO
S0

FIFO
S1

Control Logic

din0

din1

n+1
dout1

n+1
dout0

HADAMARD LAYER i

(a) hadamard transformation module.

10/11

Control Logic

din0

abs

FindPeaksCore

Find
Peaks
Core0

Find
Peaks
Core1

Compare

din1

dout
8

abs
a>b

a
din

10/11

10/11

10/11

10/11

8

value

pos

valid

b

(b) find peak module.

Control Logicstart valid_o

12
8

din_i SHIFT_REG0

SHIFT_REG1

d1 d0

d1 d0

d1 d0

+

+…
…

…

SHIFT_REGm-1

dout0_o
2/
3

2/
3 dout1_o

…

m : MULTIPLICITY

(c) expand and sum module.

Fig. 6: Hardware design of Reed-Muller Decoder.

8 https://github.com/pmassolino/hw-sike

29

https://github.com/pmassolino/hw-sike

SHAKE256

din
32

dout

32

dout_valid

din_valid

force_done force_done_ack

dout_ready din_ready

(a) Interface for SHAKE256 module.

Barrel_
Rotation

RESULT
_RAM

Control
Logic

d
o
u
t

s
p
a
r
s
e
_
p
o
l
y
_
i
n
d
e
x

arb_poly
start done

BW
d
o
u
t
_
a
d
d
r

BW

log(n/BW)

m

(b) Hardware design of poly mult module.

Fig. 7: Block diagram for interface of the SHAKE256 module and poly mult module.

fixed_
weight_
vector

Control Logic

poly_
mult

Encode

location_
based_
adder

m_in

u
_
a
d
d
r

u
_
o
u
t

h_in s_in

r1_
RAM

r2_
RAM

(Dual Port)

location_
based_
adder

poly_
mult

xor_based
_adder

v
_
a
d
d
r

v
_
o
u
t

theta_in

S
H
A
K
E
2
5
6

start done

(a) parallel encrypt module

poly_mult
X_
RAM

vector_
set_

random

Control Logic

out

sk_seed_in

start done

fixed_
weight_
vector

location_
based_adder

pk_seed_in

out_type

s
h
a
k
e
_
o
u
t
p
u
t

SHAKE256

(b) keygen module.

Fig. 8: Hardware design of parallel encrypt and keygen modules.

S
H
A
K
E
2
5
6

m
_
i
n C

o
n
t
r
o
l

L
o
g
i
c

uv_out

HASH_
RAM

encrypt
(or)

parallel
_encrypt

H
A
S
H

P
r
o
c
e
s
s
o
r

D_
RAM

Seed
RAM

K_out

d
_
o
u
t

shake_output

s
t
a
r
t

d
o
n
e

(a) encap module.

Encap S
H
A
K
E
2
5
6

u
_
i
n

control
logic

u_
RAM K_out

v_
RAM

u_compare

v
_
i
n

D_
RAMd

_
i
n

v_compare

d_compare

h_in s_in

Decrypt

mprime

y start done

m
p
r
i
m
e
_
f
a
i
l

(b) decap module.

Fig. 9: Hardware design of encap and decap modules.

30

	Fast and Efficient Hardware Implementation of HQC

