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Abstract. Traceable ring signature (TRS) is a variation of ring signa-
ture, allowing to expose the users identity whenever he signs two different
messages under the same tag. The accountable anonymity of TRS makes
it widely used in many restrained anonymous applications, e.g., e-voting
system, offline coupon service. Traditional TRS schemes are built on
mathematical problems, which are believed to be easy to solve by quan-
tum computers. While numerous post-quantum (traceable) ring signa-
ture schemes have been proposed so far, there has been no TRS scheme
based on isogenies proposed. We construct two TRS schemes from group
actions that can be instantiated with isogenies and lattices. The critical
technique is to generate multiple tags for the message and design an OR
sigma protocol to generate proofs for multiple tag sets, which provides
traceability for the TRS scheme. The signature size can be expressed
as O(logN), where N represents the ring size. Based on different in-
stantiation parameters, our proposed scheme enables ring members to
negotiate the signature size and signing time according to their specific
requirements. Moreover, we prove the security of our scheme under the
standard random oracle model.

Keywords: Traceable ring signature · Post-Quantum cryptography ·
Isogeny-based cryptography · Lattice-based cryptography · OR sigma
protocol

1 Introduction

Ring Signature (RS) [30] allows the signer to sign a message on behalf of the
group without revealing the signer’s identity. Traceable ring signature (TRS) is
a variation of the RS, if a signer produces two signatures for different messages
under the same tag, then the identity of the signer can be extracted by the ring
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members, if signatures are for the same message, everyone can know that the
two signatures were generated by the same signer. TRS limits the indubitable
anonymity of ring signature, the tag in TRS consists of a group of members and
a topic, the topic string refers to a social issue or voting. In many anonymous
information systems such as e-voting [9] and offline coupon services [21], users are
not expected to sign messages twice under the same tag, e.g., double-spending,
multiple voting. The TRS scheme mitigates this dishonest behavior, and further
protects the privacy of members, therefore, it becomes a powerful cryptographic
tool in such systems.

The concept of TRS was proposed by Fujisaki and Suzuki [22] in 2007. Since
then, several variant schemes [21,2] have been proposed to improve security or
performance. However, these proposals are built on number theory, which can
be solved by a large-scale quantum computer running Shors algorithm [33]. Con-
sequently, a quantum-resistant ring signature and related variant schemes have
drawn much attention over the past ten years. Lattice-based cryptography is
one of the most promising candidates in post-quantum cryptography. In addi-
tion to resisting quantum attacks, it has the advantage of better performance.
Isogeny-based cryptography was first proposed by [11,31], it is an extension and
thorough study of classical elliptic curve cryptography. Compared with other
post-quantum cryptography candidates, isogeny-based cryptography stands out
for its comparatively shorter key sizes [24].

Recently, various schemes based on isogeny assumption have been proposed:
signature schemes [5,14], ring signature scheme [4], revocable ring signature
scheme [24] and accountable ring signature scheme [10]. Although these con-
structions and many post-quantum ring signature schemes (including variants)
from lattices, code and symmetric cryptographic primitives have been proposed
successively, an efficient isogeny-based TRS scheme has yet to be reported in the
literature.

To fill this gap, we propose a general TRS scheme from group actions and
instantiate the group action with isogenies and lattices. To the best of our knowl-
edge, the isogeny-based instantiation is the first isogeny-based TRS scheme. It
provides a smaller signature size than lattice-based instantiation. However, its
significant overhead is signing time which caused by the complex operation of
isogeny. Under different instantiation parameters, users can flexibly customize
the signature size and signing time according to their requirements with differ-
ent instantiation parameters. Note that the isogeny-based instantiation in this
paper is from CSIDH [8]. The latest attack on isogenies proposed by Castryck
and Decru [7] leads to key leakage in SIDH. This method has no impact on the
security of primitives such as CSIDH and SQISign [14]. The efficiency of our
TRS scheme is discussed in detail in Section 5.1.

1.1 Related work on Post Quantum Ring Signature

Lattice-based schemes. The first lattice-based ring signature was proposed
by Libert et al. [26], which is non-linkable. Lu et al. [27] developed a general
lattice-based (linkable) ring signature scheme from the short integer solution
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(SIS) and NTRU assumptions. Esgin et al. [17] extended discrete logarithm
proof techniques to the lattice setting in the one-out-of-many proofs, and de-
signed a short ring signature scheme. They further optimized one out of many
proofs, resulting in a smaller size ring signature scheme [16]. Then, they intro-
duced a zero-knowledge proof and extractable commitment scheme from lattices,
and designed an efficient RingCT protocol [18]. Feng et al. [19] constructed an
efficient TRS scheme and instantiated the scheme with lattice-based building
blocks: non-interactive zero-knowledge proof, collision-resistant hash function,
and pseudorandom function. Nguyen et al. [28] proposed a unique ring signature
(URS) scheme from lattices, which exploited a Merkle tree based accumulator
as the building block.
Isogeny-based schemes. Beullens et al. [4] constructed an efficient (linkable)
ring signature scheme and gave two concrete instances from isogenies and lat-
tices. The signature size of their scheme scales with the number of ring mem-
bers. Then, they constructed an accountable ring signature based on isogeny
and lattice assumptions [3]. Through adding a valid ciphertext proof to their
OR protocol and building an online extractable non-interactive zero-knowledge
proof system, the signature size grows in O(logN). Chung et al. [10] proposed a
group signature and accountable ring signature scheme based on the decisional
CSIDH assumptions (D-CSIDH) and proved the security of scheme under the
quantum random oracle model (QROM), the signature size grows in O(N2). Lai
and Dobson [24] introduced the first revocable ring signature (RRS) scheme from
isogenies, which is proved secure under the QROM, the signature size grows in
O(N log(N)).
Other post-quantum schemes. Branco and Mateus [6] built a post-quantum
resistant TRS scheme based on the syndrome decoding problem. Their scheme
was built on the Fiat-Shamir heuristic [20], they gave the security proof under
the classic random oracle. Derler et al. [15] proposed the first sub-linear ring
signature scheme from symmetric primitives. Scafuro and Zhang [32] introduced
a one-time TRS scheme based on hash-function symmetric-key primitive.

Overall, the TRS schemes based on lattices, code and symmetric primitives
have better performance, but the signature size of these schemes is large. Espe-
cially, The post-quantum TRS schemes that can be instantiated by isogenies and
lattices are still in their infancy. This work proposes a general OR sigma protocol
construction and constructs two TRS schemes from isogeny-based and lattice-
based group action primitives. Both instantiations of the TRS schemes have
a logarithmic communication complexity. Compared with other post-quantum
schemes, the isogeny-based instantiation has the advantage of a smaller signa-
ture size, the lattice-based instantiation has a shorter signing time. Finally, we
prove the security of our TRS scheme under the random oracle model.

1.2 Contribution

The major contribution of this work is the construction of a TRS from restricted
group action in the random oracle model (ROM). As far as we know, this is the
first TRS scheme that can be instantiated with isogenies.
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– We propose a general TRS scheme based on restricted pair of group actions,
OR sigma protocol and collision-resistant hash function. Furthermore, we
instantiate the group action from isogenies and lattices to construct two
TRS schemes.

– We design a special OR protocol for the TRS scheme. The core of our tech-
nique is to provide traceability by generating tag sets based on messages
and user identities. Traceability will be possible by checking whether each
tag/vector in the two tag/vector sets is equal. Further, we add OR proof for
multiple tag sets to ensure validity.

– The scheme has logarithmic communication complexity. In order to reduce
the signature size, we generate two Merkle trees and set the response as
two paths in the tree in case challenge bit chall = 0, when challenge bit
chall = 1, we send a seed as the response. Compared with other post-quantum
TRS schemes, the signature size of our proposed TRS extends well with the
ring size N , and our multiplicative factor on logN is much lower since the
signatures mainly consist of two paths in a Merkle tree of depth logN .

– The time and size of the signature can be flexibly customized from different
instantiation parameters of the OR sigma protocol. The isogeny-based in-
stantiation has a smaller signature size and lattice-based instantiation has
better performance.

1.3 Overview of Results

In this paper, we will construct a general TRS scheme with generic security in
terms of tag-linkability, anonymity and exculpability. With isogeny and lattice
instantiation, it is resistant to attacks by quantum adversaries.

There is a (linkable) ring signature framework [4] that has been proposed,
this general construction utilizes the admissible group action primitive and is
built upon a OR sigma protocol. However, for the dishonest users who signs the
same message or two different messages twice, it does not have the ability to
track the identity of dishonest users. By adding multiple tags to the OR proof,
we prove that the tag was generated by the signer while tracing the identity of
the signer by comparing each tag in the tag set.

The security of TRS scheme from isogenies in Section 3 relies on the group
action inverse problem and its equivalent hard problems [34], the security of
lattice-based instantiation relies on the module short integer solution problem
and module learning with errors problem [25], which are believed to be resistant
to attacks by quantum adversaries. According to the experimental results, the
smaller the value of Q is, the less time it takes for signature generation and
verification. The minimum signature size is obtained when K = 36, where K
and Q−K are the number of 0 and the number of 1 in the challenge space.

Specifically, we have the 64/4096 bytes public key size under two different
instantiations. The secret key of a user is 16 bytes. The signature size of our
TRS scheme relies on the proof size of the OR protocol, which is logarithmic.
It is approximately 2 logN + 2.45/2 logN + 55.37 KB under the specific
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instantiation parameters and outperforms the post-quantum traceable signature
size of [32,19,6].

Table 1 indicates the comparison results among the proposed TRS and other
(traceable) ring signature schemes with respect to signature size complexity and
supported attributes. Among the post-quantum signature schemes we investi-
gated, these schemes support either linkability or traceability. In the case of
supporting two properties, the signature size scales linearly with the ring size.
Compared with lattice-based TRS schemes, our signature size under lattice-
based instantiation is acceptable. Compared with isogeny-based linkable ring
signature (without traceability), our scheme provides traceability with a smaller
signature size. The details of the performance of TRS will be presented in Section
5.1.

Table 1: Comparison of our TRS with other (traceable) ring signature.

Schemes Signature Linkability Traceability Implementation Hardness
size Assumption

Alessandra[32] O(N) ✓ ✓ ✓ NONE
Branco[6] O(N) ✓ ✓ × SD1

Falafl[4] O(log(N)) ✓ × ✓ MSIS2, MLWE3

Feng H[19] O(log(N)) ✓ ✓ × SIS 2, LWE3

MatRiCT[18] O(log(N)) × × ✓ MSIS2, MLWE3

Esgin[16] O(log(N)) × × ✓ SIS2, LWE3

Raptor[27] O(N) ✓ × ✓ NTRU4

Calamari[4] O(log(N)) ✓ × ✓ CSIDH5

CHH[10] O(N2) × ✓ × CSIDH5

KYM[24] O(N log(N)) × ✓ × CSIDH5

This work O(log(N)) ✓ ✓ ✓ MSIS2, MLWE3, CSIDH5

1 SD: Syndrome Decoding
2 SIS: Short Integer Solution, MSIS: Module Short Integer Solution
3 LWE: Learning with Errors, MLWE: Module Learning with Errors
4 NTRU: Number Theory Research Unit
5 CSIDH: Commutative Supersingular Isogeny Diffie Hellman

2 Preliminaries

2.1 Traceable Ring Signature

In this section, we review the TRS scheme proposed by Fujisaki and Suzuki [22].
Assuming that N is the number of users in the ring, PK = (pk1, . . . , pkN ) is
ring member’s public keys set, issue is a string representing the specific event
of the signature and L = (issue,PK) is the tag of the signature. A TRS scheme
consists of five algorithms TRS = (Setup, KeyGen,Sign,Verify,Trace) described
as follows:

– pp← Setup(1λ): The algorithm run by the trusted authority, which takes as
input security parameter λ ∈ N and outputs public parameter pp.

– (pk, sk)← KeyGen(pp): The algorithm run by the ring member, which takes
as input public parameter pp and returns public key pk and secret key sk.
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– σ ← Sign(skπ, L,M): The algorithm run by the ring member, which takes
as input the secret key skπ, a tag L and a message M ∈ {0, 1}∗, and returns
a signature σ.

– {accept, reject} ← Verify(L,M, σ): The algorithm run by the signature re-
ceiver, which takes as input the tag L, message M and signature σ, and
returns either accept or reject.

– {indep, linked, pk} ← Trace(L,M, σ,M ′, σ′): The algorithm run by the ring
member or trusted authority, which takes as input two traceable ring sig-
natures σ on message M and σ′ on message M ′ with the same tag L,
and returns a string that is either indep, linked or an element pk ∈ PK.
If σ = Sign(skπ, L,M) and σ′ = Sign(skπ′ , L,M ′), it holds that :

Trace(L,M, σ,M ′, σ′) =


indep if π 6= π′,

linked else if M = M ′,

pki otherwise (π = π′ ∧M 6= M ′).

2.2 Security Model

A secure TRS scheme should satisfy the following properties: correctness and
security. We use the security model in [21]. The security requirement for a TRS
scheme has three: tag-linkability, anonymity and exculpability. The unforgeability
can be derived from tag-linkability and exculpability [21].
Tag-linkability. Given N pairs of public and secret keys and N pairs of message-
signature under tag L, the adversary can output N + 1 valid pairs of message-
signature. We define the tag-linkability game Gametag−link

A , if for all PPT ad-
versaries A, we have Advtag−link

A,Game (λ) ≤ nelg(λ), then we say that TRS scheme is
tag-linkable. The definition of Advtag−link

A,Game is as follows:

Advtag−link
A,Game (λ) = Pr[b1 = accept ∧ ... ∧ bN+1 = accept

∧s{1,2} = indep ∧ ... ∧ s{N+1,N} = indep]

Gametag−link
A : Tag-linkability game

1: pp← Setup(1λ)

2: (L,Mi, σi)← A(pp) , ∀i ∈ 1, ..., N + 1

3: bi ← Verify(L,Mi, σi), ∀i ∈ 1, ..., N + 1

4: s{i,j} ← Trace(L,Mi, σi,Mj , σj), ∀i, j ∈ 1, ..., N + 1 ∧ i ̸= j

5: return: b1, ..., bN+1, s{1,2}, ..., s{N+1,N}

Anonymity. It is infeasible for the adversary to know who signed the message.
Considering the anonymity game GameanonA , if for all PPT adversaries A, we
have AdvanonA,Game(λ) ≤ nelg(λ), then we say that TRS scheme is anonymous. The
definition of AdvanonA,Game is as follows:
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AdvanonA (λ) = Pr[c = c′]− 1

2

GameanonA : Anonymity game

1: pp← Setup(1λ)

2: (pki, ski)← KeyGen(pp), i = 0, 1

3: c← {0, 1}
4: c′ ← ASign(skc,·),Sign(sk0,·),Sign(sk1,·)(pk0, pk1)

5: return: c′

Exculpability. This ensures that the adversary cannot construct two valid pairs
of message-signature under tag L without knowing the secret key of the user.
Consider the exculpability game GameexcuA , if for all PPT adversaries A, we have
AdvexcuA,Game(λ) ≤ nelg(λ), then we say that TRS scheme is exculpable, The defi-
nition of AdvanonA,Game is as following:

AdvexcuA,Game(λ) = Pr[s = pk]

GameexcuA : Exculpability game

1: pp← Setup(1λ)

2: (pk, sk)← KeyGen(pp)

3: (L,M1, σ1), (L,M2, σ2)← ASign(sk,·)(pk)

4: s← Trace(L,M1, σ1,M2, σ2)

5: return: s

2.3 Restricted Pair of Group Actions

The restricted effective group actions (REGA) can be endowed with the proper-
ties: one-wayness (OW), weak unpredictability (wU), and weak pseudo-randomness
(wPR) [1]. The special restricted pair of group actions used in this paper is called
“admissible pair of group actions ”, which is proposed by Beullens et al. [4].

Definition 1. Given a finite commutative group G, G1 and G2 are two subsets
of G. Let S and T be two finite sets, DS and DT are distributions over two
group actions ⋆ : G × S → S,G × T → T . For (S0, T0) ∈ S × T , we say that
ResPGA = (G,S,T ,G1,G2,DS ,DT ) is a ξ-restricted pair of group actions if
the following holds:

1. Efficient Group Action: For any g ∈ G1 ∪ G2 and (S, T ) ∈ S × T , it is
efficient to compute g ⋆ S and g ⋆ T , and uniquely represent the element of
set G, S and T .

2. Efficient Rejection Sampling: For all g ∈ G1, the intersection of all sets
G2 + g is large enough. Let G3 =

⋂
g∈G1

G2 + g, then |G3| = ξ|G2|.
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3. Efficient Membership Testing: It is efficient to verify that an element
z ∈ G1, or z ∈ G2, or z ∈ G3.

4. Given (g ⋆ S0, g ⋆ T0) for any element g sampled from G1 uniformly, it is
indistinguishable from the elements (S, T ) sampled from S × T uniformly.

5. It is difficult to find two elements g, g′ ∈ G2+G3, that satisfy g ⋆S0 = g′ ⋆S0

and g ⋆ T0 6= g′ ⋆ T0.
6. For the element g sampled from set G1 uniformly, given S = g ⋆ S0 and

T = g ⋆ T0, it is difficult to find g′ ∈ G2 + G3 such that T = g′ ⋆ T0.
By instantiating the group action of ResPGA with isogenies and lattices, we

achieve security against quantum adversaries as the underlying hard problems
of isogenies and lattices. Further details on the underlying hard problems can
be found in Appendix A and Appendix B.

2.4 Collision-Resistant Hash Function

In this paper, the cryptographic primitives used in the TRS scheme, such as
pseudo-random number generators (PRG) and commitment schemes, are instan-
tiated by the hash function. Specifically, we define five collision-resistant hash
functions: H1, H2, H3, H4 and H5, where:

H1 : {0, 1}∗ → G1,

H2 : {0, 1}∗ → {0, 1}2λ,

H3 : {0, 1}∗ → CQ
K ,

H4 : {0, 1}∗ → G†
1,H5 : {0, 1}∗ → G††

1
1.

For the Fiat-Shamir transform, we define a hash function H3 to produce an
unbalanced challenge space CQ

K , which is a set of string in {0, 1}Q, such that K
bits are 0. The integers Q,K satisfying

(
Q
K

)
≥ 2λ.

2.5 Sigma Protocol

A sigma protocol is a three-move public coin interactive protocol between the
prover and verifier for the relation R ⊆ X×W , where X is the space of statements
and W is the space of witnesses. The sigma protocol under the random oracle
includes the following three properties: correctness, special honest-verifier zero-
knowledge and special soundness [12].

Definition 2. A sigma protocol ΠΣ for the relation R ⊆ X×W consists of four
PPT algorithms (P = (P1, P2), V = (V1, V2)), where V2 is deterministic, P1 and
P2 share the same information. Under the random oracle, the ΠΣ protocol has
the three-move flow as follows:

1 Under the and lattice-based instantiations, G†
1 and G††

1 are two different subsets of G,
the specific sets are shown is Section 5.



Traceable Ring Signatures from Group Actions 9

– P1(X,W )→ com. The prover runs P1(X,W ) on input (X,W ) ∈ R to gen-
erate a commitment com, and sends it to the verifier.

– V1(com) → chall. The verifier runs V1(com) on input com to generate a
random challenge bit chall, and sends it to the prover.

– P2(X,W, chall)→ rsp. The prover, after receiving chall, runs P2(X,W, chall)
to obtain the response rsp and sends it to the verifier. In the case of P2

termination, the prover sets rsp with symbol ⊥ and sends it to the verifier.
– V2(X, com, chall, rsp)→ {accept, reject}. The verifier runs V2(X, com, chall, rsp)

to check whether X is valid under the transcript (com, chall, rsp), and outputs
accept or reject.

3 General Construction of Traceable Ring Signature

In this section, we will present a general construction of the TRS scheme from
restricted pair of group actions. We first design a sigma protocol for the OR
relation, then obtain a TRS scheme by applying the Fiat-Shamir transformation
to the OR sigma protocol.

3.1 Our Special OR Sigma Protocol for Traceable Ring Signature

Our construction is based on a special OR sigma protocol, a variant of OR sigma
protocol presented in [4] by adding the tag set. The essential technique of the
protocol is to generate proofs for multiple tags and multiple public-secret key
pairs, and the proof size of our sigma protocol grows logarithmically in N .

Let the relation R ⊂ SN+1×T N+1×(G1,ZN ), where R = {(S0, S1, . . . , SN ),
(T0, T1, . . . , TN ),(g, π), |g ∈ G1, Si ∈ S, Ti ∈ T , Sπ = g ⋆ S0, Tπ = g ⋆ T0}. We
define a relation R′ slightly wider than the relation R, and (R,R′) satisfies
R ⊆ R′, in addition to the relation R, R′ contain two pairs of hash-preimage,
and the extractor in special-soundness only extracts the witness of relation R′.
Under the relation (R,R′), the OR sigma protocol is still useful as long as the
relation (R,R′) is sufficiently difficult.

R′ =

(S0, . . . , SN ) , (T0, . . . , TN ) , w

∣∣∣∣∣∣∣∣
Si ∈ S, Ti ∈ T and

w = (g, π) : g ∈ G2 + G3, Sπ = g ⋆ S0,
Tπ = g ⋆ T0 or

w = (x, x′) : x 6= x′,H2 (x) = H2 (x
′)


The difficulty of applying the accumulator to our construction is that each

instance in the relation (R,R′) is a pair of elements (Si, Ti) rather than a single
element. We solve this problem by hashing the commitments after applying the
accumulator scheme to get the final commitments.

Based on the relation (R,R′), the OR sigma protocol proves that: 1) the
prover owns a secret g and there exists i ∈ N , such that g ⋆ S0 = Si, g ⋆ T0 = Ti,
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without revealing the secret g and specific index i. Otherwise, 2) the prover owns
a pair of collisions for H2.

Given (S0, S1, . . . , SN ), (T0, T1, . . . , TN ), we propose a sigma protocol (P, V ) =
((P1, P2), (V1, V2)) under binary challenge space, for proving the ring member Pπ

possesses the secret key sk that satisfies relation (R,R′). A simple OR sigma
protocol is shown in Figure 1 and the specific OR sigma construction as Figure
2.

Through repeating the basic OR sigma protocol under binary space, we con-
struct a main OR sigma protocol under large challenge space and optimize it
using three optimizations: unbalanced challenge space, Seed tree, and adding
salt [4].

    

Com Com

rootS rootT

    

    

Com

    

    

Com

pathSpathT

Fig. 1: The base OR sigma protocol, which proves that secret (skπ, π) satisfies
skπ ⋆S0 = Sπ and skπ ⋆ T0 = Tπ. If chall = 0, then the commitments Cπ and C ′

π

will be revealed, otherwise all commitments will be revealed.

We do not give specific security proof of OR sigma protocol over large challenge
space, it is similar to the proof of [4]. Special attention should be paid to the
special zero-knowledge of main OR sigma protocol. The probability of the adver-
sary distinguishing a real protocol from a simulator in main OR sigma protocol
is at most 4B/2λ.

3.2 Traceable Ring Signature from OR sigma protocol

We now present two concrete TRS schemes based on isogenies and lattices. The
instantiation of both schemes is built on the aforementioned main OR sigma
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• Common Input: A ring public key set rpk = (S0, S1, . . . , SN ) and a tag set
TagSet = (T0, T1, . . . , TN ) are provided for the prover Pπ and the verifier V.

• Private Input: The prover Pπ owns sk ∈ G1 such that (rpk,TagSet, (sk, π)) is
in the relation (R,R′).

Commitment: P1(rpk,TagSet, seed)

1. Pπ generates (r, (rnd1, ..., rndN ))← PRG(seed)
2. for all i ∈ [N ], Pπ computes
3. S′

i ← r ⋆ Si, T
′
i ← r ⋆ Ti ▷ Randomize rpk and TagSet

4. Ci ← H2(S
′
i ||rndi), C′

i ← H2(T
′
i ||rndi) ▷ Create commitments Ci, C

′
i

5. (rootS, treeS)← MerkleTree(C1, ..., CN )
6. (rootT, treeT)← MerkleTree(C′

1, ..., C
′
N )

7. com← H2(rootS, rootT) ▷ Create the final commitment com
8. Pπ sends com to verifier V.

Challenge: V1(com)

1. V samples challenge bit chall← {0, 1} randomly
2. V sends the challenge bit chall to Pπ.

Response: P2((skπ, π), chall, seed)

1. if chall = 0, Pπ computes z = r + skπ, if z /∈ G3, abort, else Pπ computes:
2. pathS ← getMerklePath (treeS, π) ▷ Generate the path for rpk
3. pathT ← getMerklePath (treeT, π) ▷ Generate the path for TagSet
4. rsp← (z, pathS, pathT, rndπ)
5. else
6. rsp← seed
7. Pπ sends rsp as response to V.

Verification: V2(com, chall, rsp)

1. if chall = 0, V computes:
2. (z, pathS, pathT, rndπ)← rsp

3. Ŝ = z ⋆ S0,T̂ = z ⋆ T0

4. Ĉ = H2(Ŝ||rndπ), Ĉ′ = H2(T̂ ||rndπ)
5. r̂ootS = ReconstructRoot(Ĉ, pathS) ▷ Recovery root for rpk
6. ̂rootT = ReconstructRoot(Ĉ′, pathT) ▷ Recovery root for TagSet
7. if z ∈ G3∧H2( ̂rootS, ̂rootT) = com ▷ Verify the final commitment
8. V outputs accept.
9. else V outputs reject.

10. else
11. seed← rsp
12. V computes com← P1(rpk,TagSet, seed)
13. if com = H2(rootS, rootT)
14. V outputs accept.
15. else V outputs reject.

Fig. 2: The details of binary challenge space OR sigma protocol (P, V ) =
((P1, P2), (V1, V2)), under a restricted pair of group actions ResPGA =
(G,S,T ,G1,G2,DS ,DT ) and (S0, T0) ∈ S ×T , PRG and hash function H2 is
an instantiation of random oracle.
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protocol, mainly by combining the design principles of Fujisaki and Suzuki [22]
with restricted pair of group actions. Given the security parameters λ, the main
OR sigma protocol (Pmain, Vmain), and the collision-resistant hash function H1,
H2, H3, H4 and H5, we construct two secure TRS schemes ΠISO and ΠLAT

by applying FS transform to main OR sigma protocol. Figure 3 illustrates two
instantiations of the TRS scheme under lattice and isogeny. The general con-
struction of the Setup and KeyGen in both schemes is as follows.

– Setup(1λ): takes security parameter λ as input, selects S0 ← S, and outputs
public parameter rpp = S0,ResPGA = (G,S,T ,G1,G2,DS ,DT ).

– KeyGen(rpp): takes public parameter as input, selects g ← G1, S = g ⋆ S0,
and outputs public key pki = S and secret key ski = g.

To ensure that the secret key is embedded in the tag, and that the compo-
nents in the signature do not disclose any information about the secret key and
the identity of the member, we apply group action operations in the calculation
of the tags and auxiliary parameters. Concretely, we set T0 = H1(L) ⋆ S0 and
the auxiliary parameter T = (skπ −H1(a, π)) ⋆ T0 in the isogeny-based instanti-
ation. The lattice-based instantiation is slightly different since the secret key is
not sampled in the addition group, but in the polynomial ring, which supports
multiplication and addition, we set T0 = H4(L), Tπ = skπ ⋆ T0 and auxiliary
parameter aux = (Tπ−a)

π .
As a result, the cost of the Trace algorithm differs between the two instanti-

ations, with the isogeny-based instantiation requiring 2N group actions and the
lattice-based instantiation requiring only 2N polynomial multiplications and ad-
ditions.

Let (S0, S1, . . . , SN ) be the public parameter, each member Pi possesses a
pair of public and secret keys: ski = g, pki = g ⋆S0. Moreover, each member will
generate N different tags (T0, T1, . . . , TN ) to link or trace signatures.

In order to generate the ring signature σ for the message M ∈ {0, 1}∗ under
the tag L = (issue, rpk), the ring member Pπ invokes RSign{ISO,LAT}(skπ, L,M).
The receivers verify signature σ on (L,M) by running RVer{ISO,LAT}(L,M, σ).
To trace the relation between two valid signatures σ on M and σ′ on M ′ with
the same tag L, the ring members invoke RTrace{ISO,LAT}(L,M, σ,M ′, σ′) which
outputs linked, indep or pki.

4 Analysis of Our Traceable Ring Signature Scheme

In this section, we analyzed the correctness and security of TRS scheme under
isogeny-based instantiation. A detailed proof of the lattice-based TRS scheme is
presented in Appendix C.

4.1 Correctness

The correctness of our TRS scheme ΠISO is composed of completeness and trace-
ability. The completeness can be deduced from the correctness of the main OR
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RSign_ISO((skπ, π), L,M)

1. (issue, rpk)← L
2. T0 = H1(L) ⋆ S0, a = H1(L,M)
3. T = (skπ −H1(a, π)) ⋆ T0

4. for all i ∈ N
5. k = H1(a, i)
6. Ti = k ⋆ T
7. TagSet← (T0, T1, ...TN )
8. com← P 1

main(M, rpk,TagSet)
9. chall← H3(M, rpk,TagSet, com)

10. rsp← P 2
main((skπ, π), chall)

11. return σ = (T, com, chall, rsp).

RSign_LAT((skπ, π), L,M)

1. (issue, rpk)← L
2. T0 = H4(L), a = H5(L,M)

3. Tπ = skπ ⋆ T0, aux = (Tπ−a)
π

4. for all i ∈ N, i ̸= π
5. k = a+ aux · i
6. Ti = k ⋆ T0

7. TagSet← (T0, T1, ...TN )
8. com← P 1

main(M, rpk,TagSet)
9. chall← H3(M, rpk,TagSet, com)

10. rsp← P 2
main((skπ, π), chall)

11. return σ = (aux, com, chall, rsp).

RVer_ISO(L,M, σ)

1. (issue, rpk)← L
2. (T, com, chall, rsp)← σ
3. T0 = H1(L) ⋆ S0, a = H1(L,M)
4. for all i ∈ N
5. k = H1(a, i)
6. Ti = k ⋆ T
7. TagSet← (T0, T1, ...TN )
8. if V 2

main(com, chall, rsp) = accept
∧H3(M, rpk,TagSet, com) = chall

9. return accept.
10. else return reject.

RVer_LAT(L,M, σ)

1. (issue, rpk)← L
2. (aux, com, chall, rsp)← σ
3. T0 = H4(L) ⋆ S0, a = H5(L,M)
4. for all i ∈ N
5. k = a+ aux · i
6. Ti = k ⋆ T0

7. TagSet← (T0, T1, ...TN )
8. if V 2

main(com, chall, rsp) = accept
∧H3(M, rpk,TagSet, com) = chall

9. return accept.
10. else return reject.

RTrace_ISO(L,M, σ,M ′, σ′)

1. (issue, rpk)← L
2. (T, com, chall, rsp)← σ
3. (T ′, com′, chall′, rsp′)← σ′

4. a = H1(L,M), a′ = H1(L,M
′)

5. for all i ∈ N
6. k = H1(a, i), k

′ = H1(a
′, i)

7. Ti = k ⋆ T, T ′
i = k′ ⋆ T ′

8. if for all i ∈ [N ], Ti = T ′
i

9. return linked.
10. if only exist one i ∈ [N ], such that

Ti = T ′
i

11. return pki.
12. else return indep.

RTrace_LAT(L,M, σ,M ′, σ′)

1. (issue, rpk)← L
2. (aux, com, chall, rsp)← σ
3. (aux′, com′, chall′, rsp′)← σ′

4. a = H5(L,M), a′ = H5(L,M
′)

5. for all i ∈ N
6. ki = a+ aux · i
7. k′

i = a′ + aux′ · i
8. if for all i ∈ [N ], ki = k′

i

9. return linked.
10. if only exist one i ∈ [N ], such that

ki = k′
i

11. return pki.
12. else return indep.

Fig. 3: The isogeny-based TRS scheme (left column) and lattice-based TRS
scheme (right column) from group actions.
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sigma protocol. We demonstrate the traceability of the scheme in all possible
situations under the same tag L.

– Situation 1 (π = π′ ∧ M = M ′). From RSign_ISO algorithm we have
T0 = T ′

0, Tπ = T ′
π, a = H1(L,M) = a′ = H1(L,M

′), so that T = T ′ =
(skπ−H1(a, π))⋆T0, for all i ∈ N , there is always Ti = T ′

i . In this situation,
the TRace_ISO algorithm outputs linked.

– Situation 2 (π = π′ ∧M 6= M ′). When x 6= x′, H1(x) = H1(x
′) means we

find a collision of H1, hence we can conclude that a 6= a′ and T 6= T ′ with
overwhelming probability. For all i ∈ N , i 6= π, it holds that: Ti = k ⋆ T =
[skπ−H1(a, π)+H1(a, i)]⋆T0, T

′
i = k′⋆T ′ = [skπ−H1(a

′, π)+H1(a
′, i)]⋆T0.

Given T0, T and T ′, it’s hard to find i such that H1(a, i) − H1(a
′, i) =

H1(a, π) − H1(a
′, π) since the collision resistance of H1, thus it holds that

Ti 6= T ′
i . For i = π, we have Tπ = skπ ⋆ T0, T

′
π = skπ ⋆ T0. Therefore Tπ = T ′

π

and the RTrace_ISO algorithm outputs pkπ.
– Situation 3 (π 6= π′). When M = M ′, we have a = a′ and T 6= T ′, thus

Ti 6= T ′
i for all i ∈ N, i 6= π. When M 6= M ′, we have a 6= a′, as proof

in situation 2, it holds T 6= T ′, given T, T ′ and a, a′, it’s hard to find i
such that H1(a, i) ⋆ T = H1(a

′, i) ⋆ T ′, therefore Ti 6= T ′
i for all i ∈ N, i 6=

π. Consequently, it is difficult to find i ∈ N such that Ti = T ′
i and the

RTrace_ISO algorithm outputs indep.

4.2 Security

Theorem 1. If the OR sigma protocol is soundness and zero-knowledge, the
hash function H1,H2 are collision-resistant, the ResPGA is a restricted pair of
group actions, then our TRS scheme ΠISO satisfies tag-linkability, anonymity
and exculpability.

Proof. Tag-Linkability. Conversely, assuming there exists an adversary A that
makes at most B random oracle queries, the probability of A winning the game
is not negligible. Then we demonstrate how to construct an algorithm B using
A, B breaks the Item 5 of ResPGA and collision resistance of H2. The simulation
of B under random oracle is as follows (To distinguish from the Ti in the TagSet,
we use T i to represent the public tag in the signature at i-th query):

– Sim1
B: The output of A in winning the tag-linkability game is the input

of B. Let {(L, (M1, σ1)), . . . , (L, (MN+1, σN+1))} be the output of A, σi =
(T i, comi, challi, rspi), challi is the output ofH3 on input (Mi, rpki, TagSeti, comi),
A records these transcripts into list List = {i, T i, (comi, challi, rspi),Mi}i∈[N+1].

– Sim2
B: B re-invokes A until A wins the tag-linkability game. Different from

Sim1
B, B controls the randomness used in the underlying main OR sigma

protocol to generate signatures in each query. Specifically, for responding
to the j-th signing query, the randomness used by the underlying main
OR sigma protocol is the same as Sim1

B before qi-th (qi ∈ [B]) random
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oracle, after that, B uses fresh randomness to interact with A. Assuming
that the output form of A is σ′ = (T j′ , (com′

j , chall
′
j , rsp

′
j),M

′
j , L)j∈[N+1].

If the signature σ′
j does not appear in the qj-th random oracle query, the

simulation of B starts again from Sim2
B, otherwise, B updates list List =

List∪{j, T j′ , (com′
j , chall

′
j , rsp

′
j),M

′
j}, chall

′
j is the result of the qj-th random

oracle query. Since we fix the randomness before qj-th for both simulations,
for all the entries in the list, we have (Mj , T

j , comj) = (M ′
j , T

j′ , com′
j).

– Sim3
B: B extracts two entries from List that satisfy the above requirements,

which one generated in Sim1
B: (T j , (comj , challj , rspj),Mj) and the other gen-

erated in Sim2
B: (T j , (comj , chall

′
j , rsp

′
j),Mj). If challj = chall′j , B aborts the

simulation, otherwise, B invokes the underlying main OR sigma protocol ex-
traction algorithm, on input the statement (rpkj ,TageSetj) and two accepted
transcripts (comj , challj , rspj), (comj , chall

′
j , rsp

′
j), where TagSetj is generated

by the public input T j ,Mj and L, it outputs a witness wj .
– Sim4

B: For j, j′ ∈ [N + 1], if there exists wj = (skj , π), w
′
j = (sk′j , π), then B

outputs (skj , sk
′
j), if wj forms a collision of H2, B outputs wj , otherwise, B

aborts the simulation.

We can see that the witness (wj)j∈[N+1] has the form: wj = (skj , πj) such
that Sπj = skj ⋆S0, Tπj = skj ⋆T0 or a collision of H2. If no collision occurs, then
there must have two indexes j′, j ∈ [N+1] such that wj = (skj , π), w

′
j = (sk′j , π),

since the pigeonhole principle and the conditions for winning the tag-linkability
game, which indicate that skj ⋆S0 = sk′j ⋆S0 but skj ⋆T0 6= sk′j ⋆T0, this violates
the Item 5 of the restricted pair of group actions. Otherwise wj is a collision of
H2.

The running time of B is polynomial and the probability of aborting the
simulation is negligible, detailed analysis refers to [4]. ut

Anonymity. We demonstrated the anonymity of the scheme by building a se-
quence of games. The first game is the same as the original anonymity game,
where c = 0. Similarly, the last game is exactly like the original anonymity game,
where c = 1. We will prove that for any PPT adversary A, the probability that
he distinguishes between any two games is negligible. Let AdvanonA,Gamei

denotes
the advantage of adversary A in Gamei.

– Game1: This is an actual anonymity game GameanonA where c = 0, the ad-
versary A is allowed to query RSign(sk0, ·),RSign(sk1, ·) and RSign(skc, ·).
Challenger C invokes the actual signing algorithm with the secret key to
generate the signature, and outputs it as the result of a signing query.

– Game2: In the second game, challenger C invokes the underlying main OR
sigma protocol zero-knowledge simulation protocol Sim to respond to the
signing query of A instead of running the real main OR sigma protocol. From
the zero-knowledge property of the underlying main OR sigma protocol, the
output distribution of Game1 and Game2 is indistinguishable, we have:

AdvanonA,Game1(λ) ≈ AdvanonA,Game2(λ)
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– Game3: In the third game, the challenger C simulates N public-secret key
pairs {(ski, pki)}i∈[N ] instead of running the Setup algorithm, then C guesses
that the pair of public keys {pk∗j , pk∗k} sent by the adversary happens to be
the j-th and k-th public keys, and generates two tag sets:

TagSet0 =
(
T0, Tj = sk∗j ⋆ T0,

(
Ti =

(
sk∗j +H1(a, i)−H1(a, j)

)
⋆ T0

)
i∈[N ]\j

)
TagSet1 =

(
T0, Tk = sk∗k ⋆ T0, (Ti = (sk∗k +H1(a, i)−H1(a, k)) ⋆ T0)i∈[N ]\k

)
where a = H1(L,M), T0 = H1(L) ⋆ S0. If the guess is incorrect, the chal-
lenger randomly samples a bit as the output of A and terminates the game.
Otherwise, it responds to the signing queries using a pre-computed TagSet0,
TagSet1 and T 0 = (sk∗j −H1(a, j))⋆T0, T

1 = (sk∗k−H1(a, k))⋆T0 at the be-
ginning of Game2. Since the probability of the challenger correctly guessing
the two public keys is at most 1/N2, thus we have :

AdvanonA,Game3(λ) ≈
1

N2
AdvanonA,Game2(λ)

– Game4: Different from Game3, the challenger C samples {i0, i1} ← [N ] and
simulates N −2 public-secret key pairs {(ski, pki)}i∈[N ]\{i0,i1}, then samples
(E0, E1) uniformly from T and computes:

T 0 = (−H1(a, i0)) ⋆ E0,TagSet0 =
(
T0,

(
Ti = H1(a, i) ⋆ T

0
)
i∈[N ]

)
T 1 = (−H1(a, i1)) ⋆ E1,TagSet1 =

(
T0,

(
Ti = H1(a, i) ⋆ T

1
)
i∈[N ]

)
where T0 = H1(L) ⋆ S0, the rest is the same as Game3. Using the weak-
pseudrandom of the restricted pair of group actions, we have:

(sk ⋆ T0 : sk ← G1) ≈ (E : E ← T )

Thus Game4 is computationally indistinguishable from Game3: AdvanonA,Game1
(λ)

≈ AdvanonA,Game3
(λ). Now, the secret key is no longer used to generate the signa-

ture, i.e., the output of signing query does not reveal any information about
the bit c in Game4.

– Game5: This is the same as an actual anonymous game, where c = 1.

It can be deduced from the above game sequence, there is no such adversary
A that can distinguish any two games with a non-negligible probability, that is,
the probability of the adversary winning the real anonymity game is negligible.

ut

Exculpability. If there exists an adversary A wins GameexcuA with non-negligible
probability, then we show how to construct an algorithm B from A that breaks
the property Item 6 of restricted pair of group actions and collision resistance of
H1,H2.
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First, we simulate a game Game1, it is indistinguishable from the real game
GameexcuA . In Game1, the challenger invokes the OR sigma protocol zero-knowledge
simulation protocol Sim to simulate the signature, and generates N public-secret
key pairs {(ski, pki)}i∈[N ], let T i = (ski − H1(a, i)) ⋆ T0, then challenger com-
putes N tag sets TagSeti =

(
T0,i = H1(L) ⋆ S0, (Tj,i = H1(a, j) ⋆ T

i)j∈[N ]

)
i∈[N ]

before the game starts. If the signing query made by the adversary contains index
i, then the challenger uses N public-secret key pairs, precomputed N tag sets
TagSeti and N elements T i to generate the response. From the zero-knowledge
of OR sigma protocol, indistinguishable of tag sets and collision resistance of
H1, we have AdvexcuA,Game1

≈ AdvexcuA,Gameexcu . We show that when A wins Game1, the
simulation of B on the input (S, T ) as follows:

– Sim1
B: B randomly samples index j ← [N ], sets pkj = S, T j = (−H1(a, j))⋆T ,

and computes TagSetj =
(
T0 = H1(L) ⋆ S0, (Ti = H1(a, i) ⋆ T

j)i∈[N ]

)
, then

generates the remaining N − 1 public-secret key pairs {(pki, ski)}i∈[N ]\j .

– Sim2
B: B simulates the view of Game1, since Game1 does not contain any

information of secret key. After interacting with B, A outputs a forgery
(M, rpk∗, σ∗ = (T ∗, com∗, chall∗, rsp∗)). To make sure the signature σ∗ wins
the Game1, B must have responded to the signing query (i,M, rpk) with
signature σ = (T ′, com′, chall′, rsp′). If i 6= j, B terminates the simulation,
otherwise, we have T ′ = T and T ∗ = T , then B can extract witness w from
the signature σ∗ by rerunning A. It is the same as what we have shown in
the proof for tag-linkability.

– Sim3
B: If w does not constitute a collision of H2, then we have w = (sk, π)

such that sk ⋆ T0 = Tπ, B outputs w = (sk, π), which violates the Item 6 of
the underlying restricted pair of group actions, otherwise B outputs a pair
of collisions of H1. ut

5 Instantiations

Isogeny-based Instantiation. Theoretically, our TRS scheme can be instanti-
ated with any CSIDH parameter set, e.g., CSIDH-512, CSIDH-1024 and CSIDH-
1792 [4,13]. Nevertheless, taking into account that efficiency plays a vital role
in the implementation, we implemented our TRS with the first group action
parameter set proposed by Beullens et al. [5], which relies on the CSIDH group
action proposed by [8], cSHAKE proposed by [23]. Let the ideal class group
Cℓ(O) be a cyclic group, and the order of generator g is N . Then the group
action ⋆ := Cℓ(O)×Eℓℓ(O, π)→ Eℓℓ(O, π) can be instantiated (a,E) := ga ⋆ E.
We set G = G1 = G2 = Cℓ(O) = ZN , ξ = 1, T = Eℓℓ(O, π), S = Eℓℓ(O, π), and
S0 = E0, T0 = H1(L) ⋆ E0, where E0 is the elliptic curve y2 = x3 + x over Fp.

Lattice-based Instantiation. Let q = 5 mod 4, and let k,m be integers,
n be a power of 2, B1 and B2 are integers such that B1 < B2 < q. Then
the group action ⋆ := (s, e) ⋆ t → As+ e+ t. We set (G,S,T ) = (Rk×m

q ×
Rk

q × Rm
q , Rm

q , Rm
q ), G1 = {(s, e1) ∈ G | ‖s‖∞ , ‖e1‖∞ ≤ B1}, G2 = {(s, e2) ∈
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G | ‖s‖∞ , ‖e2‖∞ ≤ B2}, where Rq = Z[X]/(q,Xn+1). For the collision-resistant
hash function, let H4 : {0, 1}∗ → Rk×m

q , H5 : {0, 1}∗ → Rm
q .

On Intel(R) Core(TM) i7-11700 CPU platform, we implemented the isogeny-
based instantiation and tested the performance of lattice-based instantiation
based on the number of group actions required. The source code is available at
https://github.com/vivian-dev/TRS_ISO.

5.1 Implementation and Performance

Table 2 presents a detailed performance of our scheme, including signature size
and time. Note that the addition of traceability necessitates additional group
action computations, which impact the efficiency of our TRS scheme, especially
for groups with large numbers of members. This explains why our scheme may
be less efficient than the original linkable ring signature scheme proposed by
Beullens et al. [4].

Table 2: Performance of proposed TRS scheme under different instantiations.
N 21 22 23 24 25 26

TRS_ISO

Time
KeyGen(ms) 39 39 39 39 39 39

Sign(s) 3.37× 101 6.63× 101 1.31× 102 2.64× 102 5.23× 102 1.07× 103

Verify(s) 3.20× 101 6.02× 101 1.16× 102 2.31× 102 4.64× 102 9.22× 102

Size
Public Key(Byte) 64
Secret Key(Byte) 16

Signature(KB) 4.45 6.43 8.25 10.09 12.06 13.87

TRS_LAT

Time
KeyGen(ms) 0.2 0.2 0.2 0.2 0.2 0.2

Sign(ms) 68.5 101.3 131.4 230.8 390.3 764.0
Verify(ms) 27.4 34.9 50.3 81.1 144.0 265.4

(NIST 2)
Size

Public Key(Byte) 4096
Secret Key(Byte) 16

Signature(KB) 56.37 57.37 58.37 59.37 60.37 61.37

Furthermore, we compare our TRS with existing post-quantum (traceable)
ring signature schemes. The results are shown in Table 3. The signature size of
our lattice-based TRS scheme outperforms the size of [6,17,3,19]. When the ring
members are small, the signature size of [32] and [27] is advantageous. However,
once the ring members exceed 26, the signature size of [32] and [27] becomes
significantly larger than in our lattice-based TRS scheme. Compared with the
original scheme [4] and [3], Our isogeny-based instantiation has a larger signature
size. This could be attributed to our scheme generating a tag set for each ring
member.

https://github.com/vivian-dev/TRS_ISO


Traceable Ring Signatures from Group Actions 19

Table 3: Comparison of public key size, secret key size and signature size of our TRS
scheme with post-quantum (traceable) ring signature schemes.

Schemes
Public key Secret key Signature size (KB)

Security Level
(KB) (KB) 21 23 26 210

Calamari[4] 64 (Byte) 16 (Byte) 3.5 5.4 8.2 10 *
Beullens_ISO[3] 64 (Byte) 16 (Byte) 3.6 - 6.6 9.0 *

Raptor[27] 0.9 9.1 2.6 11 82 1331.2 100bits
Beullens_LAT[3] 5120 (Byte) 16 (Byte) 124 - 126 129 NIST 2

Falafl[4] 5120 (Byte) 16 (Byte) 49 50 52 55 NIST 2
Branco[6] 1577 0.5 - 1920 1536 245(MB) NIST 5

Alessandra[32] 6 4 4 16 131 1024 NIST 5
Feng H[19] - - 135.1 136.3 138.2 140.7 NIST 5
Esign[17] ≤ 8.33 ≤ 0.83 - - 774 1021 NIST 5

this work
ISO 64 (Byte) 16 (Byte) 4.5 8.3 13.9 22.2 *
LAT 4096 (Byte) 16 (Byte) 56.3 58.3 61.3 65.3 NIST 2
LAT 6144 (Byte) 16 (Byte) 74.3 76.3 79.3 83.3 NIST 5

* : 128bits classical security and 60bits quantum security [29]

With isogeny-based instantiation, our TRS scheme offers flexible customiza-
tion of signature size and time for signature generation and verification. We
adopt the number of group actions to represent the time spent on signature
generation and verification. When the parameter satisfies

(
Q
K

)
>128, it can be

concluded from Figure 4 (right) that the smaller the value of Q is, the less time
it takes for signature generation and verification.
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Fig. 4: The signature size of TRS (left) and number of group actions (right)
under different (Q,K).

To obtain the threshold of K, we conducted experiments with N = 2 to ana-
lyze the relationship between signature size and the value of K. The results are
presented on the left side of Figure 4. It can be seen that the minimum signa-
ture size is obtained when K = 36. We can conclude that if the user prioritizes
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minimizing the time spent on the signature, they can choose a smaller value for
K. On the other hand, if the user prioritizes minimizing the signature size, they
can choose a specific value (K = 36) to achieve a smaller signature.

With the same security level, we set constant rounds for OR sigma protocol
to observe the effect of different values of K on the signature size and signing
time. The results are shown on the right in Figure 5, it can be observed that as
the value of K increases, the time required for signature verification decreases
while the signature size increases. Users can customize the value of K according
to their specific requirements. In addition, we provide three optimal (Q,K) pairs
under different ring sizes in Figure 5 (left), which result in smaller signature sizes
and can be selected by users.
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Fig. 5: Three superior (Q,K) pairs under different ring sizes (left) and the re-
lationship among K, signature size and time spent on signature generation and
verification (right) under the same Q.

6 Conclusion

This work presents a quantum-resistant TRS scheme from group action. First,
we construct a special OR sigma protocol based on the restricted group action,
which can be instantiated by isogenies and lattices. Then, using Fiat-Shamir
transform to the OR sigma protocol, we derive two concrete TRS schemes. The
core of our technique is to construct an OR proof for multiple tags and public key
set. Under the random oracle model, we further prove the security of our TRS
scheme in terms of tag-linkability, anonymity and exculpability. Finally, we give
two TRS implementations from CSIDH-512/CSI-Fish, Dilithium and cSHAKE,
the results show that our TRS is competitive in signature size and performance
compared with other post-quantum (traceable) ring signature schemes.
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A Isogenies and Ideal class group action

Let p be a prime number with p ≥ 5. E and E′ denote elliptic curves defined
over a finite field Fp. An isogeny ϕ: E → E′ is a non-constant rational map
defined over Fp that maps the identity element of E to the identity element of
E′. Endp(E) is the subring of the endomorphism ring End(E) consisting the
endomorphisms defined over Fp. In particular, for a supersingular curve over Fp,
its full endomorphism ring End(E) is an order in quaternion algebra, Endp(E)
is an order in the imaginary quadratic field. Define the set of isomorphism classes
of elliptic curves Eℓℓp(O, π). In the following, let order O = Endp(E).

Definition 3. (Ideal Class Group Action) Let O be an order in an imagi-
nary quadratic field and π ∈ O such that Eℓℓp(O, π) is non-empty. The ideal-class
group Cℓ(O) acts freely and transitively on the set Eℓℓp(O, π) via the map (a is
chosen as an integral representative):

Cℓ(O)× Eℓℓp(O, π) −→ Eℓℓp(O, π)

([a], E) 7−→ E/a

We write a ⋆ E to denote E/a, then an ideal class action can be defined
by a ⋆ E = E′ such that there exists an isogeny ϕ : E → E′ with ker(ϕ) =
∩α∈a{P ∈ E(Fp)|α(P ) = O}. The main hardness assumption underlying ideal
group actions based on isogenies is that it is infeasible to invert the group action.

Definition 4. (Group Action Inverse Problem(GAIP)) Let E0 be an el-
ement in set Eℓℓp(O, π), and E is sampled uniformly from Eℓℓp(O, π). Given
a pair (E0, E), the GAIP problem is to find an ideal a ∈ Cℓ(O), such that
E = a ⋆ E0.

Definition 5. (Squaring Decisional CSIDH Problem (sdCSIDH)) Let
E0 be an element in set Eℓℓp(O, π). and a is sampled from Eℓℓp(O, π). Given
(E,E′) sampled from Eℓℓp(O, π), the sdCSIDH problem is to distinguish the two
distributions (a ⋆ E0, a

2 ⋆ E0) and (E,E′).

B Lattices

For security parameter λ, let F (X) = Xn + 1 where n = n(λ) is a power of 2,
for integer q = q(λ) ≥ 2. Let R = Z[X]/(F (X)) and Rq = R/qR. Norms of R lie
over Zn. Norms of Rq are defined by representing coefficients of elements over
Rq in the range (−q/2, q/2] when q is even and [−(q− 1)/2, (q− 1)/2] when q is
odd.

Definition 6. (Module Short Integer Solution Problem(MSIS) Let k,
ℓ and γ be integers. The MSISn,q,k,ℓ,γ problem is to find a nonzero polynomial
vector v of norm 0 < ||v||∞ ≤ γ such that [A | I] · v = 0 where A← Rk×ℓ

q .
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Definition 7. (Module Learning with Errors Problem (MLWE)) Let k,
ℓ be integers, and D is a probability distribution over Rq. The MLWEn,q,k,ℓ,D

problem is to distinguish the following two distributions: In the first distribution
(A,b), one samples A uniformly from Rk×ℓ

q and b from Rk
q . In the second

distribution (A′,b′), one first samples s uniformly from Dl, then samples A′

uniformly from Rk×ℓ
q and e from Dk, and setting b′ = A′ · s+ e.

C Analysis of Lattice-based TRS

C.1 Correctness

The correctness of our TRS scheme ΠLAT is composed of completeness and
traceability.
Completeness. The output range of the group action in lattice-based instantia-
tion is a vector space Rm

q , 1/π is an element in Rq, aux can be seen as the result of
scalar multiplication on (Tπ−a) by 1/π. The signer generates signature σ and tag
set TagSet through the RSign_LAT algorithm, the verifier reconstructs TagSet.
Due to the completeness of the underlying OR sigma protocol, the RVer_LAT
algorithm always outputs accept for an honest signer.
Traceability. We demonstrate the traceability of the scheme in all possible
situations under the same tag L.

– Situation 1 (π = π′ ∧M = M ′). From the RSign_LAT algorithm we have
T0 = T ′

0, Tπ = T ′
π, a = H5(L,M) = a′ = H5(L,M

′), so that Tπ = T ′
π and

aux = aux′, and there is always Ti = T ′
i for i ∈ N, i 6= π. In this situation,

the TRace_LAT algorithm outputs linked.
– Situation 2 (π = π′ ∧M 6= M ′). When x 6= x′, H5(x) = H5(x

′) means we
find a collision of H5, hence we can conclude that a 6= a′ with overwhelming
probability. For i = π, we have Tπ = skπ⋆T0, T

′
π = skπ⋆T0. For all i ∈ N , i 6=

π, it holds that: k 6= k′, since the occurrence of four elements a, aux, a′, aux′ ∈
Rn

q that satisfy a + aux · i = a′ + aux′ · i is negligible, with a probability of
at most q2−n. Therefore only one pair of tags are equal in the two tag sets:
Tπ = T ′

π and the RTrace_LAT algorithm outputs pkπ.
– Situation 3 (π 6= π′). Since π 6= π′, we have Tπ 6= T ′

π. When M = M ′,
we have a = a′ and aux 6= aux′, thus Ti 6= T ′

i for all i ∈ N, i 6= π. When
M 6= M ′, we have a 6= a′, as proof in situation 2, it holds Ti 6= T ′

i for all
i ∈ N, i 6= π. Consequently, it is difficult to find i ∈ N such that Ti = T ′

i

and the RTrace_LAT algorithm outputs indep.

C.2 Security

The security proof for ΠLAT scheme follows a similar structure to the ΠLAT

scheme, except for the generation of tag set.
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Theorem 2. Our TRS scheme ΠLAT provides tag-linkability, anonymity and
exculpability, as long as the OR sigma protocol is soundness and zero-knowledge,
the hash function H1,H4,H5 are collision-resistant, the ResPGA is a restricted
pair of group actions.

Proof. Tag-Linkability. Conversely, if there exists an adversary A that makes
at most B random oracle queries, the probability of A winning the game is not
negligible. Then we can use A to construct an algorithm B, which breaks the
Item 5 of ResPGA and collision resistance of H2. The simulation of B under
random oracle is as follows:

– Sim1
B: The winning output of A in the tag-linkability game serves as the

input of B. Assuming that {(L, (M1, σ1)), . . . , (L, (MN+1, σN+1))} are the
outputs of A, σi = (auxi, comi, challi, rspi), challi is the output of H3 on
input (Mi, rpki, TagSeti, comi), A records these transcripts into list List =
{i, auxi, (comi, challi, rspi),Mi}i∈[N+1].

– Sim2
B: B re-invokes A until A wins the tag-linkability game. Different from

Sim1
B, B controls the randomness used in the underlying main OR sigma

protocol to generate signatures in each query. For responding to the j-th
signing query B uses the same randomness as in Sim1

B before qi-th (qi ∈ [B])
random oracle query, then B uses fresh randomness to interacti with A. Let
σ′ =

(
aux′j , (com

′
j , chall

′
j , rsp

′
j),M

′
j , L

)
j∈[N+1]

be the output of A. If σ′
j does

not appear in the qj-th random oracle query, then B restarts the simulation
from Sim2

B, B updates list List = List∪{j, aux′j , (com′
j , chall

′
j , rsp

′
j),M

′
j}, chall

′
j

is the result of the qj-th random oracle query. Due to the randomness used
by both simulations is fixed before the qj-th random oracle query, we have
(Mj , auxj , comj) = (M ′

j , aux
′
j , com

′
j) for all the entries in the list.

– Sim3
B: B extracts (auxj , (comj , challj , rspj),Mj) from List generated in Sim1

B,
and extracts (auxj , (comj , chall

′
j , rsp

′
j),Mj) generated in Sim1

B that satisfy
(Mj , auxj , comj) = (M ′

j , aux
′
j , com

′
j), If challj = chall′j , B aborts the simula-

tion, otherwise, B invokes the underlying main OR sigma protocol extraction
algorithm, on input the statement (rpkj ,TageSetj) and two accepted tran-
scripts (comj , challj , rspj), (comj , chall

′
j , rsp

′
j), where TagSetj is generated by

the public input auxj ,Mj and L, it outputs a witness wj .
– Sim4

B: For j, j′ ∈ [N + 1], if there exists wj = (skj , π), w
′
j = (sk′j , π), then B

outputs (skj , sk
′
j), if wj forms a collision of H2, B outputs wj , otherwise, B

aborts the simulation.

The witness (wj)j∈[N+1] has the form: wj = (skj , πj) such that Sπj
=

skj ⋆ S0, Tπj
= skj ⋆ T0 or a collision of H2. If no collision occurs, due to the

pigeonhole principle, there must have two indexes j′, j ∈ [N + 1] such that
wj = (skj , π), w

′
j = (sk′j , π). Further, the winning conditions of tag-linkability

game indicate that skj ⋆ S0 = sk′j ⋆ S0 but skj ⋆ T0 6= sk′j ⋆ T0, this violates the
Item 5 of the restricted pair of group actions. Otherwise wj is a collision of H2.

ut
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Anonymity. The anonymity of scheme can be deduced from a sequence of
games. The first game is the same as the true anonymity game, where c = 0.
The last game is exactly like the original anonymity game, where c = 1. For
for any PPT adversary A, the probability that he distinguishes between any
two games is negligible. Let AdvanonA,Gamei

denotes the advantage of adversary A
in Gamei.

– Game1 and Game2: The process for both games is the same as the anonymity
proof in ΠLAT. Then we have that output distribution of Game1 and Game2
is indistinguishable.

– Game3: The challenger C simulates N public-secret key pairs {(ski, pki)}i∈[N ]

instead of running the Setup algorithm, then C guesses that the pair of public
keys {pk∗j , pk∗k} sent by the adversary exactly j-th and k-th public keys, then
generates aux and two tag sets from {sk∗j , pk∗j } and {sk∗k, pk∗k}:

aux0 =
sk∗j ⋆ T0 − a

j
, aux1 =

sk∗k ⋆ T0 − a

k

TagSet0 =
(
T0, Tj = sk∗j ⋆ T0, (Ti = (a+ aux0 · i) ⋆ T0)i∈[N ]\j

)
TagSet1 =

(
T0, Tk = sk∗k ⋆ T0, (Ti = (a+ aux1 · i) ⋆ T0)i∈[N ]\k

)
where a = H5(L,M), T0 = H4(L). If the guess is incorrect, the challenger
randomly samples a bit as the output of A and terminates the game. Oth-
erwise, it responds to the signing queries using a pre-computed TagSet0,
TagSet1, aux0 and aux1 at the beginning of Game2. Since the probability of
the challenger correctly guessing the two public keys is at most 1/N2, thus
we have :

AdvanonA,Game3(λ) ≈
1

N2
AdvanonA,Game2(λ)

– Game4: The challenger C randomly samples {i0, i1} ← [N ], then he simulates
N − 2 public-secret key pairs {(ski, pki)}i∈[N ]\{i0,i1}. C samples (E0, E1)
uniformly from T and computes:

aux0 =
E0 − a

i0
,TagSet0 =

(
T0, (Ti = (a+ aux0 · i) ⋆ T0)i∈[N ]

)
aux1 =

E1 − a

i1
,TagSet1 =

(
T0, (Ti = (a+ aux1 · i) ⋆ T0)i∈[N ]

)
where T0 = H4(L), the rest is the same as Game3. From the weak-pseudrandom
of the restricted pair of group actions, we have:

(sk ⋆ T0 : sk ← G1) ≈ (E : E ← T )

Thus Game4 is computationally indistinguishable from Game3: AdvanonA,Game1
(λ)

≈ AdvanonA,Game3
(λ). Now, the secret key is no longer used to generate the signa-

ture, i.e., the output of signing query does not reveal any information about
the bit c in Game4.
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– Game5: Game5 is the same as an actual anonymous game, where c = 1.

There is no such adversary A that can distinguish any two games with a
non-negligible probability, that is, the probability of the adversary winning the
real anonymity game is negligible. ut

Exculpability. If there exists an adversary A wins GameexcuA with non-negligible
probability, then we can construct an algorithm B from A that breaks the prop-
erty Item 6 of restricted pair of group actions.

First, we simulate a game Game1 which is indistinguishable from the real
game GameexcuA . In Game1, the challenger generates N public-secret key pairs
{(ski, pki)}i∈[N ], then he computes N tag sets TagSeti = (T0,i = H4(L), (Tj,i =

(a + auxi) ⋆ T0)j∈[N ])i∈[N ] before the game starts where auxi = ski⋆T0−a
π . If

the signing query performed by the adversary contains index i, then the chal-
lenger uses N public-secret key pairs, precomputed N tag sets TagSeti and N
elements auxi to generate the response. From the zero-knowledge of OR sigma
protocol, indistinguishable of tag sets and collision resistance of H4,H5, we have
AdvexcuA,Game1

≈ AdvexcuA,Gameexcu . When A wins Game1, the simulation of B on the
input (S, T ) as follows:

– Sim1
B: B randomly samples index j ← [N ], sets pkj = S, auxj = T−a

j ,
and computes TagSetj =

(
T0 = H4(L), (Ti = (a+ auxj · i) ⋆ T0)i∈[N ]

)
, then

generates the remaining N − 1 public-secret key pairs {(pki, ski)}i∈[N ]\j .

– Sim2
B: Since Game1 does not reveal any information of secret key, B sim-

ulates the view of Game1. After interacting with B, A outputs a forgery
(M, rpk∗, σ∗ = (aux∗, com∗, chall∗, rsp∗)). To make sure the signature σ∗ wins
the Game1, B must have responded to the signing query (i,M, rpk) with sig-
nature σ = (aux′, com′, chall′, rsp′). If i 6= j, B terminates the simulation,
otherwise, we have aux′ = auxj and aux∗ = auxj , then B can extract witness
w from the signature σ∗ by rerunning A. It is the same as what we have
shown in the proof for tag-linkability.

– Sim3
B: If w does not constitute a collision of H2, then we have w = (sk, π)

such that sk ⋆ T0 = Tπ, B outputs w = (sk, π), which violates the Item 6 of
the underlying restricted pair of group actions. ut
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