
Bit Security Analysis of Lattice-Based KEMs
under Plaintext-Checking Attacks

Ruiqi Mi1,2[0000−0003−2123−8491] Haodong Jiang3 and Zhenfeng Zhang1,2

1 University of Chinese Academy of Sciences, Beijing 100049, China
2 Trusted Computing and Information Assurance Laboratory, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China
{ruiqi2017,zhenfeng}@iscas.ac.cn

3 Henan Key Laboratory of Network Cryptography Technology, Zhengzhou, Henan,
China.

hdjiang13@163.com

Abstract. Plaintext-checking attack (PCA) is a type of attack where
an adversary recovers the secret key with the help of a plaintext-checking
(PC) oracle that decides if a given ciphertext decrypts to a given plain-
text. In particular, PCA exists in both the key misuse attacks for IND-
CPA-secure lattice-based KEMs and generic side-channel attacks for
IND-CCA-secure lattice-based KEMs. The query number of PC-oracle is
a vital criterion for evaluating a PCA attack. Recently, Qin et al. [ASI-
ACRYPT 2021] gave a systematic approach to finding the theoretical
lower bound of PC-oracle query numbers for NIST-PQC lattice-based
KEMs. Most of the prior works consider the substantial Oracle queries
needed to recover the entire key. However, the adversary often has inad-
equate access to PC Oracles to fully recover the secret key. The concrete
bit security loss with arbitrary PC Oracle access is unknown.
In this paper, we give a unified method to analyze the bit security loss
with arbitrary PC Oracle access for lattice-based KEMs. First, we model
the information leakage in the PC Oracle by PC-hint, and give a generic
transformation from PC-hints to the perfect inner-product hint, which
allows the adversary to integrate PC-hints progressively. Then, following
the security analysis for LWE with the perfect inner-product hint given
in Dachman-Soled et al. [CRYPTO 2020], we give a concrete relationship
between the PC Oracle query number and the bit-security of the lattice-
based KEM under PCA. Our proposed method is applicable to all CCA-
secure NIST candidate lattice-based KEMs. Applying our methods to
NIST-PQC lattice-based KEMs, we get the bit-security loss of the lattice-
based KEM under PCA. Take Kyber768 (original 182-bit-security) as an
example, the bit security of Kyber768 is reduced to 128 after 444 PC-
oracle queries and reduced to 64 after 998 PC-oracle queries, while in Qin
et al. [ASIACRYPT 2021] 1774 queries are required to recover the whole
secret key. Our analysis also demonstrates the possibility of reducing
the Oracle queries needed in PCA. The adversary may stop querying
plaintext-checking oracle and solves the remaining part of reused secret
offline with the help of lattice reduction algorithms when the cost of
lattice reduction algorithms becomes acceptable.
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1 Introduction

Current Diffie-Hellman key exchange and other widely used public key cryptog-
raphy based on factoring or discrete logarithm problems will no longer be secure
if large-scale quantum computers become available. According to the roadmap
released by the US National Institute of Standards and Technology (NIST) and
the Department of Homeland Security [19], the transition to post-quantum stan-
dards should be completed by 2030.

NIST began the call for post-quantum cryptography algorithms from all over
the world in February 2016 [18]. In the third round, there are 4 finalists and 5
alternative candidates for Public Key Encryption (PKE) or Key Encapsulation
Mechanism (KEM). There are 3 lattice-based KEMs among the 4 finalists. After
careful analysis, NIST has selected one finalist and four alternate candidates to
move on to the fourth round. Crystals-Kyber [3] is the first PKE/KEM candidate
to be standardized, which is based on the lattice assumption [20].

The construction of CPA-secure PKE usually follows the design pattern given
in [16]. Most of the lattice-based NIST candidate CPA-secure KEMs are designed
in such a pattern (e.g. Crystals-Kyber [3], Saber [8], FrodoKEM [17], NewHope
[22]), and their hardness comes from the Learning With Errors (LWE) problem
[27]. All LWE-based KEMs in Rounds 2 and 3 of the NIST standardization use
a Fujisaki-Okamoto (FO) transformation [10] to achieve IND-CCA security.

The ongoing standardization process raises an important question: a plaintext-
checking attack may happen when the public key is reused, thus there is no
security guarantee on both IND-CPA and IND-CCA KEMs. For IND-CPA se-
cure KEM, the plaintext-checking attack runs as follows. Suppose Alice reuses
her public key pkA. The adversary A impersonates Bob and tries to recover
each coefficient of Alice’s reused secret key skA with the help of the plaintext-
checking oracle (PC Oracle) O. A crafts ciphertext ct and shared secret K and
sends ct,K to O. O determines if the two shared keys match or not. For each
coefficient skA[i] of skA, A determines the subset to which skA[i] belongs based
on O’s reply. For IND-CCA secure KEMs, a plaintext-checking attack can also
be launched with the help of side-channel information. According to [26], FO
transformation can be bypassed by accessing physical decapsulation devices and
collecting useful match or mismatch information.

Practically, the adversary A often has limitations in gathering sufficient
perfect side-channel information and constructing a PC Oracle. In plaintext-
checking attacks, users may stop misusing their public key in a short time. Thus,
the adversary has restricted time to query the PC Oracle and fully recover the
secret key. For example, the adversary A can only access a PC Oracle that is
constructed from a USB key for online banking service before the users report
the loss. PC Oracle constructed by reusing the KEM’s public key cannot be
accessed when users stop reusing the public key. Thus, an optimal plaintext-
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checking attack has the least number of plaintext-checking Oracle queries for
successful key recovery. There are numerous works on reducing oracle queries
in the plaintext-checking attack [9, 4, 23, 21, 24, 12, 29, 14, 25]. All these attacks
aim to fully recover the reused secret with as few queries as possible. Qin et
al. [25] gave a systematic approach to finding the theoretical lower bound of
PC-oracle query numbers for all NIST-PQC lattice-based IND-CPA/IND-CCA
secure KEMs. The calculation of their lower bounds is essentially the computa-
tion of a certain Shannon entropy. Thus, one cannot find a better attack with
fewer queries on average for full key recovery. Their lower bounds are also con-
firmed by experiments.

Most of the prior works about plaintext-checking attacks to lattice-based
KEMs focus on recovering the full reused secret key. However, the adversary may
not have enough oracle access to construct a reliable plaintext-checking oracle
for recovering the full secret. Thus, compared to recovering the full secret with
substantial amounts of oracle queries, one may be interested in the following
question: How to analyze the concrete bit security loss of PKE/KEM after a
limited number of oracle queries in plaintext-checking attacks?.

Some works already analyzed the effects of information leakage on the LWE
problem. For example, Dachman-Soled et al. [7] give a general framework to an-
alyze the influence of side-channel information. They provide four types of side-
channel information ("hint") and analyze the concrete security loss for each type
of hint. However, the side-channel information leaked in the plaintext-checking
attack ("plaintext-checking hint") has not been considered. Thus, it remains un-
clear how to analyze the influence of plaintext-checking attacks on the hardness
of LWE information.

Let S = {S0,S1, ...,Sn−1} be the set of all possible values for one coefficient
block and its corresponding probabilities {P0, P1, ..., Pn−1}. For a single coeffi-
cient block skA[i], Pj = Pr(skA[i] = Sj |skA ← S) for j = 0, 1, ..., n − 1. Let
H(S) the Shannon entropy for S, Typically, we have H(S|PChint) ≤ H(S). In
other words, each oracle query decreases the Shannon entropy of Alice’s reused
secret skA. O returns a bit b depending on whether the plaintext matches or not.
Intrinsically, for each coefficient of reused secret key skA, the querying process
can be described as a function f of reused secret key skA, plaintext pt, ciphertext
ct, in which:

f(skA, ct, pt) = b ∈ {0, 1}

We define such type of side-channel information as a plaintext-checking hint.
Suppose the adversary A tries to recover the i-th coefficient of skA. Let v be a
unit vector with v[i] = 1. Thus it is very natural to express f(skA, ct, pt) as:

f(skA, ct, pt) := f(⟨skA, v⟩)

f(skA, ct, pt) is a general description of plaintext-checking hint. We find a
solution to transform plaintext-checking hints to known hints for lattice-based
KEMs.

Contributions. The main contributions of this paper include:
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-We give a unified method to analyze the bit security loss even with very little
PC Oracle access for all lattice-based NIST candidate KEMs. Our basic idea is
to give a unified description of the information leakage in the PC-oracle (called
PC-hint). PC-hint is described in the form of f(skA, ct, pt), which is suitable for
analyzing a security loss when the adversary has limited Oracle access. Then, we
give a generic transformation from the least number of PC-hints to the perfect
inner-product hint for lattice-based KEMs in the form of ⟨skA, v⟩ = l. The
least number of PC-hints needed in such a transformation is the lower bound of
oracle queries needed to recover a single coefficient block as analyzed in [25]. We
show that PC-hints can be transformed into a perfect inner-product hint when
a coefficient block of skA is recovered, and the adversary can integrate PC-hints
progressively. Finally, by following the security analysis for LWE with the perfect
inner-product hint given in Dachman-Soled et al. [7], we establish a concrete
relationship between the PC-oracle query number and the bit-security of the
lattice-based KEM under PCA in Section 4. Our proposed method is applicable
to all CPA-secure and CCA-secure NIST candidate lattice-based KEMs.

-We analyze the bit security loss under the plaintext-checking attack for all
lattice-based NIST candidate KEMs with the help of the toolbox given in [7].
We present the relationship between bit security and plaintext-checking oracle
query times in Table 1. The number in parentheses is the Oracle query needed
when classical bit security is 100 (original classical bit-security less than 128).
Note that the classical bit security of Kyber512 is 118. The classical bit security
of LightSaber is 118. The classical bit security of NewHope512 is 112. The bit
security of Kyber768 is reduced to 128 after 444 PC-oracle queries and further
reduced to 64 after 998 PC-oracle queries, whereas 1774 queries are required
to recover the entire secret key, as indicated in [25]. We provide the concrete
relationship between the number of oracle queries and classical/quantum bit
security in Section 5. Such a result reminds us that the loss of security is non-
negligible even when the adversary cannot fully recover the secret key.

-Based on the analysis above, the plaintext-checking attack can be further
enhanced by combining Qin’s plaintext-checking attack [25] with standard lattice
reduction techniques. The adversary may stop querying the plaintext-checking
oracle and solve the remaining part of the reused secret offline with the help
of lattice reduction algorithms when the cost of lattice reduction algorithms
becomes acceptable. We present a detailed analysis of dimension, volume, and
lattice basis after each PC-hint integration in Section 4.3. These results can be
directly used as input to lattice reduction algorithms when the cost becomes
acceptable.

Organizations. We start with some preliminaries in Section 2. Section 3
models the secret leakage in plaintext-checking attack (plaintext-checking hint).
Section 4 gives a concrete mathematical expression of plaintext-checking hint
(Section 4.2), explains how to integrate plaintext-checking hint into the lattice
(Section 4.3). Section 5 gives experimental results. It shows the concrete relation-
ship between bit security and the number of oracle queries for NIST second-round
KEM candidates: Kyber, Saber, Frodo and NewHope.
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Table 1. Relationship between the number of queries and classical bit security of all
lattice-based NIST KEMs, E(#Queries) denotes the theoretical lower bound for the
number of queries given in [25]. The number in parentheses is the Oracle queries needed
when classical bit security is 100 (original classical bit-security less than 128).

Bit
Security

Kyber512
(E(#Queries)=1312)

Kyber768
(E(#Queries)=1774)

Kyber1024
(E(#Queries)=2365)

128(100) (80) 444 950
64 533 998 1459
Bit

Security
LightSaber

(E(#Queries)=1460)
Saber

(E(#Queries)=2091)
FireSaber

(E(#Queries)=2642)
128(100) (228) 612 1181

64 631 1230 1782
Bit

Security
Frodo640

(E(#Queries)=18329)
Frodo976

(E(#Queries)=26000)
Frodo1344

(E(#Queries)=29353)
128 833 8177 14006
64 8005 15445 20234
Bit

Security
NewHope512

(E(#Queries)=1660)
NewHope1024

(E(#Queries)=3180)
128(100) (137) 1406

64 571 2140

Independent and Concurrent Work. Very recently, Guo and Mårtensson
[13] showed an improved plaintext-checking attack that recovers multiple secret
coefficients in a parallel way. The comparisons are summarized below:

1 Guo and Mårtensson showed how to recover partial information of multiple
secret entries in each oracle call. The adversary split the two-dimensional plane
for two secret coefficients and decides from the mismatch oracle call which part
the two coefficients belong to. Compared to the lower bound given in [25], the
attack given in [13] reduces the number of queries needed by 0.08%, 10.6%, 10.6%
for Kyber512, Kyber768, Kyber1024, and 3.4%, 5.01%, 8.1% for LightSaber,
Saber, FireSaber.

2 In the discussion part, they give a rough estimation of the query sample
complexity for Kyber and Saber when post-processing is allowed. They employ
the lattice estimator given in [2]. They did not give concrete relationship between
the number of queries and the geometry of the lattice in theory.

In our work, we investigate the form of side information the adversary get
from oracle queries and the volume and dimension change after integrating such
information in Section 4.2. We give a quantitative and detailed analysis between
query times and bit security in theory. Besides, we applied our theory to all
NIST second-round KEM candidates except NTRU [6] and NTRU Prime [5].

2 Preliminaries

A lattice is a discrete additive subgroup of Rm, denoted as Λ. Lattice Λ is
generated by a set of linearly independent basis {bj} ⊂ Rm, that is Λ :=
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{Σjzjbj : zj ∈ Z}. The i-th successive minimum of a lattice, λi(Λ), is the ra-
dius of the smallest ball centered at the origin containing at least i linearly
independent lattice vectors.

We denote the dimension of lattice Λ as m and the rank as n. If n = m, the
lattice is full rank. Matrix B having all basis vectors as rows can be called a
basis. The volume of the lattice is defined as V ol(Λ) :=

√
det (BBT ). The dual

lattice of Λ in Rn is defined as:

Λ∗ := {y ∈ Span(B) | ∀x ∈ Λ, ⟨x,y⟩ ∈ Z} (1)

Definition 1 (search-LWE problem with short secrets). Let n,m, q be
positive integers, and let χ be a distribution over Z. The search LWE problem
(with short secrets) for parameters (n,m, q, χ) is:

Given the pair (A ∈ Zm×n
q , b = zAT + e ∈ Zm

q ) where:
1. A ∈ Zm×n

q is sampled uniformly at random.
2. z ← χn, and e ← χm are sampled with independent and identically dis-

tributed coefficients following the distribution χ.
Find z.

The complexity of solving (search-)LWE against primal attack consists of
viewing the LWE as an instance of (Distorted-)Bounded Distance Decoding
problem, reducing DBDD to uSVP(via Kannan’s Embedding [15], and finally
applying lattice reduction algorithm to solve the uSVP instance [1]. DBDD ac-
counts for potential distortion in the distribution of the secret noise vector that
is to be recovered, and the secret noise vector is found at a lower cost.

Definition 2 (γ-uSVP). given a lattice Λ such that λ2(Λ) > γλ1(Λ), find a
shortest nonzero vector in Λ.

Definition 3 (Distorted Bounded Distance Decoding Problem, DBDD).
Let Λ ⊂ Rd be a lattice, Σ ∈ Rd×d be a symmetric matrix and µ ∈ Span(Λ) ⊂ Rd

such that Span(Σ) ⊊ Span
(
Σ + µTµ

)
= Span(Λ)

The Distorted Bounded Distance Decoding Problem DBDDΛ,µ,Σ is:
Given µ,Σ and a basis of Λ.
Find the unique vector x ∈ Λ ∩ E(µ,Σ).
Where E(µ,Σ) denotes the ellipsoid

E(µ,Σ) := {x ∈ µ+ Span(Σ) | (x− µ) ·Σ∼ · (x− µ)T ≤ rank(Σ)} (2)
The triple I = (Λ,µ,Σ) will be referred to as the instance of the DBDDΛ,µ,Σ

problem.

Definition 4 (Primitive Vectors). A set of vector y1, · · · ,yk ∈ Λ is said
primitive with respect to Λ if Λ∩Span(y1, · · · ,yk) is equal to the lattice generated
by y1, · · · ,yk. Equivalently, it is primitive if it can be extended to a basis of Λ.
If k = 1, y1, this is equivalent to y1/i /∈ Λ for any integer i ≥ 2.
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3 Side-Channel Information In Plaintext-Checking
Attacks

3.1 The meta-structure of IND-CPA secure KEM

Suppose there exists six additive Abelian groups Ssk, SA, SB , St, SU , SV and four
bilinear mappings(denoted as ×). The four bilinear mappings are SA×Ssk → SB ,
SU × Ssk → SV , St × SA → SU , St × SB → SV . The multiplication satisfies
associativity in the sense that (t×A)× sk = t× (A× sk) for all t ∈ St, A ∈ SA,
and skA ∈ Ssk. The multiplication works as block 1 on Fig. 1.

We list the meta-structure of CPA-secure KEM in Algorithm 1, in which:

Algorithm 1 The meta-structure of IND-CPA secure KEM

1: function setup(1λ)
2: setup the algebra
3: define public parameter pp
4: return pp

1: function Gen(pp; coinA)
2: A

$←− SA

3: skA
$←− Ssk

4: d
$←− sB

5: randomness comes from coinA

6: B ← A× skA + d
7: pkA ← (A,B)
8: return (skA, pkA)

1: function Enc(pp, pkA, pt; coinB)
2: parse pkA = (A,B)

3: t
$←− St, e

$←− SU , f
$←− SV

4: randomness comes from coinB

5: Ū ← t×A+ e
6: V̄ ← t×B + f + encode(pt)
7: U ← Compress(Ū)
8: V ← Compress(V̄ )
9: K ← H(pt∥ct = (U, V ))

10: return K

1: function Dec(pp, skA, ct)
2: Parse ct = (U, V )
3: Ū ← Decompress(U)
4: V̄ ← Decompress(V )
5: W ← V̄ − Ū × skA
6: pt′ ← decode(W )
7: K′ ← H(pt′∥ct = (U, V ))
8: return K′

-For t, d, f, e, sk, such sparse elements are chosen to be sampled from dis-
crete Gaussian distribution or central binomial distribution Bη whose sample is
generated by Ση

i=1(ai − bi), where ai, bi ← {0, 1} and mutually independent. A
sample is chosen according to Bη means every component is chosen randomly
from Bη.

-the encode : M → SV , decode : SV → M is not necessary but usually
employed. The encode is an injective function. A typical code is D−v lattice code.
Message bits are encoded by multiplication to L = (q − 1)/2 and represented
v times in Y = encode(pt). NewHope [22] selects v = 2, thus Yi = Yi+256 =
pti · (q − 1)/2. The decoding process of Y = encode(pt) is finding the value b
that minimizes |Yi − b · q−1

2 |+ |Yi+256 − b · q−1
2 |.

-The Compress/Decompress is usually used to decrease the communication
cost. Typically, a ciphertext V̄ is replaced by V = Compress(V̄ , p) = ⌈p/q ·
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V̄ ⌋ mod p and the decompress operates in an opposite way V̄ = Compress(V, p) =
⌈q/p · V ⌋.

Almost all NIST candidate lattice-based CPA-secure KEM are designed as
Alg. 1. We give two examples below: NewHope [22], Crystals-Kyber [3].

Example 1 Kyber defines Ssk = Rk
q , SB = Rk

q , SU = Rk
q , St = Rk

q , SV = Rq,
SA = Rk×k

q . Kyber does not use encode/decode algorithm. Elements in Rq

are considered as polynomials in variable X modulo Xn + 1. Elements in Rk
q

are considered as vector with components in Rq. Elements in Rk×k
q are con-

sidered as matrix with components in Rq. In Kyber512-KEM, e, f, d is sampled
sparsely from B3. In Kyber768-KEM abd Kyber1024-KEM, t, d, f, e, sk are sam-
pled from B2. Other parameters for Kyber is q = 3329, n = 256. k = 2/3/4 for
Kyber512/Kyber 768/Kyber 1024.

Example 2 NewHope-CPA-PKE defines Ssk = SA = SB = St = SU = SV =
Rq. Elements in Rq are considered as polynomials in variable X modulo Xn+1.
For t, d, f, e, sk, sparse elements are sampled from centered binomial distribution
B8. For NewHope512/NewHope1024, the parameters are n = 512, n = 1024 and
q = 12289. The encode/decode algorithm are described as above.

3.2 Model of Plaintext-Checking Attack

In a plaintext-checking attack, the adversary interacts with plaintext checking
oracle O, which works as shown in Algorithm 2. O is a plaintext checking oracle
which receives ct and pt, returning one bit showing if ct decrypts to pt. IND-
CPA secure public key encryption/key encapsulation mechanisms are vulnerable
to plaintext-checking attack.

The plaintext-checking oracle exists in many cases. In the client-server pro-
tocol where the ciphertext is the encryption of some symmetric key k. The
adversary can construct faulty ciphertexts that may or may not decode to k and
deliver them to the server. Then the adversary can see if secure messaging works
and hence simulates a plaintext-checking oracle O. IND-CCA secure KEM may
also suffer a plaintext-checking attack since the adversary can create oracle O
by a test-based template approach as given in [11].

Algorithm 2 Plaintext-Checking Attack

1: sk′
A ← AO(pkA)

2: if sk′
A = skA then

3: return 1
4: else
5: return 0

1: ORACLE O(ct = (U, V ),K)
2: K′ ← KEM.Dec(ct)
3: if K = K′ then
4: return 1
5: else
6: return 0
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3.3 Secret Leakage Model in Plaintext-Checking Attack

Since many lattice-based IND-CPA secure KEMs use the same meta-structure,
they may have similar plaintext-checking attack procedures. Suppose Alice reuses
her public key pkA = (A,B). As described in Algorithm 2, the adversary A crafts
different plaintext and ciphertext ct, pt to recover Alice’s secret key skA with as
fewer oracle access as possible. Each coefficient of skA is sampled independently
from S ⊂ Ssk.

When the adversary A tries to recover the i-th coefficient of skA, each oracle
call leaks information about S. Without loss of generality, let

S = {S0,S1, ...,Sn−1}

be the set of all possible values of the original sparse secret distribution. Let Pj be
the probability that skA[i] = Sj where skA[i] is generated from the distribution
S, that is, Pj = Pr[skA[i] = Sj |skA[i] ← S] for j = 0, 1, ..., n − 1. Denote
the new secret distribution after the oracle query as S ′ after querying plaintext
checking oracle O. When the adversary gets a returned value from the Oracle,
he can narrow the range of skA[i] from S to S ′ until the exact value of skA[i] is
determined.

The change of secret distribution is shown in Fig. 1. As described in Section
3.1, block 1 (in a dashed rectangle) represents the multiplication of Abelian
groups SA, SB , St, SU , SV (the yellow blocks) before the adversary A queries
the PC Oracle O. The blue block in block 1 represents the secret distribution
S ⊂ Ssk before the adversary queries the PC Oracle O. The green block in block
2 represents the new secret distribution S ′ ⊂ Ssk after A queries the PC Oracle
O. Other Abelian groups remain unchanged.

Fig. 1. Oracle query in Plaintext-Checking Attack and the change of secret distribu-
tion.

In plaintext-checking attack, the adversary A tries to recover the reused
secret by accessing oracle O as few as possible. In other words, each oracle query
decreases the Shannon entropy of reused secret skA.A tries to reduce the entropy
of S as much as possible. Intrinsically, for each coefficient of Alice’s reused secret
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key skA, the querying process can be described as a function f of reused secret
key skA, secret distribution S, ciphertext ct ∈ SU × SV , pt ∈ M. Formally, we
can define the information leakage in plaintext-checking attack as:

Definition 5 (Plaintext-Checking Hint). A plaintext-checking hint on the
reused secret skA is the crafted plaintext pt, ciphertext ct, such that

f(skA, ct, pt) = b ∈ {0, 1}

Let v be a unit vector with v[i] = 1. The expression of plaintext-checking
hint f(skA, ct, pt) can be simplified as:

f(⟨skA, v⟩) = b ∈ {0, 1}

Since the adversary tries to recover the i-th coefficient of skA.
Most of the prior works consider the Oracle access times for recovering the full

reused key. Since the adversary may be prohibited from gathering sufficient side-
channel information to build a plaintext-checking oracle, the adversary A does
not have sufficient access to a plaintext-checking oracle to completely recover
the reused secret. For example, PC Oracle constructed by reusing KEM’s public
key cannot be accessed when users stop reusing the public key. Thus one may be
interested in a more precise analysis of f(skA, ct, pt) to learn security loss after
certain times of Oracle access. To investigate security loss after limited times of
Oracle queries, one possible way is to express f(skA, ct, pt) in the form that can
be integrated into the lattice.

4 Reducing PC-Hint to Perfect Inner-Product Hint

This section presents how to reduce PC-Hint to a perfect inner-product hint.
First, we describe a practical plaintext-checking attack that reaches the theoret-
ical lower bound of oracle queries in section 4.1. We then analyze the message
leakage in each PC Oracle query, which is described in the form of plaintext-
checking hint in section 4.2. Finally, we present a method for integrating plaintext-
checking hints into the lattice in section 4.3. We do this by transforming plaintext-
checking hints into perfect inner-product hints and integrating perfect inner-
product hints into the lattice. Additionally, we analyze the changes in lattice
volume and dimension, which directly affect the bit security of KEMs.

4.1 Practical Plaintext-Checking Attack With Theoretical Lower
Bound

We adopt the plaintext-checking attack given in [25]. They get their lower bounds
for all lattice-based NIST KEM candidates by building the optimal Binary Re-
covery Tree (BRT), and they show that the calculation of these bounds becomes
essentially the computation of a certain Shannon entropy, which means that on
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average one cannot find a better attack with fewer queries than their results in
the full key recovery.

The lower bound of oracle access for recovering a single coefficient of reused
secret skA has been analyzed in Theorem 1 in [25]. Let min E(S) represent the
lower bound for the minimum average number of queries. Moreover, let H(S)
represent the Shannon entropy for S. Then, we have H(S) ≤ min E(S) <
H(S) + 1. In the following section, we give a brief explanation of their attack.

Take plaintext-checking attack to IND-CPA secure Kyber512 as an example.
The adversary selects proper ciphertext ct = (U, V ) as inputs to O. Then, the
adversary is able to recover Alice’s reused secret skA from the oracle response ŝ.
The recovery of each coefficient is mutually independent. We give the approach
to recover the first coefficient block skA[0] of sk, other coefficient blocks can be
recovered similarly.

The attacker selects plaintext pt = (1, 0, ..., 0) and ct = (U, V ), where Ū =
(⌈ q

16⌋, 0, ..., 0), U = Compress(Ū , 2dU ) and V = (h, 0, ..., 0). dU = 10, dV = 4
is the parameter selected by Kyber512. Then the attack query the plaintext-
checking oracleO with ct. The oracleO calculates Ū = Decompress(U, 2dU ), V̄ =
Decompress(V, 2dV ) = (⌈ q

16h⌋, 0, ..., 0).
Thus, the adversary constructs a relationship between pt′[0] and skA[0] af-

ter decryption as pt′[0] = Compress((V̄ − skTA · Ū)[0], 2) = ⌈ 2q (V̄ [0] − (skTA ·
Ū)[0])⌋ mod 2.

Since V̄ [0] = ⌈ q
16h⌋ and (skTA · Ū)[0] = skTA[0]Ū [0] = skA[0]⌈ q

16⌋, it holds that
pt′[0] = ⌈ 2q ([

q
16h] − skTA[0][

q
16 ])⌋ mod 2, where h is a parameter chosen by the

attacker. Let h = 4, if skA[0] ∈ [0, 3], pt′[0] = 0, then the oracle O will output 0.
Otherwise, skA[0] ∈ [−3,−1], pt′[0] = 1, the oracle O will output 1.

The attacker could adaptively choose h to recover skA[0] based on the se-
quence ŝ from oracle O. If the attacker uses well-selected h, he could recover
skA[0] with as few queries as possible. With the help of the optimal binary re-
covery tree, the adversary divides the range of the coefficient block in half each
time and tries to recover Si with the biggest probability as soon as possible. We
list the selection of h in Table 2. In such a plaintext-checking attack, each query
divides the possible range of skA[0] into (nearly) half. [25] gives the selection of
h and the corresponding changes of states in section 4.1.

Table 2. The choice of h and the States for Kyber512

State1 State2 State3 State4 State5 State6

h 4 3 9 12 13 7

O → 0 State4 skA[0] = −1 skA[0] = −3 skA[0] = 0 skA[0] = 1 skA[0] = 3

O → 1 State2 State3 skA[0] = −2 State5 State6 skA[0] = 2

According to Theorem [25], The lower bound for Kyber512, Kyber768, and
Kyber1024, in theory, is 1216, 1632, 2176. The expectation of queries needed to
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recover a single coefficient in skA is 5
16 ×2+ 15

64 × (3+2)+ 3
32 × (4+3)+ 1

32 ×3 =
2.56. The average number of queries needed in a plaintext-checking attack for
Kyber512, Kyber768, and Kyber1024, in theory, is 1312, 1774, and 2365. The
gap is less than 9%. Besides, Qin et al. also did an experiment to verify their
theory. The experiment result shows that the number of queries is 1311, 1777,
2368 separately.

4.2 Message Leakage in Each Query

Suppose Alice reuses her public key, the corresponding secret key is skA. The
adversary tries to recover the first coefficient of skA. The analysis is similar to
other coefficients.

In Section 3.3, we give a plaintext-checking hint f(skA, ct, pt) to describe the
change of secret distribution after each oracle query. For Kyber512, A sets ct =
(U, V ). If skA[0] ∈ [0, 3], set h = 4, pt′[0] = ⌈ 2q ([

q
16h] − skTA[0][

q
16 ])⌋ mod 2 = 0,

then O → 0. Otherwise pt′[0] = 1, O → 1. The plaintext-checking hint can be
described as:

f(skA, ct = (U, V ), pt) = ⌈2
q
(V̄ [0]− (skTA · Ū)[0])⌋ mod 2 (3)

Let v be a unit vector with v[0] = 1. Since the adversary tries to recover a
certain coefficient in each oracle query, it is very natural to express f(skA, ct, pt)
as f(⟨skA, v⟩). Specifically, we have:

-h = 4, after the first query, plaintext-checking hint PCHint1: f(⟨skA, v⟩) =
⌈ 2q ([

q
16 · 4]− skTA[0][

q
16 ])⌋ mod 2 = 0, and ⟨skA, v⟩ ∈ [0, 3].

-h = 12, after the second query, plaintext-checking hint PCHint2: f(⟨skA, v⟩) =
⌈ 2q ([

q
16 · 12]− skTA[0][

q
16 ])⌋ mod 2 = 1, and ⟨skA, v⟩ ∈ [1, 3].

-h = 13, after the third query, plaintext-checking hint PCHint3: f(⟨skA, v⟩) =
⌈ 2q ([

q
16 · 13]− skTA[0][

q
16 ])⌋ mod 2 = 1, and ⟨skA, v⟩ ∈ [2, 3].

-h = 7, after the fourth query, plaintext-checking hint PCHint4: f(⟨skA, v⟩) =
⌈ 2q ([

q
16 · 7]− skTA[0][

q
16 ])⌋ mod 2 = 0, and ⟨skA, v⟩ = 3.

Now the adversary collect four plaintext-checking hints PCHint1, PCHint2,
PCHint3, PCHint4. Then the adversary can transform these hints into "perfect
hint" as described in [7]:

⟨skA, v⟩ = skA[0]

Let S = {S0,S1, ...,Sn−1} be the set of all possible values of the original
sparse secret distribution. Denote by Hi the number of plaintext-checking hints
A needs to determine the coefficient block when it is exactly Si, which is actually
the oracle access need to determine the coefficient block as analyzed at the
beginning of Section 4. Let E(#PCHint) be the average number we needed to
transform a plaintext-checking hint into a perfect hint. According to the analysis
above, we have:
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E(#PCHint) = Σn−1
i=0 PiHi

Intrinsically, the average number we needed to transform plaintext-checking
hints into a perfect hint is the average number of oracle queries A needed to
recover a single coefficient block. Thus the lower bound of E(#PCHint) can be
derived from [25]. We list E(#PCHint) for all lattice-based NIST KEMs (both
IND-CPA/IND-CCA) in Table 3.

Table 3. E(#PCHint) against lattice-based NIST KEMs

Schemes S E(#PCHint) Schemes S E(#PCHint)

Kyber512 [-3,3] 2.77 Frodo640 [-12,12] 3.59

Kyber768 [-2,2] 2.31 Frodo976 [-10,10] 3.34

Kyber1024 [-2,2] 2.31 Frodo1344 [-6,6] 2.73

LightSaber [-5,5] 2.88 NewHope512 [-8,8] 3.24

Saber [-4,4] 2.73 NewHope1024 [-8,8] 3.11

FireSaber [-3,3] 2.56 - - -

In the following parts, we describe how to predict security loss after collecting
several PC hints and transformed these PC hints into a perfect hint.

4.3 Integrating Plaintext-Checking Hints into Lattice

The intuition behind estimating security loss (under primal attack) is to esti-
mate the hardness of the underlying LWE problem (as defined in Definition 1)
after integrating plaintext-checking hints. The adversary A collects plain LWE
samples as shown in line 5, 6 in function Enc of Algorithm 1. Then A trans-
forms the LWE problem to DBDD problem(Definition 3) and constructs a lattice
basis. Then A integrates the plaintext-checking hints into the DBDD problem.
Finally, A transforms the DBDD problem to uSVP problem(Definition 2). The
uSVP problem can be solved by lattice reduction algorithm.

The solution of the LWE problem is (e, skA). It can be extended to a short
vector (e, skA, 1), which is an short vector of the lattice:

Λ = {(x,y, w) ∈ Zn+m+1|x+ yAT − bw} = 0 mod q

which is of full rank in Rd and has volume qm. The row vectors of qIm 0 0
AT −In 0
b 0 1

 (4)

constitute a basis of Λ. For a single coefficient block skA[b], Pi = Pr(skA[b] =
Si|skA ← S) for i = 0, 1, ..., n − 1. We denote the average and variance of the
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LWE original secret distribution S as µ and σ2. Such a LWE instance can be

converted to a DBDDΛ,µ,Σ instance with µ = [µ, ..., µ, 1], Σ =

[
σ2Im+n 0

0 0

]
.

To integrate plaintext-checking hints into DBDD problem, the adversary
A collect several plaintext-checking hints until they can be transformed to a
perfect hint ⟨skA, v⟩ = skA[0] as shown in Section 4.2. Suppose A recovers the
first coefficient of skA. v can be extended to v̄ := (0; v;−l), where 0 is an all-
zero vector of dimension m, v = (1, 0, · · · , 0) of dimension n, l = skA[0]. The
adversary A can integrate v̄ by modifying DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ .

Integrating v̄ into DBDDΛ,µ,Σ means finding an intersection between Λ and
an hyperplane orthogonal to v̄. We denote the new lattice as Λ′. Intuitively, Λ′

has lower dimension than Λ, meaning that solving DBDDΛ′,µ′,Σ′ is easier than
DBDDΛ,µ,Σ .

The new mean µ′ and new covariance Σ′ can be derived according to the
equation given in equations (12) and (13) in [7]. Specifically, we have Σ′ =

Σ− (v̄Σ)T v̄Σ
v̄Σv̄T , and µ′ = µ− ⟨v̄,µ⟩

v̄Σv̄T v̄Σ. Since v̄ is an all-zero vector with dimension
m+n+1 except that the m+1-th coefficient is 1 and the m+n+1-th coefficient
is −skA[0]. Thus we have v̄Σ is an all-zero vector except that the m + 1-th
coefficient is σ2.

Thus we have Σ′ = Σ − 1
σ2M , where M is a m + n + 1-dimension di-

agonal matrix with Mm+1,m+1 = σ4,Mm+n+1,m+n+1 = 0 and all other di-
agonal elements 0. Thus Σ′ is a m + n + 1-dimension diagonal matrix with
Mm+1,m+1 = 0,Mm+n+1,m+n+1 = 0 and all other diagonal elements σ2. µ′ =
[µ, ..., µ, 1]− (µ− skA[0])

1
σ2 v̄Σ. Thus µ′ is an all-µ vector except that µ′

m+1 =
skA[0], µ′

m+n+1 = 1. The volume of Λ′ is analyzed in Theorem 1.

Theorem 1. Given the LWE sample (A ∈ Zm×n
q , b = skTAA + e ∈ Zm

q ). Sup-
pose the adversary A collects #PCHint plaintext-checking hints f1, ..., f#PCHint

when recovering skA[i]. The adversary A can transform f1, ..., f#PCHint into a
perfect hint v̄ := (0; v;−l), where 0 is an all-zero vector of dimension m, v is a
unit vector with v[i] = 1 and dimension n, l = skA[i]. Including hint v̄ modifies
DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ with dimension dim(Λ′) and volume V ol(Λ′):

dim (Λ′) = dim(Λ)− 1

V ol (Λ′) = Vol(Λ) ·
√
1 + skA[i]

2
· det(ΠΛ)

(5)

When v̄ is a primitive vector, we have

Vol (Λ′) = Vol(Λ)
√
1 + skA[i]2 (6)

Proof. When v̄ is a primitive vector(v̄ can be extended to a basis of Λ), the
volume of the lattice after integrating hint v̄ is V ol (Λ) = ∥v̄∥ ·Vol(Λ) = Vol(Λ) ·√
1 + skA[i]2(see Lemma 12 of [7]).
When v̄ is not in the span of Λ, we can also apply orthogonal projection

v̄′ = v̄·ΠΛ of v̄ onto Λ. Replacing v̄ by v̄′ is still valid. The orthogonal projection
matrix is ΠΛ = ΠΣ′ =

√
Σ′∼ · Σ′ ·

√
Σ′∼T

, where Σ′ = Σ + µT · µ is
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the covariance matrix after homogenization,
√
Σ′∼ is the restricted inverse of√

Σ′(see definition 3 of [7]).
Thus we have Vol (Λ′) = Vol(Λ) ·

√
1 + skA[i]2 · det(ΠΛ)), where ΠΛ is the

orthogonal projection onto Λ .

It is predicted that the BKZ − β′ can solve a uSV PΛ′ after E(#PCHint)

queries s.t.
√
β′ ≤ δ

2β′−dim(Λ′)−1
β′ · V ol (Λ′)

1/dim(Λ′), where dim(Λ′), V ol(Λ′) are
as described in equation (5, 6). The expectation of #PCHint (E(#PCHint))
and the transformation from plaintext-checking hints to perfect hints has been
described in Section 4.2.

5 Experiment Results

5.1 Kyber

Fig. 2 gives the concrete relationship between the number of queries and bit-
security for all parameter sets of Kyber in the NIST third-round submission.
In Table 4, we present the number of queries needed for Kyber512/ Kyber768/
Kyber1024 when the bit security of the underlying LWE reaches 128, 64, 48, 32,
24, 16 under primal and dual attacks.

Taking Kyber512 as an example, the adversary A can query PC Oracle O
for only 867 times instead of 1312 times. The classical bit security of the LWE
problem is decreased to 32. The adversary may stop querying the PC Oracle and
solve the remaining part of the secret key using the lattice reduction algorithm.

Fig. 2. Relationship between query and security under primal attack for Kyber.

For our experiment, we make use of the LWE estimator from [7]. Estimating
the hardness needs the dimension of the lattice Λ and its volume only. According
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to Theorem 1, for Kyber512/Kyber768/ Kyber1024, every 2.77/2.31/2.31 queries
reduces the dimension of the lattice by 1. After integrating short vectors into
the lattice, we get the concrete dimension of the lattice Λ, which tells us the
security of current LWE problem after certain times of queries. The number in
parentheses is the Oracle queries needed when classical/quantum bit security is
100 (The original classical bit security of Kyber is 118).

Table 4. Classical&Quantum Query-Security For Kyber 512/768/1024.

Bit
Security

Kyber512
(classical/quantum)

Kyber768
(classical/quantum)

Kyber1024
(classical/quantum)

- Primal Dual Primal Dual Primal Dual
128(100) (80)/(65) (150)/(129) 444/333 562/543 950/848 1274/1205

64 533/464 657/624 998/938 1112/1096 1459/1404 1732/1673
48 699/646 761/733 1144/1098 1206/1176 1593/1550 1805/1773
32 867/831 865/838 1292/1259 1320/1302 1728/1699 1915/1893
24 953/925 922/906 1366/1343 1396/1361 1796/1775 1973/1959
16 1033/1016 981/962 1437/1423 1481/1476 1862/1849 2095/2029

5.2 Saber

Fig. 3 gives the relationship between the number of queries and security for all
parameter sets of Saber in NIST third round submission. We list the number
of queries needed for LightSaber/Saber/FireSaber when the bit security of the
underlying LWE reaches 128, 64, 48, 32, 24, 16 in Table 5 under primal/dual
attack.

Fig. 3. Relationship between query and security under primal attack for Saber.
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According to Theorem 1, for LightSaber/ Saber/ FireSaber, every 2.88/ 2.73/
2.56 queries reduce the dimension of the lattice by 1. After integrating short
vectors into the lattice, we get the concrete dimension of the lattice Λ, which
tells us the security of current LWE problem after certain times of queries. The
number in parentheses is the Oracle queries needed when classical/quantum bit
security is 100 (The original classical bit security of LightSaber is 118).

Table 5. Classical&Quantum Query-Security For LightSaber/Saber/FireSaber.

Bit
Security

LightSaber
(classical/quantum)

Saber
(classical/quantum)

FireSaber
(classical/quantum)

- Primal Dual Primal Dual Primal Dual
128(100) (228)/(124) (407)/(352) 612/487 832/817 1181/1063 1395/1364

64 631/553 844/799 1230/1162 1446/1415 1782/1718 1963/1929
48 839/772 933/902 1390/1339 1550/1517 1941/1890 2067/2029
32 1075/1023 1029/1003 1554/1521 1656/1625 2100/2066 2179/2165
24 1204/1164 1096/1066 1638/1611 1714/1699 2179/2153 2257/2223
16 1340/1311 1155/1138 1717/1701 1774/1759 2258/2243 2326/2289

5.3 Frodo

Fig. 4 gives the relationship between the number of queries and security for all
parameter sets of Frodo in NIST second round submission. We list the number
of queries needed for Frodo640/ Frodo976/ Frodo1344 when the bit security of
the underlying LWE reaches 128, 64, 48, 32, 24, 16 in Table 6 under primal/dual
attack.

Fig. 4. Relationship between query and security under primal attack for Frodo.
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According to Theorem 1, for Frodo640/ Frodo976/ Frodo1344, every 3.59/
3.34/ 2.73 queries reduce the dimension of the lattice by 1. After integrating short
vectors into the lattice, we get the concrete dimension of the lattice Λ, which
tells us the security of current LWE problem after certain times of queries. The
number in parentheses is the Oracle queries needed when classical/quantum bit
security is 100 (The original quantum bit security of Frodo640 is 124).

Table 6. Classical&Quantum Query-Security For Frodo 640/976/1344

Bit
Security

Frodo640
(classical/quantum)

Frodo976
(classical/quantum)

Frodo1344
(classical/quantum)

- Primal Dual Primal Dual Primal Dual
128(100) 833/(2755) 2943/(4861) 8177/6734 12546/11986 14006/12761 17859/16758

64 8005/7230 10508/9961 15445/14670 19863/19384 20234/19556 23284/23009
48 9899/9296 12001/11474 17368/16754 21041/20792 21872/21370 24257/23812
32 11821/11419 13572/13230 19346/18918 22368/21994 23577/23205 25217/25124
24 12796/12509 14577/14235 20334/20014 23154/22773 24429/24145 25841/25581
16 13772/13571 15475/15162 21296/21109 23609/23527 25259/25084 26304/26174

5.4 NewHope

Fig. 5 gives the relationship between the number of queries and security for all
parameter sets of NewHope in NIST second round submission. We list the num-
ber of queries needed for NewHope512/ NewHope1024 when the bit security of
the underlying LWE reaches 128, 64, 48, 32, 24, 16 in Table 7 under primal/dual
attack.

Fig. 5. Relationship between query and security under primal attack for NewHope.
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According to Theorem 1, for NewHope512/ NewHope1024, every 3.24/ 3.11
queries reduces the dimension of the lattice by 1. After integrating short vectors
into the lattice, we get the concrete dimension of the lattice Λ and its volume,
which tells us the security of current LWE problem after certain times of queries.
The number in parentheses is the Oracle queries needed when classical/quantum
bit security is 100 (The original classical bit security of NewHope512 is 112).

Table 7. Classical&Quantum Query-Security For NewHope 512/1024

Bit
Security

NewHope512
(classical/quantum)

NewHope1024
(classical/quantum)

- Primal Dual Primal Dual
128(100) (137)/(20) (528)/(461) 1406/1260 1820/1756

64 571/490 915/866 2140/2062 2475/2438
48 772/710 1054/1011 2333/2274 2594/2555
32 979/934 1173/1148 2532/2488 2714/2678
24 1083/1050 1231/1224 2632/2600 2771/2738
16 1183/1164 1325/1309 2728/2709 2864/2837

6 Conclusions & Discussions

In this paper, we explicitly build the relationship between the number of Oracle
queries and the security loss of the reused secrets for all NIST second-round
lattice-based KEMs. Our analysis can be divided into three steps. First, we
model the information leakage in the PC-oracle by PC-hint and give a generic
transformation from PC-hints to the perfect inner-product hint, which allows
the adversary to integrate PC-hints progressively. Then, we give a concrete re-
lationship between the PC Oracle query number and the bit security of the
lattice-based KEM under PCA. Our bit security analysis is inspired by the se-
curity analysis for LWE with the perfect inner-product hint given in [7], Our
proposed method is applicable to all CCA-secure NIST candidate lattice-based
KEMs.

We applied our methods to NIST-PQC lattice-based KEMs, we get the bit-
security loss of the lattice-based KEM under PCA. Take Kyber768 (original
182-bit-security) as an example, the bit security of Kyber768 is reduced to 128
after 444 PC-oracle queries and reduced to 64 after 998 PC-oracle queries, while
in Qin et al. [25] 1774 queries are required to recover the whole secret key. Our
analysis also demonstrates the possibility of reducing the Oracle queries needed
in PCA. The adversary may stop querying plaintext-checking oracle and solves
the remaining part of reused secret offline with the help of lattice reduction
algorithms when the cost of lattice reduction algorithms becomes acceptable.

Another strategy to describe security loss in PCA is to transform PC-hints
into "modular hints" in the form of ⟨skA,v⟩ = l mod k as described in [7].
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Integrating such modular hints into the lattice reduces the volume of the lattice
by k. When the range of secret and error of KEM is large, it requires more PC
Oracle queries (e.g. Frodo640 requires 18227 times of queries to O to recover
secret skA), such strategy performs may perform better than the strategy used
in this work.

However, It is difficult to transform PC-hints into modular hints. Take Ky-
ber512 as an example, the range of secret key [−3, 3] should be separated into
{−2, 0, 2} and {−3,−1, 1, 3}, thus ⟨skA,v⟩ = l mod 2 with l = 1 or l = 0.
However, we have tried all possible h and we found that it is impossible to cre-
ate such a modular hint. The situations are similar in other schemes. We leave
this as an open problem: can we utilize modular hints in PCA to analyze the
relationship between bit-security and arbitrary PC Oracle access?

The bit-security analysis in this paper works under perfect PC Oracle. Re-
cently, Shen et al. [28] presents a new checking approach in the plaintext-checking
attacks, which is preferable when the constructed PC Oracle is imperfect. Imper-
fect PC Oracle may occur due to environmental noises, or simply the measure-
ment limitations in implementing the PC Oracle. Their basic idea is to design
new detection codes that efficiently find the problematic entries in the recovered
secret key and corrects problematic entries with a small number of additional
traces. When the raw oracle accuracy is fixed, Their new attack requires only
41% of the EM traces needed in a majority-voting attack in our experiments.
It is appealing to analyze the relationship between imperfect PC Oracle queries
and bit-security of lattice-based KEMs.
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