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Abstract. This paper introduces CLAASP, a Cryptographic Library
for the Automated Analysis of Symmetric Primitives. The library is de-
signed to be modular, extendable, easy to use, generic, efficient and fully
automated. It is an extensive toolbox gathering state-of-the-art tech-
niques aimed at simplifying the manual tasks of symmetric primitive
designers and analysts. CLAASP is built on top of Sagemath and is
open-source under the GPLv3 license.
The central input of CLAASP is the description of a cryptographic
primitive as a list of connected components in the form of a directed
acyclic graph. From this representation, the library can automatically:
(1) generate the Python or C code of the primitive evaluation func-
tion, (2) execute a wide range of statistical and avalanche tests on the
primitive, (3) generate SAT, SMT, CP and MILP models to search, for
example, differential and linear trails, (4) measure algebraic properties of
the primitive, (5) test neural-based distinguishers. We demonstrate that
CLAASP can reproduce many of the results that were obtained in the
literature and even produce new results.
In this work, we also present a comprehensive survey and comparison of
other software libraries aiming at similar goals as CLAASP.

Keywords: Cryptographic library · Automated analysis · Symmetric
primitives

1 Introduction

The security targets for cryptographic primitives are well-defined, and relatively
stable, after decades of cryptanalysis. In particular, a symmetric cipher should
behave like a random keyed permutation, a hash function should behave like a
random function, and a MAC scheme should be unforgeable. Testing a crypto-
graphic primitive for these properties is, on the other hand, a vastly difficult task
that relies on testing for known weaknesses. Such a process generally involves
determining the most likely differential or linear characteristic, evaluating the
resistance of the primitive to various cryptanalysis techniques such as integral at-
tacks, and running generic randomness tests. Fortunately, automatic techniques
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exist to help designers and cryptographers run such evaluations; for instance,
SAT/SMT, Mixed Integer Linear Programming (MILP) or Constraint Program-
ming (CP) are frequently used to find optimal differential and linear characteris-
tics. These tools have, over time, become more accessible to non-experts, through
libraries such as [45], that generate models (in this case, SMT) automatically
from a description of the cipher. However, such tools generally focus on a single
aspect, such as generating models in a given paradigm, and there is currently no
single-stop toolkit that combines automated model generation, statistical test-
ing and machine learning based analysis. We aim to fill this gap with CLAASP,
a Cryptographic Library for the Automated Analysis of Symmetric Primitives.
This paper introduces the first public version of CLAASP; the ambition of the
project is to keep adding analysis tools in line with the state of the art, to provide
cryptanalysts with a click-of-a-button solution to run all the standard analysis
tools and gain an overview of the security of a given primitive.

The library’s source code has been made available to the wider commu-
nity and is publicly accessible at Github: https://github.com/Crypto-TII/claasp.
Also, in Github: https://github.com/peacker/claasp_white_paper, you can find
the scripts used to accompany this paper.

We first present existing cryptanalysis libraries in Section 1.1, before intro-
ducing the building blocks of CLAASP: the cipher object in Section 2, and
the evaluators in Section 3. We then present the battery of tests and tools im-
plemented in CLAASP in Section 4, and finish with a comparison with other
cryptographic libraries in Section 5.

1.1 Related works

Automated tools to support cryptanalysts have become a cornerstone for the
design of new primitives. Over time, such tools were made more generic and
gathered into libraries; we describe the most prominent ones in this section.

The lineartrails library [22] is dedicated to the search for linear characteristics
on SPN ciphers. ARX toolkit [32,33] and YAARX [58] focus on ARX ciphers,
the former testing conditions for trails to be possible, and the latter performing
various analysis techniques on the components.

On the algebraic cryptanalysis side, the Automated Algebraic Cryptanalysis
tool [53] tests properties of block and stream ciphers; in particular, it evaluates
the randomness of a cipher through Maximum Degree Monomial tests [54].

Autoguess [27] is a tool to automate the technique guess-and-determine. This
technique involves making a calculated guess of a subset of the unknown vari-
ables, which enables the deduction of the remaining unknowns using the infor-
mation obtained from the guessed variables and some given relations. In order to
automate this technique, SAT/SMT, MILP, and Gröbner basis solvers are used
and several new modeling techniques to exploit these solver proposed. For in-
stance, the authors of the library introduce new encodings in CP and SAT/SMT
to solve the problem of determining the minimal guess, i.e., the subset of guessed
variables from which the remaining variables can be deduced. Autoguess also
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allows to automate the key-bridging technique. This technique is utilized in key-
recovery attacks on block ciphers, wherein the attacker seeks to determine the
minimum number of sub-key guesses needed to deduce all the involved sub-keys
through the key schedule. The significant contribution of this work lies in in-
tegrating key-bridging techniques into tools that were previously only capable
of searching for distinguishers. As a result, these enhanced tools can now be
utilized as fully automatic methods for recovering keys.

CryptoSMT [55] is the first large-scale solver-based library dedicated to
cryptanalysis. Based on SMT and SAT solvers, it provides an extensive toolkit,
permitting the search for optimal differential and linear trails, the evaluation
of the probability of a differential, the search for hash function preimages, and
secret key search.

The study described in [28] presents an innovative approach to explore dif-
ferentials and linear approximations. Different from methods that rely on SAT
or MILP techniques, this approach transforms the search for differential and
linear trails into a problem of identifying multiple long paths within a multi-
stage graph. A practical implementation of this research, called CryptaGraph, is
available in [29]. One notable feature of CryptaGraph is its automatic conversion
capability, enabling C or Rust implementations of ciphers to be transformed into
models for searching differentials or linear approximations using the graph-based
approach mentioned earlier. An improvement of [28] can be found in [30] and its
implementation was named PathFinder.

Another SMT-based library, based on ArxPy [45] is the CASCADA frame-
work [46], which also implements techniques to search for rotational-XOR differ-
entials, impossible-rotational-XOR, but also related-key impossible-differentials,
linear approximations, and zero-correlation characteristics. The generated SMT
models are expressed through the theory of bit-vectors [5], and follow the general
methodology of Mouha and Preneel [40] for differential properties, Sasaki’s [50]
technique for impossible differentials, an SMT-based miss-in-the middle search
for related-key impossible differentials of ARX ciphers [4], and a novel method
proposed for zero-probability global properties. If a search can not use the pre-
vious methods, then a generic method, based on the constructions of statistical
tables, such as the Differential Distribution Table (DDT), is used. Depending
on the sizes of the inputs of the block cipher, these generic models could be
costly, so they also proposed heuristic models by relaxing the accuracy of their
properties; they called them weak models. Finally, their framework implements
methods to check the properties mentioned above experimentally.

Finally, TAGADA [34] is a tool which generates Minizinc [42] models for the
search for differential properties on word-based SPN ciphers, such as the AES.
The search for such ciphers is typically divided into two steps, one where the word
variables are abstracted as boolean values denoting the presence or absence of a
difference, and one where the abstracted solutions from step 1 are instantiated
to word values, when possible. The models generated by TAGADA implement
the first step, including optimisations based on inferred equalities through XOR
operators, in order to drastically reduce the number of incorrect solutions to
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be passed to step 2. Such constraints are deduced naturally from a Directed
Acyclic Graph (DAG) representation of the cipher under study. The genericity
of Minizinc models enables solving with a range of CP, SAT and SMT solvers, in
particular, the ones participating in the MiniZinc competition, that provide an
interface to MiniZinc. On the other hand, solver-specific optimisations and perks
are abstracted away by the Minizinc interface, compared to models developped
in the native language of a solver.

A summary of the functionalities of these libraries is presented in Table 1.

TAGADA CASCADA CryptoSMT lineartrails YAARX Autoguess CLAASP

Cipher types SPN All All SPN ARX All All

Cipher representation DAG Python code Python code C++ code C code Algebraic
representation DAG

Statistical/Avalanche
tests - - - - - - Yes

Continuous diffusiontests - - - - - - Yes

Components
analysis tests - - - - - - Yes

Constraint
solvers

Differential
trails Truncated Yes Yes - Yes - Yes

Differentials - Yes Yes - Yes - Yes

Impossible
differential - Yes -* - - - Yes

Linear trails - Yes Yes Yes - - Yes

Linear hull - -∗ -∗ - - - Yes

Zero
correlation
approximation

- Yes -∗ - - - Yes

Supported
solvers

CP,
(MiniZinc) SMT SMT - -

SAT, SMT,
MILP, CP,
Groebner

basis

SAT, SMT,
MILP, CP,
Groebner

basis

Supported
Scenarios

single-key
related-key

single-key
related-key

single-key
related-key single-key single-key

single-key
related-key
single-tweak
related-tweak

single-key
related-key
single-tweak
related-tweak

Algebraic tests - - - - - - Yes∗∗

Neural-based tests - - - - - - Yes
State Recovery - - - - - Yes -
Key-bridging - - - - - Yes -

Table 1: Comparison of cryptanalysis libraries features with CLAASP. -∗ means that
the functionality is not supported, but could easily be added from the existing code.
∗∗ means the algebraic tests works on algebraic model for cipher preimages.

1.2 Our contribution

We introduce CLAASP, a Cryptographic Library for the Automated Analysis
of Symmetric Primitives. CLAASP has been designed to simplify the manual
tasks of symmetric cipher designers and analysts. CLAASP has been designed
with the following goals:

– Be open-source with a GPLv3 licence.
– Be modular. For this reason it is built on top of Sagemath, thus inheriting

Python modularity.
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– Be extendable. The Python/Sagemath environment allows to easily integrate
other powerful libraries: constraint solvers such as Cryptominisat, Cadical or
Gurobi, machine learning engines such as Tensorflow, Grobner basis solvers,
parallelization packages such as NumPy, etc..

– Be usable. Much effort has been dedicated to provide a smooth user experi-
ence for both designing and analyzing a cipher. This includes a comprehen-
sive documentation for users and developers, and a Docker image to easily
start with the library without the need of installing all the dependencies.

– Be generic. The wide range of pre-defined components, allows to implement a
wide range of iterated symmetric ciphers, ranging from block ciphers (possi-
bly with a tweak), cryptographic permutations, hash functions, and covering
several design types such as Feistel, SPN, ARX, etc..

– Be automated. The concept of the library revolves around providing a cipher
design as the input and getting an analysis of the cipher design as the output
with respect to some desired property.

– Be efficient. In spite of being the most generic and fully automated tool of
its kind, this library is competitive in terms of efficiency with similar tools
targeting specific sectors.

The central objects of CLAASP are symmetric ciphers. They are described
as directed acyclic graphs whose nodes are components (S-Boxes, linear layers,
constants, Input/Output, etc.) and whose edges are input/output component
connections. From this representation, the library can automatically:

1. generate the Python or C code of the evaluation function;
2. execute a wide range of statistical and avalanche tests on the primitive,

including continuous diffusion tests;
3. generate a report containing the main properties of the cipher components

(e.g. S-Box differential uniformity or algebraic degree, linear layer order or
branch number, etc.);

4. generate SAT, SMT, CP and MILP models and feed them to most open-
source and commercial solvers, in order to search, for example, differential
and linear trails;

5. measure algebraic properties of the primitive;
6. test neural-based distinguishers.

We demonstrate that CLAASP can reproduce many of the results that were
obtained in the literature: in terms of differential cryptanalysis, we retrieve sim-
ilar results to CASCADA for the 1 to 7 rounds of SPECK32, 64, and LEA128.
Furthermore, we were able to find an optimal differential trail for Speck128-128
reduced to 10 rounds. To the best of our knowledge, optimal trails for this spe-
cific version of Speck were only known for up to 9 rounds. This achievement was
made possible by seamlessly integrating a Parallel SAT solver into CLAASP.
In particular, we successfully incorporated ParKissat, the winner of the SAT
competition 2022 (parallel track) [59], into the SAT module of CLAASP. In
addition, we show how to use CLAASP to retrieve the known 17-rounds im-
possible differential on HIGHT, as well as 6-round impossible differentials on
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SPECK32. Regarding linear cryptanalysis, we obtain a linear trail of Salsa with
better correlation than the one reported in [16]. This discovery has the potential
to enhance the correlation of the differential-linear distinguisher against Salsa
reduced to 8 rounds presented in the aforementioned paper. Finally, in terms
of neural cryptanalysis, CLAASP implements (and can reproduce the results
of) [9], in addition to the seminal results of [26]. In addition, researchers willing
to apply neural cryptanalysis to new ciphers using the techniques from [9] can
do so in a straight-forward manner using the library functions.

Besides the presentation of the library, important contributions of this work
are a survey and a comparison (where possible) of the main software tools trying
to achieve the same goals as CLAASP.

2 Symmetric primitives in CLAASP

In this section, we describe how a symmetric primitive is represented in CLAASP.
We also present the main pre-implemented primitives that are available for test-
ing and give some indications on how to build a custom cipher.

2.1 The Component class

Informally, in CLAASP, a symmetric cipher is represented as a list of "con-
nected components". By the term cipher component (or simply component) we
refer to the building blocks of symmetric ciphers (S-Boxes, linear layers, word
operations, etc.). Two components are connected when the output bits of the
first component become the input bits of the second component, in a one-to-one
correspondence. The library supports the following primitive components: the
S-Box component, linear layer components (fixed and variable rotation, fixed
and variable shift, bit and word permutation, multiplication by a binary or word
matrix), word operations components (NOT, AND, OR, XOR, modular addi-
tion and subtraction), and the constant component. It also supports composite
components, which are a combination of primitive components: the sigma func-
tion used in ASCON, the theta function used in Keccak, and the theta function
used in Xoodoo. For example, the linear layer in ASCON can be presented by
the combination of several XOR and ROTATE components, or as a composite
component. Composite components can also be created at a user level.

Finally, some special components are used to represent the inputs of the
cipher, and cipher intermediate and final outputs.

In CLAASP, each component requires the following minimal information to
be defined: a unique component ID (e.g. "sbox_0_0"); a component type (e.g.
"sbox", "word_operation", "linear_layer", etc.); the input and output bit size
of the component; a list of the components that are connected to the input of the
component (a list of IDs); a list of lists of bits positions specifying which output
bits of the input components are connected to the component; a description
containing the necessary information to finalize the definition of the component
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(e.g., the list of integers defining an SBox, the binary matrix defining a linear
layer, the amount of a rotation, etc.).

More precisely, in CLAASP, a component is represented as a Python class.

2.2 The Cipher class

Ciphers as directed acyclic graphs In CLAASP, a symmetric cipher is
represented as a list of connected components, forming a directed acyclic graph,
and a list of basic properties, listed in Table 2.

Property Description

id unique identifier of the cipher, composed by cipher name and parameters
family_name name of the cipher family, such as AES ASCON, etc.
type type of the cipher (block cipher, permutation, hash or stream cipher)
inputs inputs of the cipher, such as key and plaintext.
inputs_bit_size list of number of bits of each input parameters.
output_bit_size number of bits of the cipher output
number_of_rounds number of rounds in the cipher
rounds list of rounds each containing a list of components
reference_code [optional] Python reference code (as a string) of the cipher evaluation

function, used to verify the cipher correctness.

Table 2: Parameters that are used to define a cipher in CLAASP.

CLAASP supports iterated symmetric ciphers, based on the composition of
several round functions, which are themselves a list of connected components;
each cipher must have at least one round. The round decomposition is useful
and common in symmetric cipher design and cryptanalysis; in most tests, a
given property is studied round by round.

CLAASP natively implements a range of well-known block ciphers (AES
TEA, DES, XTEA, LEA, Twofish, LowMC, Threefish, Midori, HIGHT, PRESENT,
SKINNY, Raiden, Sparx, SIMON, SPECK), permutations (ASCON, Xoodoo,
ChaCha, Spongent-π, GIFT-128, TinyJAMBU, GIMLI, Grain core, KECCAK-
p, PHOTON, SPARKLE) and hash functions (SHA-1, SHA-2, MD5, BLAKE,
BLAKE2). This list is meant to be expanded over time.

How to create the cipher object While native support for more primitives
will be added over time, CLAASP exposes a simple interface for users to add
new ones as well. This process is illustrated through a toy example of a 2-rounds
cipher with 6-bit block, 6-bit key injected in every round with a XOR operation,
2 3-bit S-boxes, and a linear layer made of a left rotation of 1 bit, shown in
Figure 2, and the corresponding CLAASP implementation in Figure 1.

The main concern of a user implementing a primitive is to correctly link the
components at a bit level, and mark which component or group of components
need to be reported in the output of the tests. This is because a user might be
interested not only in getting reports at every round, but, for example, after the
linear and the nonlinear layer of an SPN.
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from claasp.cipher import Cipher

class ToySPN(Cipher):
def __init__(self):

super ().__init__(family_name="toyspn",
cipher_type="block_cipher",
cipher_inputs =["plaintext", "key"],
cipher_inputs_bit_size =[6, 6],
cipher_output_bit_size =6)

sbox = [0, 5, 3, 2, 6, 1, 4, 7]
self.add_round ()
xor = self.add_XOR_component (["plaintext", "key"

↪→ ],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component ([xor.id], [[0, 1,

↪→ 2]], 3, sbox)
sbox2 = self.add_SBOX_component ([xor.id], [[3, 4,

↪→ 5]], 3, sbox)
rotate = self.add_rotate_component ([ sbox1.id,

↪→ sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_round_output_component ([ rotate.id], [[0,

↪→ 1, 2, 3, 4, 5]], 6)

self.add_round ()
xor = self.add_XOR_component ([ rotate.id, "key"

↪→ ],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component ([xor.id], [[0, 1,

↪→ 2]], 3, sbox)
sbox2 = self.add_SBOX_component ([xor.id], [[3, 4,

↪→ 5]], 3, sbox)
rotate = self.add_rotate_component ([ sbox1.id,

↪→ sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_cipher_output_component ([ rotate.id], [[0,

↪→ 1, 2, 3, 4, 5]], 6)

toyspn = ToySPN ()
hex(toyspn.evaluate ([0x3F ,0x3F]))

Fig. 1: ToySPN class definition.
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Fig. 2: ToySPN diagram.

Cipher inputs It is important to notice that, in order to be generic, the library
has been designed to accept multiple inputs which can be labeled with different
names: for example, a key, a plaintext and a tweak, or a message and a nonce. On
the other hand, to better exploit the features of some tests, a naming convention
has been introduced for inputs such as "key" or "plaintext".

The cipher representation is not unique The cipher representation as a
list of connected components is not unique. For example, the nonlinear layer of
ASCON permutation can be represented as a circuit made of word operation
components (XOR, AND and NOT) or with a layer of parallel S-boxes. This is
detailed in Appendix A.

Different cipher representations may affect the output of tests; for instance,
a differential cryptanalysis model built for an ASCON implementation using the
circuit representation is less accurate than one using a S-Box representation. In
general, the circuit model is useful when a user wishes to monitor the action
of every gate (i.e. word operation) on a single bit. On the other hand an S-
Box-based model often allows a faster evaluation function, and more precise
automated search for differential and linear trails for some constraint solvers
such as CP, where the search can have a preliminary filter to identify all possible
active S-Boxes configurations. Another example of different representation is the
use of binary matrices as opposed to word-based matrices in linear layers.
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To test the properties mentioned above, CLAASP already contains some
primitives with both circuit and S-Box-based representation, such as ASCON,
Xoodoo, Keccak and Gimli, as well as the bit-based and word-based such as
TinyJambu representations.

3 Library: evaluation modules

The most basic functionality of CLAASP is to evaluate a cryptographic prim-
itive on a given input. This can be easily achieved in few lines of Python code.
However, some statistical tests require the evaluation of millions of inputs, and
looping over all inputs is not practical, due to Python’s well-known sluggishness
with loops. In CLAASP, this issue is tackled through different options, namely
Python vectorized implementations, and C code generation. A further speedup,
to appear in future versions, is CUDA-based parallel evaluation with GPUs.

3.1 Base Evaluator in Python and C

One essential functionality for a cryptographic primitive is being able to evaluate
it over some input. In CLAASP, users can create a cipher object and call an
evaluation method to evaluate a particular input. This functionality is also used
internally in CLAASP by some of the modules, to run, for example, avalanche
or statistical tests. By inserting output components in the cipher, users may
also intercept and visualize the intermediate output of any desired component or
group of components during the evaluation. Both the Python code or the C code3

to evaluate a cipher are generated automatically by scanning the list of the cipher
components, generating the corresponding block of code and linking each block in
the correct order. The automatically generated code is not optimized. However,
it provides an easy way for users to export the code for quick prototyping. The
optimization of the automatically generated code is planned for future versions
of the library.

3.2 Vectorized Implementations

A vectorized implementation of a function handles multiple inputs, presented as
a vector, at the same time. In Python, the NumPy library allows to parallelize
function evaluations, by running the function on an array of inputs, rather than
a single input. NumPy arrays are typed and homogeneous, which, combined
with NumPy’s optimisations, enables significant performance gains compared to
Python native lists.

The cipher object provides the NumPy-based evaluate_vectorized function,
which can be used for the fast evaluation of an array of inputs. The inputs are
specified as NumPy arrays, of 8-bit unsigned integer values, arranged as one
3 When possible a word-oriented implementation is used, opposed to a slower bit-

oriented implementation for primitives with mixed type of components.
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column per data point. The return value is encoded as a list containing a single
NumPy array of 8-bit unsigned integer values, this time arranged as one row per
data point. The choice of using bytes stems from NumPy’s lack of support for
integers over 64 bits, and the ease to generate such format automatically.

3.3 Performance Evaluation

The performance of the primitives’ evaluators are compared in Table 3. Note
that, since the code are auto-generated and not optimized, the table does not
indicate the efficiency of the specified primitives. Interestingly, single evaluation
in NumPy is usually faster than the single evaluation using Python or even
C. Yet, it is convenient to keep Python and C for very few evaluations as the
input/output format is more intuitive as it is represented by an integer. Finally
note that the time reported for C also include the time to compile the C program.

block round Python C Vectorized
size 1 103 1 103 1 103 106

SKINNY 128 40 4.32 3546.98 2.87 1545.29 1.22 1.10 14.27
AES 128 10 0.80 739.26 1.59 765.86 0.27 0.28 2.79
HIGHT 64 32 0.83 848.06 1.53 627.53 0.11 0.22 1.33
LEA 128 24 1.51 1391.93 1.70 771.62 0.08 0.08 4.77
LowMC 128 20 3.05 2922.92 2.50 1710.59 1.80 2.24 907.42
Midori 128 20 1.53 2093.48 2.24 1204.19 0.64 0.80 105.55
SIMON 128 68 3.19 3163.11 1.37 755.87 0.09 0.10 8.18
Speck 128 32 1.46 1467.64 0.95 432.67 0.05 0.06 6.09
Raiden 64 16 0.78 770.91 0.94 433.65 0.05 0.08 7.75
Sparx 128 8 1.68 1726.98 1.24 810.48 0.22 0.24 5.89
TEA 64 32 1.12 1127.31 0.99 439.49 0.09 0.09 8.66
XTEA 64 32 1.00 1052.29 0.94 443.84 0.06 0.07 7.20
Threefish 256 72 3.76 3883.64 0.84 778.91 0.19 0.19 29.57
ASCON 320 12 3.05 2050.94 7.23 416.29 0.17 0.07 4.25
Gift 128 40 1.85 1565.64 1.40 799.74 0.17 0.18 8.38
Keccak 200 18 2.20 1989.07 1.63 605.79 0.26 0.24 2.80
PHOTON 256 12 1.18 942.26 1.28 703.64 0.31 0.28 22.46
Spongent-π 160 80 7.77 7916.27 3.97 3715.62 5.07 6.80 2300.32
TinyJAMBU 128 32 0.43 411.65 1.02 533.11 0.08 0.07 3.51
Xoodoo 384 12 2.06 2096.78 1.23 701.80 0.20 0.20 4.32
SPARKLE 256 10 1.75 1874.37 1.38 780.80 0.09 0.09 6.05
GIMILI 384 24 3.31 3053.50 1.03 558.23 0.17 0.16 7.05
Grain core 80 160 0.93 909.32 1.57 847.19 0.23 0.22 11.03
ChaCha 512 20 1.19 1144.58 1.19 517.94 0.06 0.07 5.42
SHA-1 160 80 2.14 1926.06 1.34 418.85 0.12 0.13 10.45
SHA-2 256 65 4.20 4515.25 0.97 545.93 0.18 0.20 20.68
MD5 64 64 1.36 1453.34 1.11 610.73 0.08 0.09 7.27
BLAKE 512 28 5.26 4651.17 1.62 545.44 0.32 0.31 22.79
BLAKE2 1024 12 5.49 5719.36 0.90 528.41 0.27 0.32 39.54

Table 3: Primitives evaluator performance in CLAASP with 1, 103 and 106

inputs. The timings are in seconds.
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4 Library: test modules

In this section, we describe all automated analysis modules that are currently
supported in CLAASP. Many of the analysis tools presented here are derived
from differential and linear cryptanalysis [12], the cornerstones of modern sym-
metric primitives evaluation. Let SK(X) be a symmetric primitive; differential
cryptanalysis focuses on the probability, over all inputs, for a difference δ to
propagate to γ, i.e., X, Pr[Sk(X) ⊕ SK(X ⊕ δ)] = γ. Conversely, linear crypt-
analysis focuses on the correlation for a linear mask Γ0 to propagate to Γ1,
Pr[Sk(X) ·Γ1 = X ·Γ0]. In both cases, the cryptographer is interested in finding
differences (resp. masks) for which this probability (resp. correlation) is high.

4.1 Component analysis

This module allows the visualization of the "quality" of certain properties of
the components used in a cipher, by means of radar charts. These properties in-
clude: Boolean function properties (number of terms, algebraic degree, number of
variables, whether the Boolean function is APN or balanced), vectorial Boolean
function properties (differential uniformity, boomerang uniformity, nonlinearity,
etc.), linear layer properties (order, linear and differential branch number).

More precisely, this module allows to retrieve the list of the components used
in the cipher, the number of occurrences of each component, and the correspond-
ing properties. For example, for 2 rounds of AES-128, the user will notice that a
XOR operation between 2 inputs of 128 bits each occurs 3 times. If one consid-
ers XOR output bits expressed as a Boolean function, then each of these XOR
components has an algebraic degree of 1 with 2 terms, and 2 variables.

For a better visualization, this module can also plot the results of the ob-
servation in a radar chart, such as the one presented in Figure 3 for the S-Box
of AES. A full list of the radar charts of the components of 2 rounds of AES is
given in the Appendix C.

4.2 Statistical and avalanche tests

Statistical tests Statistical tests aim at evaluating the randomness of a set of
bit strings. Such tests were applied to evaluate AES candidates [51,52,7] through
the NIST Statistical Test Suite (NIST STS) [48,6]. In addition, tools such as
Diehard [37], or its successor Dieharder [15], provide additional statistical tests.
CLAASP integrates both the NIST STS and Dieharder suites within the statis-
tical test module. The statistical test process is divided into two phases, dataset
generation and analysis.

Dataset generator The datasets used in CLAASP which covers keyed primitives
are defined in [51]. Keyless primitives datasets are somehow special cases of the
keyed ones. As an example, the illustration of the avalanche dataset generator is
shown in Appendix B. The dataset generator, which returns a set of bit strings,
is based on CLAASP’s vectorized evaluation method.
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Fig. 3: Observation of the open-source of AES as a radar chart

Statistical test tools The results of NIST STS and Dieharder are exported into
a file and additionally returned as a Python dictionary for easy integration into
scripts. CLAASP also features visualization of the results, as shown in Figure 4.

Fig. 4: CLAASP plot for the 188 NIST statistical tests pass rate of ASCON
round 3 and round 4.

Performance and experiments To generate the plaintext avalanche test for all
supported primitives (191 Gigabits), it takes 4 hours. For a 100 Mbits dataset, it
takes around 30 minutes to finish the NIST statistical tests. Figure 5 shows the
number of tests that pass for each round of ASCON (left) and the percentage
of the rounds needed to pass all statistical tests with respect to the 9 possible
datasets for several primitives.
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Fig. 5: Randomness graphs of ASCON generated by CLAASP. Left side is the
statistical test result of avalanche dataset. Right side are all the statistical results
of ASCON compared with other primitives.

Avalanche tests This module focuses on the avalanche properties, presented
in [19], of a symmetric iterated primitive. These tests evaluate the cipher with
respect to three different metrics that represent what usually the literature calls
full diffusion, avalanche and strict avalanche criteria. The goal of the tests is to
compare how these metric evolve with respect to the computational cost of the
round function; each metric is expected to satisfy a certain criterion (namely to
pass a threshold) after a few rounds.

Measure avalanche criteria The results of the avalanche tests allow a user to:
check if a criterion is satisfied at a certain round for a specific input bit difference;
obtain the worst input bit differences, that are the input bit differences for
which the criterion is satisfied after more rounds than the rest of the input bit
differences; obtain the value of the criterion for a specific round and a specific
input bit difference; obtain the average value of the criterion among all the input
bit differences for a specific round.

For better visualization, CLAASP can generate a heatmap graph of the
output returned by the avalanche tests. This is illustrated for 5 rounds of AS-
CON320 in Appendix D, which represents the heatmap graphs for the entropy
criterion when the input bit difference has been injected in position 0. Each cell
of this figure has a lighter shade of green if the entropy based on the proba-
bility of flipping of the underlying bit is close to 1, with a darker shade of red
otherwise.

Performance Figure 6 reports the timings of the avalanche tests for 5 rounds
of some popular ciphers, using the vectorized evaluation function, up to 50,000
samples; all tests run globally in less than 5 minutes.

Truncated Differential Search This module offers a range of features, including
the ability to easily discover truncated differentials with only one active bit in
both the input and output states. Such differentials, when paired with linear
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Fig. 6: Timings of the avalanche tests for
five rounds of popular ciphers
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approximations, can be very useful for increasing the correlations of differential-
linear distinguishers. For instance, we successfully used this module to rediscover
the truncated differential outlined in [3], which has been cited and studied exten-
sively in various papers (such as [21]). To view the script we used to rediscover
this differential, you can refer to the accompanying repository for this paper.

4.3 Constraint Solvers for Differential and Linear Cryptanalysis

The search for strong differential or linear properties often relies on trails, i.e.,
round by round propagation of the property under study; the final probability
of the trail, under the Markov assumption that all round keys are independent,
is computed as the product of the probabilities of each round. Finding such
trails is a difficult combinatorial problem, traditionally handled with Matsui’s
algorithm [38] variations. In recent years, the use of automatic solvers, such
as Mixed Integer Linear Programming (MILP), SAT, SMT, and more recently
Constraint Programming (CP), have become a simpler alternative. These tools
have the benefit of being extensively studied and optimized by the AI and OR
communities, so that the focus shifts from implementing a search algorithm to
modeling the problem properly. CLAASP can automatically generate MILP,
SAT, SMT and CP models for differential and linear cryptanalysis, from a prim-
itive’s description.

Differential and Linear Models for ARX Ciphers In order to implement the
search for differential and linear trails on ARX ciphers, we utilized the tech-
niques outlined in [18] and in [35]. Specifically, we implemented the MILP con-
straints described in those papers for the ARX components and were able to
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successfully replicate the trails reported therein. In addition to the MILP con-
straints described there, we also implemented SAT, CP, and SMT equivalent
constraints not only for ARX ciphers but also for SPN ciphers. To accelerate
the search for trails using SAT techniques, we implemented the sequential en-
coding method presented in [56] on CLAASP. Moreover, through modeling the
cipher evaluation process (as discussed in Section 3) using MILP, SAT, CP, and
SMT, we were able to implement the techniques outlined in [49]. Those tech-
niques aimed to verify the validity of differential trails. In particular, by using
those techniques, their authors reported some invalid trails presented in [36].
The scripts accompanying this paper demonstrate how we used CLAASP to
verify differential trails.

For linear trails on ARX ciphers, we were able to rediscover trails presented
in recent papers, such as those presented for two well-studied ciphers, such as
Speck and ChaCha. Specifically, we rediscover the linear trails presented at [16]
and the linear trails outlined in [8]. The former presents the best attacks against
ChaCha reduced to 7 rounds, while the second is a recent paper attacking Speck.
Again, the scripts accompanying this paper demonstrate how we used CLAASP
to verify these linear trails.

New results Our library supports a range of SAT solvers, including parallel
solvers, which we believe is a unique feature not found in other cryptanalysis
libraries. By utilizing the CLAASP interface, we were able to search for dif-
ferential and linear trails using parallel SAT solvers. We managed to find an
optimal differential trail for 10 rounds of Speck128-128. This accomplishment
was made possible by utilizing the power of 125 AMD EPYC 7763 cores on a
Ubuntu machine with 1TB of memory. To confirm the optimality of this trail,
we used CLAASP in conjunction with ParKissat [59] to search for a 10-round
trail of this version of Speck with a probability weight of 48. It took approx-
imately 2.23 days to obtain as output UNSAT. The script accompanying this
paper contains the details of this finding.

Regarding linear cryptanalysis, we obtain a linear trail for Salsa with better
theoretical correlation than the one reported in [16]. We start from the same
input bit mask described in Lemma 10 and Lemma 11 of [16]. Specifically, we
found a trail with a theoretical correlation of 2−31 instead of 2−34 as described
in [16]. This accomplishment was made possible by utilizing the SAT module
of CLAASP. We use only 1 AMD EPYC core, and the trail was found in less
than 1 minute. We attempt to find a trail with a theoretical correlation of 2−30,
but the solver outputs UNSAT. This discovery has the potential to enhance
the correlation of the differential-linear distinguisher against Salsa reduced to
8 rounds presented in the aforementioned paper. The reader can reproduce the
trail by using the script accompanying this paper.

Differential and Linear Models for SPN Ciphers SPN ciphers use Substitution
Boxes (SBoxes) as their non-linear component. In addition, their linear lay-
ers can typically be expressed as a matrix multiplication. The representation
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of SBoxes in differential search models typically uses its Differential Distribu-
tion Table, or DDT. The DDT is a 2 dimensional object such that DDTδ,γ =
#{x∈Fn

2 :x⊕y=δ,SB[x]⊕SB[y]=γ}
2n . Models for linear trails use the Linear Approxima-

tion Table (LAT) built in a similar fashion instead. To represent the DDT in
SAT, SMT or MILP, a constraint to forbid each invalid triplet (δ, γ, Pr[δ → γ])
is typically introduced [57]. Techniques such as the Quine-McCluskey algorithm
[43,44,39] or the heuristic Espresso are used to reduce the number of generated
equations. In the case of Constraint Programming (CP), table constraints permit
to directly enforce the constraint (δ, γ, Pr[δ → γ]) ∈ DDT, where DDT is the set
of valid tuples [25]. These techniques are implemented in CLAASP.

Differential and Linear Trails Search CLAASP exposes functions to generate,
for either paradigm among SAT, SMT, MILP or CP, a model for the search of
differential or linear trails. More specifically, CLAASP implements the gener-
ation of models to find: (1) One optimal (highest objective value) trail; or (2)
All trails for which the objective value is within a fixed range. The functions
generating these models take, as an additional parameter, a list of variables for
which the values are to be fixed, and the corresponding values. Single-key trails
are found by setting the key variables to zero, while related-key trails are found
by placing no restrictions.

Application to Differential Probability and Linear Hull Evaluation Trails with
identical input and output can be combined into a differential or a linear hull
with higher probability than single trails. Observing differentials (or linear hulls),
rather than single trails, can result in attacks on more rounds; the gap between
the two cases is studied in [1]. CLAASP permits the enumeration of trails
with fixed variables, so that the evaluation of the probability of a differential,
by enumerating all trails better than a certain weight with a fixed input and
output, is straightforward.

Application to Impossible Differential and Zero-correlation Linear Approxima-
tion Search Impossible differentials, as well as their counterpart in the lin-
ear world, zero-correlation linear hulls, are also of interest to cryptographer.
CLAASP implements a technique similar to [18] to find such properties; the
main idea is to fix an input and output difference, and to look for a trail with a
solver; if no trail is found, then we have an impossible differential.

As an example, we reproduce the 3 impossible differentials for 6 rounds of
SPECK32/64 presented in [47] in less than 30 seconds using the SMT model.

4.4 Continuous diffusion tests

In [17], Coutinho et. al, describe a framework to construct continuous functions
from Boolean ones. Assuming independence, these functions provide the proba-
bility or correlation between the output bits being 1 based on an input of real
numbers that represent the probability of each input bit being 1. They are also
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able to generalize various cryptographic operations, leading to the creation of
continuous versions of entire cryptographic algorithms.

Upon these continuous versions of cryptographic algorithms, they construct
three metrics, namely Continuous Avalanche Factor (CAF), Continuous Neu-
trality Measure (CNM), and Diffusion Factor (DF). The CAF is the continuous
equivalent of the avalanche factor [20], which measures the proportion of out-
put bits that change for input Hamming distances equal to 1 on average; this
proportion is expected to be 0.5 for a random permutation. In the continuous
version, since there is no concept of Hamming distance, the Euclidean Distance
(ED) is used to evaluate CAF. The idea behind CAF is to measure how much
the output of a continuous version of an algorithm changes, on average, when
the input bit’s probability of being equal to 1 of a chosen random bit is slightly
altered by a small real number λ. In other words, we need to evaluate, on av-
erage, the behavior of the ED between the outputs y0 = f(x0) and y1 = f(x1)
for x0, x1 ∈ B, when the ED of x0 and x1 is lesser than λ. It is expected for
“good ciphers" that even with small values of λ, higher values on the ED of the
propagation of these alterations, on average. For more information on the other
two metrics (CNM and DF), see [17].

Within the continuous diffusion test module, CLAASP implements the con-
tinuous versions of several cryptographic operations, following Theorem 1 and
Definitions 1 to 12 from [17], which can be combined to obtain the continuous
version of entire primitives.

The performance of Speck128-128, AES-128, the iterated permutations in AS-
CON320 and the iterated permutation in ChaCha with respect to CAF, subject
to λ = 0.001, is presented in Table 4. For the iterated permutation in ChaCha,
a single round is equivalent to four half-quarter rounds in the table. Figure 7
displays the timing comparison of these ciphers for various sample sizes used in
computing CAF. The experiments were conducted on a Ubuntu 22.04.1 machine
equipped with 256 AMD core processors and 1TB of memory.

When comparing Table 4 to Table 2 in [17], we observed slight variations
in the CAF values reported in Figure 7 compared to the values presented in
[17]. This difference is due to our use of the Python Decimal package to handle
small numbers, while the implementation of Table 2 in [17] employed the Relic
library [2]. For instance, for five rounds of AES-128, we obtained a value of 0.777,
whereas [17] reports 0.734.

4.5 Algebraic module

The objective of this module is to study the algebraic properties of a specified ci-
pher and test if it is secure against algebraic attacks. In algebraic cryptanalysis,
breaking a block or stream cipher, essentially involves solving a set of multi-
variate polynomial equations over a finite field Fq, which often has one or a
few solutions in Fq. But solving a system of multivariate random polynomials is
generally a hard task.

This module generates a multivariate algebraic polynomial system corre-
sponding to the “sbox”, “linear_ layer”, “mix_column", and “constant" compo-
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Rounds AES ASCON ChaCha Speck

1 to 4 0 0 0 0
5 0.777 0.008 0 0
6 0.971 0.761 0.019 0
7 0.999 0.962 0.257 0.002
8 - 0.998 0.694 0.067
9 - 0.999 0.939 0.318
10 - - 0.993 0.613
11 - - - 0.828
12 - - - 0.941
13 - - - 0.98
14 - - - 0.997

Table 4: Continuous Avalanche Factor comparison for AES-128, ASCON320 per-
mutation, ChaCha permutation, and Speck128-128 using λ = 0.001.

nents, together with the “XOR”, “AND”, “OR”, “SHIFT”, “ROTATE”, and “NOT”
operations. It provides a set of polynomials representing the components and op-
erations involved in a particular input cipher along with connection polynomials,
which represent the links between the various components. From the polynomial
system, it is possible to retrieve its algebraic degree, number of polynomials, and
number of variables in order to analyze its algebraic features and the difficulty
of solving the system. The security of a cipher (up to a particular number of
rounds) against algebraic attacks could be evaluated by solving the correspond-
ing algebraic system up to that many rounds. The module now offers a method
to test it by solving the system in a time limit using only the Gröbner basis
computation [14] available on the SAGE platform.

The algebraic module is currently in its preliminary stage and will be im-
proved in upcoming releases.

4.6 Neural aided cryptanalysis module

Following Aron Gohr’s seminal paper at CRYPTO’19 [26], improving the state-
of-the-art differential cryptanalysis result on the SPECK32-64 cipher, neural-
based approaches to cryptanalysis have gained traction in the community. In
Gohr’s approach, a neural network is trained to distinguish, from an input com-
posed of 2 ciphertexts in binary format, whether they correspond to the encryp-
tion of two unrelated plaintexts, or of two plaintexts with a given XOR difference.
CLAASP implements such approaches, and other neural-based analysis tools.

Single ciphertext approach: Neural Network Black box Distinguisher
Tests Differential neural cryptanalysis examines pairs of plaintexts. The black
box test implemented by CLAASP takes a step back, and focuses on single
ciphertexts. Built from [10], this test investigates whether a neural network can
find a relation between the inputs of a primitive and its output. The neural
network is trained to label samples [P,C] as 0 (if Y is random) or 1 if Y is the
output of a given component of the primitive. This test returns the accuracy of
distinguishing a ciphertext coming from an instance of the cipher with a certain
key and the output of a random permutation. After a certain amount of rounds,
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the accuracy will converge to 0.5, meaning that the black box distinguisher is
not able to distinguish the cipher output from random.

Pairs of Ciphertexts: Neural Network Differential Distinguisher Tests
This test implements the neural distinguisher described by Gohr in [26], with the
simplified training pipeline described in [9], where a depth-1 neural distinguisher
trained on n rounds is iteratively retrained for n+1, . . . n+ t rounds, where n+ t
is the first round where the neural distinguisher fails to learn. Specifically, the
neural distinguisher is trained to label samples [C0 = EK(P0), C1 = EK(P1)] as
0 (if P0 ⊕ P1 is random) or 1 if P0 ⊕ P1 is a given, fixed value δ.

Helper Function: Truncated Differential Search For Neural Distin-
guishers The previous test relies on an input difference with good propagation
properties. It has been observed [26] that the input difference that starts the
most likely differential does not result in the best neural distinguishers. Further
research [11] suggested differential-linear properties, based on highly likely trun-
cated differentials a few rounds before the studied round, may be at play. This
assumption was used as the basis to an input difference search technique [9],
where a genetic algorithm explores potential input differences and ranks them
based on the cumulative biases of the resulting output difference bits. This algo-
rithm is implemented by CLAASP, and can be used to retrieve Gohr’s original
input difference.

These functions are illustrated in the supplementary material. The script first
runs the black box test on 1 round of Speck64, then runs the input difference
search for Speck64, and trains Gohr’s neural network using the optimal difference
returned by the optimizer. Note that the optimizer is not deterministic, and its
parameters are adapted for a reasonably fast execution time for demonstration
purposes; therefore, it may, in some rare instance, fail to find the optimal input
difference 0x00400000.

5 Benchmark comparison with other libraries

In this section we compare CLAASP to similar libraries.

5.1 TAGADA

The TAGADA library focuses on the differential cryptanalysis of word-oriented
ciphers with an SPN structure. For such ciphers, it is common (e.g, [13]) to di-
vide the search into two steps. The first step aims to find truncated differential
characteristics through the minimization of the non-linear operators utilized in
this process. The second step enumerates the truncated differential characteristic
passing to the minimum number of non-linear operators found in the previous
step. It was shown [25] that the filtering of the first step may be insufficient so
that too many solutions are left to explore in step 2. More advanced filtering is,



20 Authors Suppressed Due to Excessive Length

therefore, beneficial and enables scaling to more rounds. This is done through
additional constraints that capture linear dependencies between variables dur-
ing step 1. The TAGADA library generalizes such constraints, making it very
efficient for word-based ciphers. These techniques are not, at the moment, in-
cluded in CLAASP, so TAGADA is expected to perform significantly better on
word-based characteristics search. We are planning to include these additional
constraints in the next releases of CLAASP.

On the other hand, the basic version of the first step, searching for the min-
imum number of active SBoxes of SPN ciphers, is implemented in CLAASP.
TAGADA implements the option of running the first step search with the basic
technique used in CLAASP; we attempted to run the search for 3 and 4 rounds
of AES-128, but we were not able to reproduce the known results from [31,41,24]
with TAGADA, which reported 2 and 7 SBoxes respectively, rather than the ex-
pected 3 and 9. On the other hand, CLAASP returned the expected solution.
Note that TAGADA can only generate MiniZinc models, while CLAASP allows
to directly write the model in the language supported by the solvers (including
a MiniZinc interface).

5.2 CASCADA

We make a comparison between CLAASP and CASCADA by taking the time
they spend searching for optimal characteristics in the single-key scenario and
in the following ciphers: Speck32-64, Speck64-128 and LEA. Specifically, in Fig-
ure 12 (see Appendix E), we show the time spent by CASCADA and CLAASP
in the search for an optimal characteristic on across several rounds and using the
following SMT solvers: MathSAT, Yices, and Z3. In order to get timings for ev-
ery round we take the average amount of five repetitions. The experiments were
conducted on a machine running Ubuntu 22.04.1, equipped with 256 AMD core
processors and 1TB of memory. As observed, while using the Yices solver, the
CLAASP library performs similarly to CASCADA. Nevertheless, for MathSAT
and Z3, CLAASP exhibits better performance.

In terms of functionalities, CASCADA includes the search for impossible
differentials, in particular through the method of [18]. In this method, the vari-
ables corresponding to the input and output differences of a differential are fixed
to a value that the analyst wants to test, and the solver is run. If the solver
finds a solution, then the differential is possible; otherwise, it is impossible. In
this method, the analyst usually tests all the pairs of input and output differ-
ences of low hamming weight (typically 1). A similar technique can be used for
zero-correlation linear approximations. Using this method, CLAASP can for in-
stance retrieve the 17-rounds impossible differential on HIGHT presented in [18]
in under 10 minutes on a single core.

6 Conclusion

The fast-paced publication of new cryptanalysis techniques, of improvement of
existing ones, makes it crucial to have an efficient way to test a given property
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on a large number of primitives; CLAASP aims to fulfill this need. In its current
form, it already offers a vast array of cipher analysis techniques, from component
analysis, to automatic models building, through neural cryptanalysis. Future re-
leases will add more primitives, as well as further analysis techniques, such as
guess-and-determine or meet-in-the-middle techniques. More importantly, the
CLAASP team is strongly committed to include new state-of-the-art improve-
ments to automated techniques as it evolves, and provide a one-stop shop to
evaluate, compare and experiment with modifications on existing methods. Fi-
nally, the open-source status of the library is an invitation to researchers from
the community to not only use, but also improve CLAASP as they see fit.
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A Two cipher representations of ASCON

The nonlinear layer of ASCON permutation can be represented as circuit made
of word operation components (XOR, AND and NOT) or with a layer of parallel
S-boxes. This is detailed in Figure 8.
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Fig. 8: Two equivalent cipher representation in ASCON. The left figure is the
circuit that represents ASCON S-Box (as stated in [23]). The circuit can be
seen as NOT, AND and XOR components acting on 64-bit words. The right side
is ASCON 5-bit S-Box as an integer list. The nonlinear layer can be seen as the
application of 64 parallel S-Boxes. Both cipher representations are implemented
in CLAASP.

B Avalanche dataset generation

Given primitive enc, n-bits plaintext P , key K = 0, the mask maski with 1 at
i-bit and others 0, then the avalanche dataset is the concatenation of encK(P )⊕
encK(P ⊕maski) with different P as shown in Figure 9.
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Fig. 9: Illustration of avalanche dataset generation.

C AES as radar charts

See Figure 10.

D Heatmap of avalanche entropy vectors

See Figure 11.

E Time comparison CASCADA and CLAASP

See Figure 12.
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Fig. 10: AES main components as radar charts. The outer region of the radar
represents the best value for any property.
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Fig. 11: ASCON320 - avalanche entropy vectors - difference injected in position
0 of plaintext with 10000 samples
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Fig. 12: Time comparison CLAASP vs CASCADA to search for optimal differ-
ential characteristics on Speck32-64 (left), Speck64-128 (middle) and LEA128-
128(right), using different SMT solvers.
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