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Abstract Modern block ciphers designed for hardware and masked with
Threshold Implementations (TIs) provide provable security against first-
order attacks. However, the application of TIs leaves designers to deal
with a trade-off between its security and its cost, for example, the process
to generate its required random bits. This generation cost comes with
an increased overhead in terms of area and latency. Decreasing the num-
ber of random bits for the masking allows to reduce the aforementioned
overhead.
We propose to reduce the randomness to mask the secrets, like the plain-
text. For that purpose, we suggest relaxing the requirement for the
uniformity of the input shares and reuse randomness for their mask-
ing in first-order TIs. We apply our countermeasures to first-order TIs
of the Prince and Midori64 ciphers with three shares. Since the designs
with non-uniform masks are no longer perfect first-order probing secure,
we provide further analysis by calculating bounds on the advantage of a
noisy threshold-probing adversary. We then make use of the PROLEAD
tool, which implements statistical tests verifying the robust probing se-
curity to compare its output with our estimates. Finally, we evaluate the
designs on FPGA to highlight the practical security of our solution. We
observe that their security holds while requiring four times less random-
ness over uniform TIs.

Keywords: FPGA, Masking, Probing Security, Threshold Implementations,
Uniformity

1 Introduction

For the past two decades after Kocher et al. [16] presented differential power ana-
lysis in 1999, one example of a side-channel attack, the development of protected
cryptographic hardware devices has turned into an important goal for research-
ers and designers. To that end, masking has become a reliable countermeas-
ure. In masking, a secret is split into several parts to confound the correlation
between its value and some physical characteristics, like its power consumption.
However, to eliminate the mentioned statistical dependence, the shares of the
masking have to be uniform random such that they are independent of the secret.
Threshold Implementations (TIs), introduced in 2006 by Nikova et al. [21], allow



to preserve this uniformity of the masks and provide for first-order security. As
a result, one only needs some fixed number of random bits to be generated at
the initial stage and no fresh random bits are needed for further re-masking.
The process of randomness generation needed for this uniformity lacks atten-
tion in terms of cost and security from the research community. As a result, to
be on the safe side, researchers recommend heavy-duty random number generat-
ors based on standardised cryptographic primitives. However, in practice, lighter
non-cryptographic generators are used whose security remains unknown. Instead
of deducting which lightweight random number generator can be used, designers
of masking schemes focus on reducing the total number of random bits required
for the masking to be secure. The security of this question can more easily be
verified by using the probing model by Ishai et al. [15] which has become the
standard model for masking countermeasures.

The research on reducing the randomness cost for maskings has significantly
progressed. The work by Shahmirzadi and Moradi [23] reduces the fresh random-
ness needed for first-order designs using only two shares while their follow-up
work [24] does the same for second-order designs. The work by Beyne et al. [7]
in 2020 introduces the bounded-query probing model which allows to obtain a
concrete bound on the adversary’s advantage by means of a security framework
based on linear cryptanalysis. In 2021, Beyne et al. [6] applied their scheme to
make a low-randomness masked AES. This work was followed up in 2022 [5]
to include the noise on probes to improve the bounds on the adversary and to
improve the efficiency of their designs. For all three previous works, the security
framework was always applied to second-order masked designs but never to the
first-order designs. Its application to first-order designs provides an opportunity
of using non-uniform randomness to generate secret shares. Via careful analysis,
it can provide a way to reduce the cost of the initial randomness for TIs.

Contributions. In this paper, we investigate TIs of lightweight ciphers and their
security when given non-uniform inputs. We provide a framework, based on the
works by Beyne et al. [5, 7], to show when the implementations are secure and
when they are not, and provide practical evidence to support it.

For the analysis, we work with the Prince [10] and Midori64 [1] ciphers and
take previously established TIs of them, namely the one by Bozilov et al. [11] for
Prince and by Moradi et al. [18] for Midori64. The goal of the analysis is to reduce
the initial randomness needed to mask the plaintext for both ciphers. To that
end, we investigate cases where we can re-use randomness for the initial masking
and provide, for each cipher, insecure and secure cases using the same number
of total random bits. This shows that it is not the total entropy of the masked
input which counts, but instead, its relation to the properties of the masking of
the cipher. We demonstrate that using the security framework via a trail based
approach where we obtain bounds on a probing adversary’s advantage.

In order to complete the research, we provide practical experiments on top
of the previous mentioned theoretical analysis. We test the designs with non-
uniform masked inputs using two different approaches. First, we use the PRO-
LEAD tool by Müller and Moradi [19] which allows for a noiseless statistical leak-
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age evaluation based on the glitch-extended probing model. Second, we provide
the results of a practical evaluation of our designs on FPGA. For the observed
power consumption, we apply first-order statistical fixed vs. random t-tests [2].
The results of those tests are closer to practice as the noise is included in the
sampled traces. As an end result, we show that the TIs by Bozilov et al. and by
Moradi et al. can be used with a non-uniform masked input reducing the total
needed randomness four times over while still providing practical security of up
to 50M traces1.

2 Preliminaries

In this section, we introduce the probing security model together with the basics
of masking and threshold implementations. We also introduce the cryptanalysis-
based evaluation we use to determine which non-uniform inputs of threshold
implementations are secure.

2.1 Glitch-Extended Bounded-Query Probing Security

We first introduce the bounded-query probing model [7] with a noisy probing
variant [5]. The security model is depicted in Figure 1.

In this model, the security of a circuit C with input k against a t-threshold-
probing adversary is quantified as follows. The challenger picks a random bit
b and provides an oracle Ob (the masked circuit with b hardwired), to which
adversary A is given query access. The adversary queries the oracle by choosing
up to t wires of the masked circuit to probe, we denote this set by P, and sends it
to the oracle along with the inputs (for a cipher, both key and plaintext) k0 and
k1. The oracle responds by giving back a noisy leakage function f (following the
definition given in [5]) of the glitch-extended probed wire values of the masked
circuit with input kb. After a total of q queries, the adversary responds to the
challenger with a guess for b. For b ∈ {0, 1}, denote the result of the adversary

after interacting with the oracle Ob using q queries by AOb

. For left-or-right
security, the advantage of the adversary A is then defined as

Advt-thr(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .

Since we are working on hardware, we make use of the glitch-extended prob-
ing model by Faust et al. [13]. Whereas one of the adversary’s probes normally
results in the value of a single wire, a glitch-extended probe allows obtaining
the values of all wires in a bundle, with the limit that glitches do not propagate
through memory gates.

1 The HDL representations of the constructed ciphers will be made publicly available
after publication.
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Figure 1: [5] The privacy model for the glitch-extended t-threshold-probing se-
curity consisting of a challenger C, an adversary A, a left-right oracle Ob, two
inputs k0, k1, a set of probes P, and a noisy leakage function f(vb) of the probed
wire values vb in the circuit C(kb).

2.2 Boolean Masking and Threshold Implementations

Boolean masking is a technique based on splitting each secret variable x ∈ F2

in the circuit into shares x̄ = (x0, x1, . . . , xsx−1) such that x =
∑sx−1

i=0 xi over
F2. A random Boolean masking of a fixed secret is uniform if all maskings of
that secret are equally likely. There are several approaches to masking a circuit.
In this work, we make use of threshold implementations proposed by Nikova
et al. [22].

Let F̄ be a masked function in the threshold implementation corresponding to
the unmasked function F : Fn

2 → Fm
2 . Then F̄ can have the following properties.

Definition 1 (Threshold implementations [22]). Let F : Fn
2 → Fm

2 be a
function and F̄ : Fnsx

2 → Fmsy
2 be a masking of F . The masking F̄ is said to be

1. correct if ∀x0, . . . , xsx−1 ∈ Fn
2 ,

∑sy−1
i=0 F i(x0, . . . , xsx−1) = F (

∑sx−1
i=0 xi),

2. non-complete if any function share F i depends on at most sx−1 input shares,
3. uniform if F̄ maps a uniform random masking of any x ∈ Fn

2 to a uniform
random masking of F (x) ∈ Fm

2 .

2.3 Linear Cryptanalysis of Maskings

To prove the first-order probing security of a circuit, it is sufficient to show that
the probed values consist only of uniform randomness and public values. To that
end, we make use of the theory by Beyne et al. [7] which bounds the distribution
of probed values (in a bounded query model) by their Fourier distribution. We
also make use of the later work [5], where this framework was expanded to include
the noise on the traces. We recall the main results of these works.

Bound on the Advantage. We first discuss the bound on a bounded-query probing
adversary which uses λ-noisy probes. We refer to [5] on the specific definition
of the used noisy leakage function. In the rest of this description, the noise
parameter λ characterises the level of the noise. In principle, the noise parameters

4



could be computed empirically from estimates of the probability distributions of
the leakage (i.e. trace points) under all possible secrets.

We assume that any probed wire value can be labelled as ‘good’ or ‘bad’.
The values labelled ‘good’ jointly reveal nothing about the secret. The ‘bad’
values may reveal secret information, but the leakage can be bounded in terms
of λ and ε. The parameter λ is determined by physical aspects such as the
leakage model and noise level. The parameter ε is instead determined by the
mathematical properties of the masking. Specifically, it will be shown later how
these parameters can be determined using linear cryptanalysis. Below is the
definition of the bound on a first-order noisy probing adversary given a bound
on ε and λ.

Theorem 1 ([5]). Let A be a noisy threshold-probing adversary for a circuit C.
Take λ ≥ 1, and ε ≤ 1 as non-negative real numbers. Assume that for every query
made by A on the oracle Ob with result z, there exists a partitioning (depending
only on the probe positions) of the probed wire values into two random variables
x (‘good’) and y (‘bad’) such that

1. The noisy leakage function f such that z = f(x,y) is λ-noisy.
2. The conditional probability distribution py|x satisfies Ex∥p̂y|x∥22 ≤ ε.
3. Any t-threshold-probing adversary for the same circuit C and making the

same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advnoisy(A) ≤
√
2q ε/λ ,

where q is the number of queries to the oracle Ob.

The security bound obtained in Theorem 1 depends on the parameter ε. This
value will be determined by performing linear cryptanalysis of the masked cipher.
Essentially, this follows regular linear cryptanalysis, except that masking schemes
naturally incorporate linear relations (namely that the sum of the shares form
the secret). As a result, the basic definitions of linear cryptanalysis need to be
adapted to work over a quotient space where, in short, the last share is removed
to avoid the previously mentioned linear relation. Viewing linear cryptanalysis
over this quotient space is justified by the non-completeness property of threshold
implementations, namely that a probe does not view all shares of a secret at once,
and as a result, we only investigate relations over non-complete sets of shares.

Correlation of Maskings. For any linear masking scheme, there exists a vector
space V ⊂ Fℓ

2 of valid maskings of zero. More specifically, an F2-linear secret
sharing scheme is an algorithm that maps a secret x ∈ Fn

2 to a random element
of a corresponding coset of the vector space V. Let ρ : Fn

2 → Fℓ
2 be a map that

sends secrets to their corresponding coset representative. For convenience, we
denote Va = a+ V.

We use the following definition of correlation matrices of a masking.
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Definition 2 (Correlation matrix). For a subspace V ⊆ Fℓ
2, let F : V → V

be a function. The correlation matrix CF of F is a real |V| × |V| matrix with
coordinates indexed by elements u, v ∈ Fn

2/V⊥ and equal to

CF
v,u =

1

|V|
∑
x∈V

(−1)u
⊤x+v⊤F ′(x) .

for a function F ′ : Va → Vb with F ′(x) = F (x+ a) + b.

The link between ε from Theorem 1 and linear cryptanalysis is completed by
the theorem below. It shows that the coordinates of p̂z are entries of the correla-
tion matrix of the state-transformation between the specified probe locations. In
Theorem 2, the restriction of x ∈ Va to an index set I = {i1, . . . , im} is denoted
by xI = (xi1 , . . . , xim) ∈ F|I|

2 . This definition depends on the specific choice of
the representative a, but the result of the theorem does not.

Theorem 2 ( [7], §5.2). Let F : Va → Vb be a function with V ⊂ Fℓ
2 and

I, J ⊂ {1, . . . , ℓ}. For x uniform random on Va and y = F (x), let z = (xI ,yJ).
The Fourier transformation of the probability mass function of z then satisfies
|p̂z(u, v)| = |CF

ṽ, ũ|, where ũ, ṽ ∈ Fℓ
2/V⊥ are such that ũI = u, ũ[ℓ]\I = 0, ṽJ = v

and ṽ[ℓ]\J = 0.

The above theorem relates the linear approximations of F to p̂z(u, v) and
hence provides a method to upper bound ε based on linear cryptanalysis.

Applying the Bound with Non-Uniform Inputs. The analysis by Beyne et al.
originally applied to threshold implementations working on a uniform input or
consisting of uniform functions. In this work, we extend this framework by ana-
lysing threshold implementations with a non-uniform input, namely an input
which is shared via a non-uniform function. More specifically, we use a limited
number of random bits to mask the input of the threshold implementation and
analyse the impact on its first-order security. While previous works focus on
reducing the online randomness of a masking, we instead propose to use the
cryptanalysis technique to reduce the randomness requirement at the start of
the masking.

We model this limited-random input by considering a non-uniform input en-
coder Enc (shown in Figure 2) which takes in the circuit’s input k (e.g. plaintext
and key) and random bits r (modelled as shares of zero and as ‘bad’ values), and
provides a shared input for the masked circuit. In particular, where this shared
input is larger in size than the randomness that was given as input.

Due to Enc being a non-uniform function, the correlation matrix’s entries
CEnc

ṽ,0 for ṽ ∈ Fℓ
2/V⊥ are non-zero. As a result, when |p̂yJ

(v)| = |CH
ṽ,0| ̸= 0 for

H = F ◦ Enc (some non-uniform function which maps the limited randomness
r to the probed values), ṽJ = v and ṽ[ℓ]\J = 0 where a single probe is placed on
yJ , it is possible that this probe reveals a secret. The specific value ε = |p̂yJ

(v)|
determines the advantage of the first-order probing adversary via Theorem 1.
In other words, due to the threshold implementation using a non-uniform input,
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Figure 2: Depiction of the non-uniform encoder Enc masking the input (e.g.,
plaintext and key) k using a few uniform random bits r.

a first-order probing attack is possible. However, we show the probability of
success is limited in function of ε.

In the rest of the work, we will look at trails over F (which is a uniform
function) where we can pick non-zero input linear masks with certain conditions
depending on how the input of the cipher was masked. We thus analyse the trails
of the masked cipher ending in a single probe position with conditions on the
input mask related to how it is masked.

Cautionary Note. In this work, we use the piling-up principle [17, 26] to obtain
estimates of ε using a trail-based approach (which is often used in the field of
cryptanalysis). However, since Enc is a non-uniform (read non-balanced) func-
tion, a zero input mask will correlate to several output masks. As a result, and
due to the first S-box layer, many input masks of F from Figure 2 are related to
an output mask. As a result, the actual correlations may differ from the trail-
based estimates. More specifically, we make the assumption that the correlation
of the probed values is determined by a trail with an outstanding value. In case
a trail with high correlation is found, we can assume that there is an attack.
However, we emphasise that the absence of such trails does not trivially imply
that no attack is possible. For that reason, we use this piling-up principle as a
heuristic to find and verify promising non-uniform inputs for the threshold im-
plementations. We then base ourselves on a practical verification to analyse the
promising candidates via tools like PROLEAD [19] for a noiseless verification
and via FPGA experiments for more realistic and noisy verification.

3 Analysis of TIs with Non-Uniform Inputs

We analyse threshold implementations of the Midori64 and Prince ciphers which
are given non-uniform masked inputs. The threshold implementations consist of
uniform functions which do not need fresh randomness for their computation.
The security calculations of the non-uniform inputs are done via the cryptana-
lytic technique explained in Section 2.3. In essence, this analysis allows to bound
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the deviation of a masking from uniform. When this deviation is low, the mask-
ing is “almost uniform” and we can expect the masking to still be first-order
secure. The analysis is mainly based on trail-based techniques where we invest-
igate the activity patterns of the non-uniform inputs to discover whether there
are weak probing points in the masked implementation. We then estimate the
number of queries (or traces) a bounded-query probing adversary needs in order
to get advantage one.

3.1 Masked Prince with Non-Uniform Inputs

We start the analysis with a threshold implementation of the Prince cipher with
a non-uniform input. We provide the details of the cipher and its masking as
well as a secure and an insecure example of a non-uniform masked input. We
provide the theoretical analysis of both cases. The experimental analysis is found
in Section 4.

Prince Cipher. Prince [10] is an AES-like cipher which consists of a 64-bit
state divided in 4x4 rosters of nibbles and a 128-bit key. The S-box is a 4-bit
cubic function and the linear layer consists of a MixColumns operation with a
quasi-MDS matrix and a ShiftRows operation. The key schedule is simple where
the first and last whitening keys contain the first 64-bits of the master key and
the other round keys form the last 64-bits of the master key. The cipher consists
of 12 nonlinear layers, where the first half applies the S-box and the second half
applies the inverse S-box. The S-box and its inverse are affine equivalent.

Masking Details. Consider the threshold implementation of the Prince cipher,
we choose the design presented in work by Bozilov et al. [11], where the S-box
is decomposed using three identical quadratic functions

S = A4 ◦Q294 ◦A3 ◦Q294 ◦A2 ◦Q294 ◦A1

with A1, A2, A3, A4 affine layers and Q294 a quadratic representative of a partic-
ular affine equivalence class as described by Bilgin et al. [8, 9]. Since the inverse
S-box of Prince used in the second part of the algorithm is an affine equivalent
of the regular S-box, only two additional affine layers are required to implement
it. The masking of the above functions is achieved via direct sharing using three
shares. Similarly, the masking of Prince’s linear layer is done share-wise. Both are
non-complete and uniform, and such that a register layer is placed after the only
nonlinear layer, namely after Q294. Since the cipher is implemented in parallel
and calculates regular and inverse diffusion layers simultaneously, the chosen ap-
proach may significantly decrease the security with non-uniform inputs against
noisy-probing adversary. To reduce the probability of leakage, we add two more
registers in the design. One register is added before inverse diffusion to disable it,
as it is unnecessary until the end of fifth round. The other register is added after
ShiftRows operation. The details on the S-box and its inverse decomposition and
maskings of its quadratic substitutions are given in Appendix A.
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The architecture of the masking follows a round-based design. In total, the
original version needs 36 cycles and does not require fresh randomness for its
computation. Our modified version needs 48 clock cycles, due to the presence of
new registers. The schematic of the design can be found in Figure 5 in [11]. The
data path is 64× 3 bits width indicating a masked state. Round constants and
the key are XORed with the first share of the state.

The threshold implementation of the S-box has interesting cryptanalytic
properties which we can use when evaluating the security of the cipher with
non-uniform inputs. Namely, the masked S-box has a nontrivial upper bound on
the maximum absolute correlation.

Lemma 1 (Correlation of the Masked Prince S-box). Let S̄ : Va → Vb be
any restriction of the sharing of the masked Prince S-box S. Denote its absolute
correlation matrix by |CS̄ |. For any u, v ∈ Fℓ

2/V⊥ such that u ̸= 0, it holds that∣∣CS̄
u,v

∣∣ ≤ 2−1.41.

The above result will be used in the analysis of non-uniform inputs.
For simplicity of the analysis, we keep the key as a constant (as a result, we

do not need to consider trails including the key schedule). Meaning that for the
theoretical and experimental analysis, we do not consider the influence of the key
and instead only consider a non-uniform masking of the plaintext. We note that
with this analysis, the security of the masked cipher including the key (given
that the key is uniformly masked) is also included (with the possible effect that
the masked key improves the security due to the increased entropy).

An Insecure Non-Uniform Input. We first detail the non-uniform masking
of the plaintext which shows negative experimental results in PROLEAD and
on FPGA as featured in Section 4. For the masking of the plaintext we use 32
random bits (versus 128 bits for a uniform three-sharing), and we re-use this
randomness row-by-row. We depict this as follows

r1 r2 r3 r4
r1 r2 r3 r4
r1 r2 r3 r4
r1 r2 r3 r4

 , (1)

with ri eight bits of (ideal) randomness. Namely, each cell in a column of the
state is masked using the same randomness.

We analyse the effect of this non-uniform input masking using the linear
cryptanalytic techniques detailed in Section 2.3. To recap, we use a trail based
approach. To that end, we study the activity patterns through the masked Prince
given the non-uniform input (or given the uniform input with the non-uniform
encoder Enc from Figure 2). When we call some parts of the state active, we
mean the non-zero linear approximations are applied to those parts. We consider
(masked) cells of the cipher’s state as main indicators of the activity propagation.
Using the resulting trails, we find the dependency between the probed values and
the initially masked input secret. Due to the way the plaintext is shared, when
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activating a cell masked with ri, we have to activate at least one other cell
masked with the same randomness ri. This results in the constraint that each
row either has no cells activated or at least two cells activated. We then analyse
the resulting activity patterns. We stop the activity pattern when a single probe
can cover the output activity. Namely, in Prince, this is when only one input of
a single MixColumns function is active or when only one S-box is active.

R1, SB R1, MC

E

Figure 3: The trail for the threshold implementation of Prince with the non-
uniform input from Eq. (1) activating at most 3 masked S-boxes in the first
round. SB stands for SubCell, MC for MixColumn. The lighting indicates a
single-bit probe in the active cell before it and will be omitted on the following
pictures.

Considering the described approach, we can see in Figure 3 that the in-
put of the first MixColumns function is already non-uniform. As a result, at
most three masked S-boxes are in the trail (the branch number of Prince’s Mix-
Columns minus one), each with a maximum absolute correlation of 2−1.41 fol-
lowing Lemma 1. When probing the S-box, a glitch-extended probe can view up
to 16 bits due to the parallel architecture. A probe placed after MixColumns
reveals 9 bits, because due to affine layers, each glitch-extended probe can view
several bits of cells in the first round. Considering the bound from Theorem 1,
we find that ε ≈ 1. As a result, the non-uniformity is so high that no relevant
bound can be found. Thus, this method should be insecure and, in practice, it
should leak. In Sections 4.1 and 4.2, we have implemented this case study in
PROLEAD and on FPGA and observed this leakage.

A Secure Non-Uniform Input. The previous example already shows that
badly chosen non-uniform inputs can lead to insecurities. We now detail a non-
uniform masking (with the same entropy as the insecure example) of the plain-
text which shows positive experimental results in PROLEAD and on FPGA as
detailed in Sections 4.1 and 4.2.

For this example, we again need 32 random bits which are re-used now in a
different, row-wise, manner. We mask the plaintext as follows

r1 r1 r1 r1
r2 r2 r2 r2
r3 r3 r3 r3
r4 r4 r4 r4

 , (2)

with ri eight bits of (ideal) randomness.
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Applying the same strategy as for the insecure case, we find that the trail
activating the least number of masked S-boxes ends in an S-box operation of the
round three and activates 12 masked S-boxes. The trail is depicted in Figure 4.

Round 1 Round 2 Round 3

Figure 4: The best trail for the threshold implementation of Prince with the non-
uniform input from Eq. (2) activating 12 masked S-boxes.

Considering the above trail, we calculate the advantage of a bounded-query
noisy-probing adversary. A probe in a masked S-box views at most 16 bits,
namely when propagating through the affine layers and branching, the probe
returns two shares of two clock cycles. Moreover, the best trail activates 12
masked S-boxes each with a maximum absolute correlation of 2−1.41 following
Lemma 1. As a result,

ε := ∥p̂z − δ0∥22 ≤ |supp p̂z| ∥p̂z − δ0∥2∞ ≤ 216 2−33.84 = 2−17.84 .

The above calculation gives the following bound on the advantage of a noisy-
probing adversary.

Adv2-thr(A) ≤
√

q

λ216.84
,

where λ is the addition of noise that would be observed during practical exper-
iments. It was mentioned in the paper of Beyne et al. that the noise that was
observed during evaluation on an FPGA was bounded by λ < 29. Given that we
take around 50M ≈ 225 traces, the above bound looks to be a promising candid-
ate to be tested. In Section 4, we provide PROLEAD and FPGA experimental
results.

Given that Prince’s MixColumns works on four cells at a time and since
we require the input of this operation to be (close-to) uniform, using less than
32-bits of randomness to mask the input would likely lead to insecure designs.
Nevertheless, a carefully chosen masking of the S-box and the input might allow
for a further reduction in cost. Such an optimisation would be non-trivial and
we leave it as an open problem.

3.2 Masked Midori64 with Non-Uniform Inputs

We apply the analysis on a second case study. Namely, we investigate non-
uniform inputs to a threshold implementation of the Midori64 cipher. Like in
the Prince example, we use no less than 32 bits to mask the plaintext because
we aim to preserve the uniformity of the first MixColumns operation.
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Midori64 Cipher. Midori [1] is a block cipher optimised for low-energy us-
age. The S-box is also used in other block ciphers including CRAFT [4] and
MANTIS [3]. In this work, we specifically look at the Midori64 variant which
has a 128-bit key and a 64-bit state that is split into 4-bit cells. An involutive
binary quasi-MDS matrix together with a permutation of the 4-bit cells form the
diffusion layer and it uses a 4-bit cubic S-box as the non-linear layer. Midori64
has a simple key schedule where each round either the left or right half of the
master key is XORed to the state of the cipher.

Masking Details. To create the first-order secure masking of Midori64 we
adopt the approach described in the work by Moradi et al. [18] with a change of
the decomposition choice where we switch the quadratic class Q12 for the classes
Q294 and Q299. The architecture comprises only the encryption of the Midori64
and follows a pipelined structure as depicted in Figure 5.

pt
A1 Q294

Q294

Q294

A2 Q299

Q299

Q299

A3 SC M

key ⊕ const.

Figure 5: Midori64 encryption round-based architecture.

Midori64 S-box is affine equivalent to the cubic class C266 and can be de-
composed into two quadratic bijections. The decomposition we choose for our
experiments is

S = A3 ◦Q299 ◦A2 ◦Q294 ◦A1

with the affine functions A1, A2, A3 and the quadratic classes Q299, Q294. More
details on the decomposition and its masking are given in Appendix B. The
pipelined architecture implies two register stages: one placed before the S-box
and another one inside of it to split the nonlinear layers. It increases the latency
of the implementation; nevertheless allowing to encrypt two plaintexts at the
same time. The chosen design needs 32 clock cycles to perform one encryption
and does not require fresh randomness for its computation. Similar to the design
of the threshold implementation of Prince, the key is considered a constant. As
a result, the secure example of a non-uniform input below would also be secure
in case the key is (uniformly) masked.

The threshold implementation of the S-box has the following cryptanalytic
property.

Lemma 2 (Correlation of the Masked Midori64 S-box). Let S̄ : Va →
Vb be any restriction of the masking of S defined above. Denote its absolute
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correlation matrix by |CS̄ |. For any u, v ∈ Fℓ
2/V⊥ such that u ̸= 0, it holds that∣∣CS̄

u,v

∣∣ ≤ 2−2.

An Insecure Non-Uniform Input. An insecure example is designed following
the same principle as for the corresponding case in Section 3.1 for Prince. We
initialise the state with 32-bits of randomness placing them as follows

r1 r2 r3 r4
r2 r1 r4 r3
r3 r4 r1 r2
r4 r3 r2 r1

 . (3)

With the above masking of the plaintext, an input to an S-box on the second
round is non-uniform. The trail to such an S-box activates three cells with the
same randomness because of the diffusion layer.

To verify whether the advantage of the noisy probing adversary is high, we
use the analysis from Section 2.3. Recall from Lemma 2 that a masked S-box
has a maximum absolute correlation of 2−2 and that we activate only three of
them. A probe placed in the S-box after the first round will reveal at most 8 bits
of information because of the Q299 quadratic layer. If the probe is placed after
the MixColumn operation, it views at most 8 ·3 = 24 bits due to the quasi-MDS
matrix and the absence of a register between Q299 and the MixColumns layer.
Thus, we find that ε ≈ 1. As a result, we expect to quickly observe leakage
in this case. In Sections 4.1 and 4.2, we have implemented this case study in
PROLEAD and on FPGA and observed this leakage.

A Secure Non-Uniform Input. For the secure non-uniform masking of the
plaintext, we need again a total of 32 random bits and reuse the randomness over
the rows the same way as it was done in Section 3.1 for the secure non-uniform
input example. We represent the masking of the plaintext as a matrix

r1 r1 r1 r1
r2 r2 r2 r2
r3 r3 r3 r3
r4 r4 r4 r4

 , (4)

with ri eight bits of randomness.
We analyse activity patterns for Midori64 which end in a single S-box or a

single active column and which start with the constraint that a row either has
no activations or at least two active cells. The best trail with these constraints
activates at least 12 masked S-boxes and is depicted in Figure 6.

As we already mentioned for the insecure case, a probe placed after Mix-
Column can observe up to 24 wires and the masked S-box has a maximum
absolute correlation of 2−2. From the above, we find that

ε := ∥p̂z − δ0∥22 ≤ |supp p̂z| ∥p̂z − δ0∥2∞ ≤ 224 2−48 = 2−24 ,

13



R2, SB R2, SC R2, MC

R1, SB R1, SC R1, MC

Figure 6: An example of the best trail for the masked Midori64 with a non-
uniform input activating 12 masked S-boxes in 2 rounds (denoted R1 and R2).
SB stands for SubCell, SC for ShuffleCell, and MC for MixColumn.

which provides the following advantage for a non-uniform input masking

Adv2-thr(A) ≤
√

q

λ223
.

Similar to Prince’s secure case, the above advantage shows the masking is a
promising candidate for practical verification. Its results are found in Section 4.

We also tested another way to re-use the same amount of initial random bits
(32-bits), namely a column-wise masking similar to the masking in Eq. (1) of
Prince (which was an insecure example). The case of a column-wise masking for
Midori64 provides the same security bound as for the row-wise masking which
is detailed above. This case was also tested in PROLEAD and lead to a secure
result. We provide these test results in Appendix C.4.

4 Practical Evaluation and Efficiency

In this section, we provide experimental analyses of the proposed security claims
for both the Prince cipher from Section 3.1 and the Midori64 cipher from Sec-
tion 3.2. The section is divided into three parts: a noiseless verification is done
using the PROLEAD tool from Müller et al. [19] in Section 4.1, a more realistic
noisy result is obtained from FPGA experiments in Section 4.2, and an efficiency
analysis is done in Section 4.3.

4.1 PROLEAD Experiments

PROLEAD is a recently developed automated tool which allows to analyse the
statistical independence of simulated intermediates probed by a robust-probing
adversary following the definition by Faust et al. [12]. Among its benefits are
the abilities to handle full masked cipher implementations and to detect flaws
related to the occurrence of glitches. The tool does not require any power model
as it processes only gate-level netlists.
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We use PROLEAD to check the correctness of our assumptions about the
threshold-probing adversary advantage claimed in Sections 3.1 and 3.2 following
the analysis detailed in Section 2.3. Since the tool does not consider noise during
statistical evaluation, we omit the noise parameter λ used in the Theorem 1 (we
set λ = 1). To evaluate any leakage, PROLEAD uses a likelihood ratio G-test
of independence [25] as a statistical hypothesis test based on multinomial dis-
tributions. It tests the goodness of fit of observed frequencies to their expected
frequencies. The method is applied to contingency tables containing the distri-
butions for all glitch-extended probing sets generated for the design. The sizes
of those probing sets depend on the glitch-extended probing model which can
reveal many bits under a single probe making the tables significantly large. For
example, the maximum number of probes per largest set is 32 and 392 for the
Midori64 and Prince designs, respectively.

PROLEAD operates in two modes, namely a normal mode and a compact
mode. The difference lies in the contingency table calculation. In normal mode,
the columns of the distribution tables are calculated using the concatenated val-
ues of all probed bits from the particular set that are called labels. Each label
represents an entry of a contingency table where the frequency of the label’s
appearance per group is stored. Thus, it is possible to acquire the tables with
up to 2np columns, where np equals the number of wires within one probe in
the glitch-extended probing set. In compact mode, the labels for the distribution
tables are provided based on the Hamming weight of a probing set which allows
for a more computation friendly verification at the cost of accuracy. To sum-
marise, the normal mode provides more accurate information on the observed
leakage, whereas it is possible to conduct more experiments for larger inputs in
the compact mode.

We begin the evaluation process with checking our implementations in a
compact mode to verify their security against first-order glitch-extended probing
adversaries when uniform randomness is used. We perform up to 100M simula-
tions. The results for those and the following experiments are shown in Table 1.
We find that the implementations with uniform inputs do not leak during the
simulations as would be expected. Excerpts with the results from the PROLEAD
reports can be found in Appendix C.

Then, we use PROLEAD to evaluate leakage for the same designs with non-
uniform inputs. Since the tool is only designed to create uniform maskings of the
input, we add an intermediate module to our design, that is excluded from the
probing list, to reuse generated randomness in composition of the non-uniform
shares. For the cases with “insecure” inputs, the tool shows immediate3 leakage
significantly exceeding the threshold for the statistical tests in both modes which

2 The size of the largest set may include control logic wires of the algorithm (like
counter, start, and select). These bits do not contribute to the advantage of the
noisy threshold-probing adversary.

3 Simulations in PROLEAD are split into several iterations with a chosen step. Here,
we set a step of 1M and 128k traces for the compact and normal modes, respectively.
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is in line with the theoretical analyses in Section 3. Moreover, the leakage is
observed only in some particular rounds of the ciphers (see Table 1).

Finally, we test the “secure” non-uniform designs. Again, we observe growing
leakage during the simulations. However, this time the threshold is achieved only
after significantly more experiments, and the leakage is detected during the later
rounds in accordance with our trails from Section 3. We pay closer attention to
the tests in normal mode, since those are more related to a threshold-probing
adversary model, and see the leakage again. This time the number of traces
needed to conclude the insecurity of a design is closely related to the bounds we
proposed considering the absence of noise (λ = 1).

Table 1: Results of PROLEAD experiments of the Prince masking detailed in
Section 3.1 and of the Midori64 cipher from Section 3.2. We detail after how
many experiments PROLEAD finds leakage and in which clock cycles the leak-
age occurs (including two cycles to initialise the cipher) and in which round of
the cipher the leakage occurs.

Cipher Case Mode Passed #Traces #Cycle #Round

Prince

Uniform compact ✓ 100M NA NA

“Insecure” Non-Uniform
compact ✗ 1M 4,...,10 1,2,3
normal ✗ 128k 4,...,10 1,2,3

“Secure” Non-Uniform
compact ✗ 48M 10 3
normal ✗ 3.8M 10 3

Midori64

Uniform compact ✓ 100M NA NA

“Insecure” Non-Uniform
compact ✗ 1M 5,6,7 2,3

normal ✗ 128k 5,6,7 2,3

“Secure” Non-Uniform
compact ✗ 2M 7 3
normal ✗ 6.4M 8 3

4.2 FPGA Experiments

For the practical experiments, we used a Xilinx Spartan-6 FPGA on a SAKURA-
G evaluation board [14] and supplied the device with a stable 6.144 MHz clock.
For the randomness generation, we focus on providing comprehensive results
whether randomness can be re-used when masking the input of the cipher. As
a result, we use a heavy cryptographic random number generator, namely one
based on AES-128, to ensure the limited randomness given to the threshold
implementation is of good quality such that it does not bias our results.

We collect power consumption traces by monitoring the voltage drop over a
1Ω shunt resistor placed on the VDD path of the target FPGA and using a digital
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oscilloscope at a sampling rate of 500 MS/s. For the measurement’s analysis, we
follow TVLA requirements [2] to conduct first-order fixed vs. random plaintext
t-tests. The encryption is performed up to 50M times receiving either masked
fixed or masked random plaintexts. This technique allows to detect the first-order
side-channel leakage without implementing an actual key-recovery attack.

We perform an analysis for each example introduced in Section 3. To do
the first-order t-test, we collect 4000 and 3000 sample points (the number of
points that comprise a complete waveform record, determined by the amount of
data that can be captured by an oscilloscope.) for the Prince and Midori64 imple-
mentations, respectively. The corresponding results are shown in Figures 7 and 8
including the absolute t-value changes through the number of traces sampled.

From Figure 7, we observe that the threshold implementation of Prince with
a uniform input is secure (as expected). As a sanity check, we also evaluated
the implementation with the random number generator turned off to find that
the implementation leaks (again, as expected). The “insecure” non-uniform in-
put leaks almost immediately and we see a spike of leakage each cycle of the
implementation. However, the “secure” non-uniform input does not leak even at
50M traces. Together with the theoretical analysis and the PROLEAD analysis,
we can conclude that it is viable to use the threshold implementation of Prince
with such a non-uniform input.

From Figure 8, we observe similar results for the threshold implementation
of the Midori64 cipher. It is interesting to note that the “insecure” non-uniform
input only leaks in the second round of the cipher, but then becomes secure.
This can be explained from the strong cryptanalytic properties of its diffusion
layer and its masked S-box. As the computation of the cipher continues, the
non-uniform randomness is processed more-and-more via a good cryptographic
function making it less-and-less distinguishable from uniform random. We note
that Prince’s behaviour with the “insecure” non-uniform input should be the
same, but that due to the multiplexers in the architecture the same leakage
from the first round is repeated each cycle. Again, the “secure” non-uniform
input shows no leakage in the t-test showing that it is possible to work with the
threshold implementation without giving a full entropy input.

4.3 Efficiency Comparison

We quickly provide the efficiency measures of the threshold implementations
of the Prince and Midori64 ciphers from Sections 3.1 and 3.2 though we note
that we worked with tried-and-tested threshold implementations and that their
efficiency was not the goal of the work. Table 2 provides the cost in terms of
area, latency, and total random bits all designs use. We note that while we report
on the randomness cost in bits, we have not investigated the related cost of the
RNG which generates this randomness.

For the Midori64 case, we find that the non-uniform input allows a four times
reduction of the total randomness cost without requiring a trade-off in area or
latency. However, the Prince masking requires an extra register layer in order
to have a sufficient theoretical bound. We have performed leakage tests with a
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(a) T-test. Top: Uniform Rand.;
Middle: “Insecure” Non-Uniform Rand.;
Bottom: “Secure” Non-Uniform Rand.

(b) T-value. Top: Uniform Rand.;
Middle: “Insecure” Non-Uniform Rand.;
Bottom: “Secure” Non-Uniform Rand.

(c) T-test, masks off (d) Sample trace

Figure 7: Masked Prince implementation with 50M traces where we test the
implementation with uniform randomness and the non-uniform case studies from
Section 3.1. We show sample traces with masks off and masks on and we show
the final t-test together with the maximum absolute t-test value evolution over
the number of traces.
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(a) T-test. Top: Uniform Rand.;
Middle: “Insecure” Non-Uniform Rand.;
Bottom: “Secure” Non-Uniform Rand.

(b) T-value. Top: Uniform Rand.;
Middle: “Insecure” Non-Uniform Rand.;
Bottom: “Secure” Non-Uniform Rand.

(c) T-test, masks off (d) Sample trace

Figure 8: Masked Midori64 implementation with 50M traces where we test the
implementation with uniform randomness and the case studies from Section 3.2.
We show sample traces with masks off and masks on and we show the final t-test
together with the maximum absolute t-test value evolution over the number of
traces.
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non-uniform input without this extra layer and have seen secure results. Thus,
we believe the cheaper Prince masking with the non-uniform input can still be
used in practice and that the discrepancy comes from the theoretical framework’s
overestimation on glitches, similar to the observations from [6] on glitches in a
masked AES S-box.

Table 2: The efficiency measures in area, latency, and total randomness cost
of both the Prince and Midori64 threshold implementations using uniform or
non-uniform randomness with the NANGATE 45nm Open Cell Library [20].

Cipher #Shares Area (GE) Latency (Cycles) Rand. (Bits)

Prince 3
8353 36 128
11050 48 32

Midori64 3
7324 32 128
7324 32 32

5 Conclusion

In this paper, we have shown that using a non-uniform masked input for a
threshold implementation can remain first-order secure in face of a practical
evaluation. We have also shown that the non-uniform masking itself should be
chosen carefully and differently for each symmetric primitive following the prin-
ciples from this paper’s security framework based on linear cryptanalysis and
the noisy probing model.

We presented secure and insecure examples of non-uniform initial maskings
for established threshold implementations of the Prince and Midori64 ciphers.
We verified the examples using the PROLEAD tool and in practice by im-
plementing them on FPGA. The vulnerabilities of the insecure examples were
quickly detected and its leakage coincided with the provided bounds from the
theoretical analyses. The secure examples did not show any leakage up to 50
million traces which shows that we can securely reduce the entropy of the initial
masking four times over.

While the scope of this paper was limited to first-order secure implementa-
tions, we pose the open problem of continuing the investigation of the security
of higher-order threshold implementations with a non-uniform masked input.
Moreover, we pose the important problem of creating tools to automate this
paper’s security analysis such that more complex examples, like using LFSRs to
generate the initial masking, can be investigated.

Acknowledgements. We thank Tim Beyne for the interesting discussions. This
work was supported by CyberSecurity Research Flanders with reference number
VR20192203.
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A Prince S-box Masking

The Prince S-box has its lookup table [B,F, 3, 2, A,C, 9, 1, 6, 7, 8, 0, E, 5, D, 4]
and is decomposed as follows

S = A1 ◦Q294 ◦A2 ◦Q294 ◦A3 ◦Q294 ◦A4 .

The inverse S-box has its lookup table [B, 7, 3, 2, F,D, 8, 9, A, 6, 4, 0, 5, E, C, 1]
and is decomposed as

S−1 = A5 ◦Q294 ◦A2 ◦Q294 ◦A3 ◦Q294 ◦A6 .

The inputs of the following 4-bit functions are designated with a nibble
(x, y, z, w), where x is the most significant bit and w s the least significant bit.

A1 = [1 + x+ z; 1 + y; z + w; z]

A2 = [x+ z + w; 1 + x+ z; 1 + y + z + w;x+ y + z + w]

A3 = [w; z; y;x]

A4 = [1 + x+ y + z + w;x; 1 + x+ z + w;w]

A5 = [1 + y;x+ z; 1 + y + w; 1 + z + w]

A6 = [1 + x+ w; y;w; 1 + z] ,

with

A1 = [C,E, 7, 5, 8, A, 3, 1, 4, 6, F,D, 0, 2, B, 9]

A2 = [6, D, 9, 2, 5, E,A, 1, B, 0, 4, F, 8, 3, 7, C]

A3 = [0, 8, 4, C, 2, A, 6, E, 1, 9, 5, D, 3, B, 7, F ]

A4 = [A, 1, 0, B, 2, 9, 8, 3, 4, F, E, 5, C, 7, 6, D]

A5 = [B, 8, E,D, 1, 2, 4, 7, F, C,A, 9, 5, 6, 0, 3]

A6 = [9, 3, 8, 2, D, 7, C, 6, 1, B, 0, A, 5, F, 4, E] .

The above affine functions are masked share-by-share. The quadratic layer
Q294 = [a, b, c, d] = [x, y, z + xy,w + xz] is masked as follows

ai = xi

bi = yi

ci = zi + xiyi + xiyi+1 + xi+1yi

di = wi + xizi + xizi+1 + xi+1zi ,

for the shares i ∈ {0, 1, 2}, where the convention is used that superscripts wrap
around at two. The above masking is uniform and non-complete.
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B Midori64 S-box Masking

The Midori64 S-box has its lookup table [C,A,D, 3, E,B, F, 7, 8, 9, 1, 5, 0, 2, 4, 6]
and is decomposed as

S = A1 ◦Q299 ◦A2 ◦Q294 ◦A3 .

The inputs of the following 4-bit functions are designated with a nibble
(x, y, z, w), where x is the most significant bit and w s the least significant bit.

A1 = [1 + x+ y + z; 1 + x+ y + w; 1 + x+ y + z + w; y + w]

A2 = [w;x; y; z]

A3 = [1 + y + w; 1 + y + z + w;w;x+ z + w] ,

with

A1 = [E, 9, 4, 3, 1, 6, B,C, 0, 7, A,D, F, 8, 5, 2]

A2 = [0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F ]

A3 = [C, 3, 9, 6, 0, F, 5, A,D, 2, 8, 7, 1, E, 4, B] .

The above affine functions are masked share-by-share. The quadratic layer
Q294 = [a, b, c, d] = [x, y, z + xy,w + xz] is masked as follows

ai−1 = xi

bi−1 = yi

ci−1 = zi + xiyi + xiyi+1 + xi+1yi

di−1 = wi + xizi + xizi+1 + xi+1zi ,

and the quadratic layer Q299 = [a, b, c, d] = [x, y+xy+xz, z+xy+xz+xw,w+
xy + xw] is masked as

ai−1 = xi

bi−1 = yi + (xiyi + xiyi+1 + xi+1yi) + (xizi + xizi+1 + xi+1zi)

ci−1 = zi + (xiyi + xiyi+1 + xi+1yi) + (xizi + xizi+1 + xi+1zi)

+ (xiwi + xiwi+1 + xi+1wi)

di−1 = wi + (xiyi + xiyi+1 + xi+1yi) + (xiwi + xiwi+1 + xi+1wi) .

for the shares i ∈ {0, 1, 2}, where the convention is used that superscripts wrap
around at two. The above maskings are uniform and non-complete.
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C PROLEAD Experiments

The PROLEAD tool outputs data in two formats: tables with an overview of
the current status of the evaluation process and reports for each simulation
step. We further provide shortened versions of the tables for our experiments
and add them with the overview of some probing sets from the reports. In the
following tables, we will write probe sets (such as 00480 [35] (7)). Such sets
include several register values from the implementation together with the cycle
of the computation (in this example seven).

C.1 Designs with Uniform randomness

Table 3: Evaluation info: Uniform randomness.

Cipher
#Standard #Extended Security #Probing Maximum #Probes
Probes Probes Order Sets per Set

Prince 17600 20880 1 9080 101
Midori64 50880 29120 1 14480 32

Table 4: Evaluation results: Prince, uniform case.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

101 26.23 1000000 03951 [61] (18) 4.887129 OKAY
202 26.23 2000000 04211 [21] (22) 7.141349 LEAKAGE
304 26.23 3000000 04081 [32] (6) 5.383576 LEAKAGE
406 26.23 4000000 04211 [39] (27) 3.671223 OKAY

9655 26.23 99000000 03951 [53] (40) 4.154447 OKAY
9751 26.23 100000000 04081 [19] (1) 4.118873 OKAY

Table 5: Evaluation results: Midori64, uniform case.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

89 33.32 1000000 Sbox[15].register.in[5] (20) 4.004151 OKAY
179 33.32 2000000 ciphertext 1[63] (9) 2.891629 OKAY
269 33.32 3000000 Sbox[7].register.in[1] (4) 3.397437 OKAY

8560 33.32 99000000 00226 [19] (1) 4.151201 OKAY
8646 33.32 100000000 00226 [19] (1) 4.091332 OKAY
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C.2 Midori64, Non-Uniform randomness

Table 6: Evaluation info: Midori64, non-uniform cases.

Case Mode
#Stand. #Extend. #Probe Maximum #Probes
Probes Probes Sets per Set

“Insecure”
compact 43200 29100 14480

32
normal 10800 7280 3620

“Secure”
compact 43200 29120 14480
normal 10800 7280 3620

Table 7: Evaluation results: Midori64, “insecure”, normal mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

34 8.24 128000 / 00208 [63] (5) inf LEAKAGE
438057

457 45.70 1280000 / 00208 [63] (5) inf LEAKAGE
1346575

Table 8: Evaluation results: Midori64, “secure”, normal mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

33 9.21 128000 / Sbox[7].register.in[5] (6) 3.912678 OKAY
438083

73 13.74 256000 / Sbox[14].register.in[5] (10) 3.354810 OKAY
615365

4318 273.38 6272000 / Sbox[9].register.in[4] (8) 4.880834 OKAY
2767077

4473 282.42 6400000 / Sbox[9].register.in[4] (8) 5.094253 LEAKAGE
2790153
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C.3 Prince, Non-Uniform randomness

Table 9: Evaluation info: Prince, non-uniform cases.

Case Mode
#Stand. #Extend. #Probe Maximum #Probes
Probes Probes Sets per Set

“Insecure”
compact 16500 14300 8380

39
normal 7425 6435 3771

“Secure”
compact 16500 14300 8380
normal 7425 6435 3771

Table 10: Evaluation results: Prince, “insecure”, normal mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

46 10.26 128000 / beta reg 3.in[22](4) inf LEAKAGE
293647

276 45.70 768000 / beta reg 3.in[22](4) inf LEAKAGE
316035

Table 11: Evaluation results: Prince, “secure”, normal mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

48 11.05 128000 / 05111 (4) 3.485201 OKAY
293811

95 11.79 256000 / beta reg 2.in[53] (6) 3.070294 OKAY
313129

1385 11.99 3968000 / 04193 [16] (10) 5.983958 LEAKAGE
316035

1431 11.99 4096000 / 04193 [17] (10) 5.668399 LEAKAGE
316035
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C.4 Midori64, “Secure” Non-Uniform case, Column-wise

Table 12: Evaluation info: Midori64, column-wise.

Case Mode
#Stand. #Extend. #Probe Maximum #Probes
Probes Probes Sets per Set

Column- compact 43200 29120 14480
32

wise normal 6480 4368 2172

Table 13: Evaluation results: Midori64, column-wise, compact mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

94 33.34 1000000 ciphertext 1[35] (27) 4.696523 OKAY
187 33.34 2000000 Sbox[3].register.in[1] (20) 3.945218 OKAY

9222 33.34 101000000 Sbox[7].register.in[9] (8) 4.789482 OKAY
9312 33.34 102000000 Sbox[7].register.in[9] (8) 5.164452 LEAKAGE

13539 33.34 150000000 00480 [35] (7) 8.223624 LEAKAGE

Table 14: Evaluation results: Midori64, column-wise, normal mode.

Elapsed Required Processed Probe Set with Highest
-log10(p) Status

Time (s) RAM (GB) Simulations Information Leakage

21 7.71 128000 / Sbox[9].register.in[1] (8) 2.371509 OKAY
438075

46 10.60 256000 / 00480 [14] (3) 2.493538 OKAY
615407

6551 238.73 9984000 / 00220 [61] (3) 3.992771 OKAY
3316723

6712 239.51 10112000 / 00220 [61] (3) 3.959946 OKAY
3332201
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