
Compactly Committing Authenticated
Encryption Using Encryptment and

Tweakable Block Cipher

Shoichi Hirose1 and Kazuhiko Minematsu2,3

1 University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp
2 NEC, Kawasaki, Japan
k-minematsu@nec.com

3 Yokohama National University, Kanagawa, Japan

Abstract. Message franking is a feature of end-to-end encrypted mes-
saging introduced by Facebook that enables users to report abusive con-
tents in a verifiable manner. Grubbs et al. (CRYPTO 2017) formalized
a symmetric-key primitive usable for message franking, called compactly
committing authenticated encryption with associated data (ccAEAD),
and presented schemes with provable security. Dodis et al. (CRYPTO
2018) proposed a core building block for ccAEAD, called encryptment,
and presented a generic construction of ccAEAD combining encrypt-
ment and conventional AEAD. We show that ccAEAD can be built on
encryptment and a tweakable block cipher (TBC), leading to simpler and
more efficient constructions of ccAEAD than Dodis et al.’s methods. Our
construction, called EnCryptment-then-TBC (ECT), is secure under a
new but feasible assumption on the ciphertext integrity of encryptment.
We also formalize the notion of remotely keyed ccAEAD (RK ccAEAD)
and show that our ECT works as RK ccAEAD. RK ccAEAD was first
considered by Dodis et al. as a useful variant of ccAEAD when it is im-
plemented on a platform consisting of a trusted module and an untrusted
(leaking) module. However, its feasibility was left open. Our work is the
first to show its feasibility with a concrete scheme.

Keywords: Authenticated encryption · Commitment · Tweakable block
cipher · Remotely keyed encryption

1 Introduction

Background. End-to-end encrypted messaging systems are now widely de-
ployed, such as Facebook Messenger [17], Signal [36], and Whatsapp Messen-
ger [38]. Accordingly, new security issues arise in addition to those on the pri-
vacy and authenticity of messages. A significant problem is preventing mali-
cious senders from sending harassing messages and harmful/abusive contents.
To achieve this goal, Facebook introduced message franking [18]. It is a cryp-
tographic protocol allowing users to report the receipt of abusive messages in a
verifiable manner to Facebook.

https://orcid.org/0000-0001-6723-722X
https://orcid.org/0000-0002-3427-6772

At Crypto 2017, Grubbs et al. [20] initiated the formal study of message
franking and presented a new variant of AEAD, called compactly committing
AEAD (ccAEAD), as a symmetric-key primitive that is useful for message frank-
ing. For ccAEAD, a small part of the ciphertext works as a commitment to the
message and the associated data. They also presented two generic constructions
of ccAEAD. One is called CtE (Commit-then-Encrypt), which consists of com-
mitment and AEAD. The other is called CEP (Committing Encrypt-and-PRF).
It consists of a pseudorandom generator, a pseudorandom function (PRF), and
a collision-resistant PRF.

At Crypto 2018, Dodis et al. [15] further studied ccAEAD and proposed a
new primitive, called encryptment, as a core component of ccAEAD. They show
that, given encryptment, ccAEAD can be built from an additional common
cryptographic primitive. Concretely, they presented two transformations. One
transformation needs a call to (randomized) AEAD in addition to encryptment,
and the other needs two calls to a related-key-secure PRF. The former is a
randomized scheme, and the latter is nonce-based. In addition, they considered
remotely keyed ccAEAD (RK ccAEAD) in the full version [16] of [15]. Here,
RK ccAEAD is an extension of ccAEAD inheriting the property of remotely
keyed encryption, which was proposed by Blaze [8] and extensively studied in
the late 90’s [9,25,31,32]. Its goal was to enable secure encryption under a setting
where one could use a resource-limited personal device storing secret keys and
computing cryptographic functions. The problem was how to do bulk encryption
and decryption by utilizing the power of a host and the security of the personal
device. Dodis et al. [16] suggested RK ccAEAD as a useful variant of ccAEAD
under such environments. However, they left open its feasibility and concrete
constructions.

Our Contributions. Focusing on the work of Dodis et al. [15,16], this pa-
per makes two contributions. First, we present a new construction of ccAEAD
based on encryptment, dubbed ECT (EnCryptment-then-TBC). While Dodis et
al. [15,16] used AEAD as an additional component, we show that an additional
single call of a tweakable block cipher (TBC) [29,30] is sufficient. Since the in-
tegrity mechanism provided by AEAD is not needed, our proposal allows simpler
and more efficient ccAEAD compared with Dodis et al.’s proposals. In more de-
tail, when encryption, Dodis et al.’s method needs AEAD taking two elements,
B (for associated data) and L (for plaintext) as an input in addition to a secret
key, while ECT simply encrypt L with tweak B by a TBC. The latter is ar-
guably much simpler. See Fig. 1 for their illustrations. Note that the encryption
output C1 of AEAD in Dodis et al.’s method contains a random nonce and a
tag in addition to the “raw” ciphertext of |L| bits as otherwise decryption is
not possible. Hence, ECT is more efficient in terms of bandwidth4. The security
requirements of ECT are reduced to those of the underlying encryptment and a
TBC. In particular, the ciphertext integrity of ECT requires a new but feasible

4 The second method of Dodis et al. has also larger bandwidth than ours for the
existence of tag. A concrete comparison is not possible as it is nonce-based.

2

type of ciphertext unforgeability for the encryptment. Actually, we show that
HFC [15] – a hash-based efficient encryptment scheme proposed by Dodis et al.
– satisfies this new ciphertext unforgeability in the random oracle model. We
note that HFC originally assumed the random oracle, so we do not introduce
any new assumption.

Second, we provide the first formalization of remotely keyed (RK) ccAEAD,
and show that ECT is secure RK ccAEAD. This answers the aforementioned
open question posed by Dodis et al. positively. Our formalization is based on
that of RK authenticated encryption by Dodis and An [14]. The confidentiality
of ECT as RK ccAEAD requires a new variant of confidentiality for encryptment.
It is also shown that HFC satisfies the new variant of confidentiality in the
random oracle model. ECT has a similar structure to the AEAD scheme named
CONCRETE [7], which offers ciphertext integrity in the presence of nonce misuse
and leakage. As mentioned above, remotely keyed encryption [8] is practically
relevant when composing a trusted (small) module with an untrusted/leaking
module. We think this similarity exhibits an interesting relationship with RK
ccAEAD and leakage-resilient AEAD, where the latter has been actively studied
in recent years, e.g., [5,6,13,34,35].

Related Work. Authenticated encryption is one of the central topics in sym-
metric cryptography. Its formal treatments were initiated by Katz and Yung [26]
and by Bellare and Namprempre [3].

A variation of message franking scheme that enables a receiver to report an
abusive message by revealing only the abusive parts was investigated indepen-
dently by Leontiadis and Vaudenay [28] and by Chen and Tang [11]. Huguenin-
Dumittan and Leontiadis formalized and instantiated a secure bidirectional chan-
nel with message franking [23]. Yamamuro et al. [39] proposed forward secure
message franking and presented a scheme based on ccAEAD, a forward secure
pseudorandom generator, and a forward secure MAC. Tyagi et al. [37] formal-
ized asymmetric message franking and constructed a scheme from signatures of
knowledge [22] for designated verifier signatures [24].

Hirose [21] proposed a generic construction of nonce-based ccAEAD. The
proposal is similar to the second method of Dodis et al. Since it simply replaces
a PRF with a TBC, it needs two additional TBC calls, while ECT needs only
one TBC call. In addition, his scheme is nonce-based while ours is randomized
as originally proposed. Thus, ECT is less restrictive and more efficient in com-
putation.

Dodis and An [14] proposed and investigated a cryptographic primitive called
concealment. They formalized RK authenticated encryption as an application
and provided a generic construction with concealment and authenticated en-
cryption.

Farshim et al. [19], Albertini et al. [1], Len et al. [27], Bellare and Hoang [2],
and Chan and Rogaway [10] discussed so-called committing authenticated en-
cryption. While their definitions and security goals are not identical, their pri-
mary goal was basically to decrease the risk of error or misuse by application

3

A

enc

C0

L

M

B EK

C1‖

C

C1

DK

dec

L

A C0 B

M

C

kg

A

enc

C0

L

M

B

‖

dec

A C0 B

M

kg

AEAD.EK

C1

C

AEAD.DK

C1B

C

L

Fig. 1: Encryption and decryption algorithms of ccAEAD. (Top) our proposal,
ECT, (Bottom) Dodis et al.’s method using AEAD [15]. For both cases, enc and
dec are encryptment and decryptment algorithms of the encryptment scheme.
The ccAEAD decryption algorithms omit the case of verification failures. In
ECT, EK and DK denote the TBC’s encryption and decryption, where the thick
line is tweak input.

4

designers, and message franking was out of scope for the lack of opening key
needed by ccAEAD.

Organization. Section 2 introduces notations and formalizes tweakable block
ciphers, ccAEAD, and encryptment. Section 3 describes the generic construc-
tion of ccAEAD, called ECT, and confirms its security. Section 4 formalizes RK
ccAEAD. Section 5 confirms the security of ECT as RK ccAEAD. Section 6 con-
cludes the paper. Due to the page limit, some proofs of theorems are given in
appendices.

2 Preliminaries

Let Σ := {0, 1}. For any integer l ≥ 0, let Σl be the set of all Σ-sequences of
length l. Let Σ∗ :=

⋃
i≥0 Σ

i. The length of x ∈ Σ∗ is denoted by |x|. Concatena-
tion of x1, x2 ∈ Σ∗ is denoted by x1∥x2. A uniform random choice of an element
s from a set S is denoted by s←← S.

2.1 Tweakable Block Cipher

A TBC is formalized as a pair of encryption and decryption functions TBC :=
(E,D) such that E : Σnk ×Σnt ×Σnb → Σnb and D : Σnk ×Σnt ×Σnb → Σnb .
Σnk is a set of keys, Σnt is a set of tweaks, and Σnb is a set of plaintexts or
ciphertexts. For every (K,T) ∈ Σnk × Σnt , both E(K,T, ·) and D(K,T, ·) are
permutations, and D(K,T,E(K,T, ·)) is the identity permutation over Σnb .

Let Pnt,nb
be the set of all tweakable permutations: For every p ∈ Pnt,nb

and
T ∈ Σnt , p(T, ·) is a permutation over Σnb . Let p−1 ∈ Pnt,nb

be the inverse of
p ∈ Pnt,nb

: p−1(T, p(T, ·)) is the identity permutation for every T ∈ Σnt .
The security requirement of a TBC is formalized as indistinguishability from

a uniform random tweakable permutation. Let A be an adversary with oracle ac-
cess to a tweakable permutation (and its inverse) in Pnt,nb

. A can make adaptive
queries to the oracle(s) and finally outputs 0 or 1. The advantage of A against
TBC for a tweakable pseudorandom permutation (TPRP) is

AdvtprpTBC(A) :=
∣∣Pr[AEK = 1]− Pr[Aϖ = 1]

∣∣,
where K ←← Σnk and ϖ ←← Pnt,nb

. Similarly, the advantage of A against TBC
for a strong tweakable pseudorandom permutation (STPRP) is

AdvstprpTBC (A) :=
∣∣Pr[AEK ,DK = 1]− Pr[Aϖ,ϖ−1

= 1]
∣∣.

2.2 ccAEAD

Syntax. ccAEAD [20] is formalized as a tuple of algorithms CAE := (Kg,Enc,
Dec,Ver). It is involved with a key space K := Σn, an associated-data space
A ⊆ Σ∗, a message space M ⊆ Σ∗, a ciphertext space C ⊆ Σ∗, an opening-
key space L ⊆ Σℓ, and a binding-tag space T := Στ . The “cc” (compactly
committing) property requires that τ = O(n) is small.

5

– The key-generation algorithm Kg returns a secret key K ∈ K chosen uni-
formly at random.

– The encryption algorithm Enc takes as input (K,A,M) ∈ K × A ×M and
returns (C,B) ∈ C × T .

– The decryption algorithm Dec takes as input (K,A,C,B) ∈ K ×A× C × T
and returns (M,L) ∈M×L or ⊥ ̸∈ M×L.

– The verification algorithm Ver takes as input (A,M,L,B) ∈ A×M×L×T
and returns b ∈ Σ.

Kg and Enc are randomized algorithms, and Dec and Ver are deterministic algo-
rithms. For every l ∈ N, Σl ⊆ M or Σl ∩M = ∅. For (C,B) ← Enc(K,A,M),
|C| depends only on |M |, and there exists a function clen : N → N such that
|C| = clen(|M |).

CAE satisfies correctness. Namely, for any (K,A,M) ∈ K×A×M, if (C,B)←
Enc(K,A,M), then there exists some L ∈ L such that Dec(K,A,C,B) = (M,L)
and Ver(A,M,L,B) = 1.

Security Requirements. The security requirements of ccAEAD are confiden-
tiality, ciphertext integrity, and binding properties.

Confidentiality. The games MO-REAL and MO-RAND shown in Fig. 2 are
introduced to formalize the confidentiality as real-or-random indistinguishability
in the multi-opening setting. The advantage of an adversary A for confidentiality
is

Advmo-ror
CAE (A) :=

∣∣Pr[MO-REALA
CAE = 1]− Pr[MO-RANDA

CAE = 1]
∣∣.

A is allowed to make queries adaptively to the oracles Enc, Dec, and ChalEnc.
In both of the games, Enc and Dec work in the same ways. For each query
(A,C,B), Dec returns (M,L)← Dec(K,A,C,B) only if the query is a previous
reply from Enc.

Ciphertext Integrity. The game MO-CTXT shown in Fig. 3 is introduced to
formalize the ciphertext integrity as unforgeability in the multi-opening setting.
The advantage of an adversary A for ciphertext integrity is

Advmo-ctxt
CAE (A) := Pr[MO-CTXTA

CAE = true].

A is allowed to make queries adaptively to the oracles Enc, Dec, and ChalDec.
The game outputs true if A asks a query (A,C,B) to ChalDec such that
Dec(K,A,C,B) ̸= ⊥ without obtaining it from Enc by a previous query.

Binding Properties. Binding properties are defined for a sender and a receiver.
Receiver binding describes that a malicious receiver cannot report a non-abusive
sender for sending an abusive message. The advantage of an adversary A for
receiver binding is

Advr-bindCAE (A) := Pr[((A,M,L), (A′,M ′, L′), B)← A : (A,M) ̸= (A′,M ′)

∧ Ver(A,M,L,B) = Ver(A′,M ′, L′, B) = 1].

6

K ← Kg; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)
(C,B)← Enc(K,A,M)
Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← Dec(K,A,C,B)
return (M,L)

ChalEnc(A,M)
(C,B)← Enc(K,A,M)
return (C,B)

(a) MO-REALA
CAE

K ← Kg; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)
(C,B)← Enc(K,A,M)
Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← Dec(K,A,C,B)
return (M,L)

ChalEnc(A,M)
(C,B)←← Σclen(|M|) ×Στ

return (C,B)

(b) MO-RANDA
CAE

Fig. 2: Games for confidentiality of ccAEAD

K ← Kg; Y ← ∅
win ← false

AEnc,Dec,ChalDec

return win

Enc(A,M)
(C,B)← Enc(K,A,M)
Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
return Dec(K,A,C,B)

ChalDec(A,C,B)
if (A,C,B) ∈ Y then

return ⊥
end if
if Dec(K,A,C,B) ̸= ⊥ then

win ← true

end if
return Dec(K,A,C,B)

Fig. 3: Game MO-CTXTA
CAE for ciphertext integrity of ccAEAD

7

The advantage of A for strong receiver binding is

Advsr-bindCAE (A) := Pr[((A,M,L), (A′,M ′, L′), B)← A : (A,M,L) ̸= (A′,M ′, L′)

∧ Ver(A,M,L,B) = Ver(A′,M ′, L′, B) = 1].

It holds that Advr-bindCAE (A) ≤ Advsr-bindCAE (A) for any CAE and A.
Sender binding describes that a malicious sender of an abusive message can-

not prevent the receiver from reporting it. The advantage ofA for sender binding
is

Advs-bindCAE (A) := Pr[(K,A,C,B)← A : Dec(K,A,C,B) ̸= ⊥
(M,L)← Dec(K,A,C,B) ∧ Ver(A,M,L,B) = 0].

Message Franking Using ccAEAD. A service provider is assumed to relay all
communication among users. Users encrypt their communication with ccAEAD.
For a ciphertext from a sender, the service provider computes a tag with a MAC
function for the binding tag in the ciphertext and transfers the ciphertext to
the receiver together with the tag. Suppose that an abusive message is recovered
from the ciphertext. Then, the receiver reports it to the service provider with
the opening key, binding tag, and the tag attached by the service provider. The
receiver binding prevents malicious receivers from blaming non-abusive senders.
The sender binding prevents malicious senders from denying abusive reports by
honest receivers.

2.3 Encryptment

Syntax. Encryptment [15] is roughly one-time ccAEAD. It is formalized as
a tuple of algorithms EC = (kg, enc, dec, ver). It is involved with a key space
Kec := Σℓ, an associated-data space A ⊆ Σ∗, a message space M ⊆ Σ∗, a
ciphertext space C ⊆ Σ∗, and a binding-tag space T := Στ .

– The key-generation algorithm kg returns a secret key Kec ∈ Kec chosen
uniformly at random.

– The encryptment algorithm enc takes as input (Kec, A,M) ∈ Kec ×A×M
and returns (C,B) ∈ C × T .

– The decryptment algorithm dec takes as input (Kec, A,C,B) ∈ Kec × A ×
C × T and returns M ∈M or ⊥ ̸∈ M.

– The verification algorithm ver takes as input (A,M,Kec, B) ∈ A×M×Kec×
T and returns b ∈ Σ.

kg is a randomized algorithm, and enc, dec and ver are deterministic algorithms.
For (C,B)← enc(Kec, A,M), it is assumed that |C| depends only on |M |.

EC satisfies correctness: For any (Kec, A,M) ∈ Kec × A ×M, if (C,B) ←
enc(Kec, A,M), then dec(Kec, A,C,B) = M and ver(A,M,Kec, B) = 1. A
stronger notion of correctness called strong correctness is also introduced: For
any (Kec, A,C,B) ∈ Kec×A×C×T , if M ← dec(Kec, A,C,B), then enc(Kec, A,
M) = (C,B).

8

Security Requirements. The security requirements of encryptment are con-
fidentiality, second-ciphertext unforgeability, and binding properties.

Confidentiality. Two games otREAL and otRAND shown in Fig. 4 are intro-
duced to formalize the confidentiality. In both of the games, an adversary A asks
only a single query to the oracle enc. The advantage of A for confidentiality is

Advot-rorEC (A) :=
∣∣Pr[otREALA

EC = 1]− Pr[otRANDA
EC = 1]

∣∣,
where “ot-ror” stands for “one-time real-or-random.”

Kec ← kg
b← Aenc

return b

enc(A,M)
(C,B)← enc(Kec, A,M)
return (C,B)

(a) otREALA
EC

b← Aenc

return b

enc(A,M)
(C,B)←← Σclen(|M|) ×Στ

return (C,B)

(b) otRANDA
EC

Fig. 4: Games for confidentiality of encryptment

Second-Ciphertext Unforgeability. An adversary A asks only a single query
(A,M) ∈ A × M to encKec

and gets (C,B) and Kec, where Kec ← kg and
(C,B)← encKec

(A,M). Then, A outputs (A′, C ′) ∈ A×C. The advantage of A
for second-ciphertext unforgeability is

AdvscuEC (A) := Pr[(A,C) ̸= (A′, C ′) ∧ decKec
(A′, C ′, B) ̸= ⊥].

Binding properties. The advantage of A for receiver binding is

Advr-bindEC (A) := Pr[((Kec, A,M), (K ′ec, A
′,M ′), B)← A : (A,M) ̸= (A′,M ′)

∧ ver(A,M,Kec, B) = ver(A′,M ′,K ′ec, B) = 1].

The advantage of A for strong receiver binding is

Advsr-bindEC (A) := Pr[((Kec, A,M), (K ′ec, A
′,M ′), B)← A :

(Kec, A,M) ̸= (K ′ec, A
′,M ′) ∧ ver(A,M,Kec, B) = ver(A′,M ′,K ′ec, B) = 1].

The advantage of an adversary A for sender binding is

Advs-bindEC (A) := Pr[(Kec, A,C,B)← A,M ← dec(Kec, A,C,B) :

M ̸= ⊥ ∧ ver(A,M,Kec, B) = 0].

9

For strongly correct encryptment, Dodis et al. [15] reduced second-ciphertext
unforgeability to sender binding and receiver binding. The following proposition
shows that it can be reduced only to receiver binding. On the other hand, receiver
binding cannot be reduced to second-ciphertext unforgeability. Suppose that EC
is secure except that it has a weak key such that receiver binding is broken using
the weak key. For second-ciphertext unforgeability, the probability that the weak
key is chosen is negligible for a query made by an adversary.

Proposition 1. Let EC be a strongly correct encryptment scheme. Then, for
any adversary A against EC for second-ciphertext unforgeability, there exists an
adversary Ȧ such that AdvscuEC (A) ≤ Advr-bindEC (Ȧ) and the run time of Ȧ is at
most about that of A.

Proof. Shown in Appendix D.

3 ccAEAD Using Encryptment and TBC

3.1 Scheme

New ccAEAD construction ECT (EnCryptment-then-TBC) ECT = (KG,ENC,
DEC,VER) is proposed. It uses an encryptment scheme EC = (kg, enc, dec, ver)
and a TBC TBC = (E,D). For ECT, let K := Σn be its key space, A be its
associated-data space,M be its message space, C be its ciphertext space, L := Σℓ

be its opening-key space, and T := Στ be its binding-tag space. Then, for EC,
L is its key space, A is its associated-data space, M is its message space, C is
its ciphertext space, and T is its binding-tag space. For TBC, its set of keys is
K, its set of tweaks is T , and its set of plaintexts or ciphertexts is L.

ENC and DEC are shown in Fig. 5. Also refer to Fig. 1 for illustration. They
are also depicted in Fig. 1. KG selects a secret key K for TBC from Σn. VER
simply runs ver.

ENC(K,A,M)
L← kg
(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

return (C,B)

DEC(K,A,C,B)
C0∥C1 ← C
L← DK(B,C1)
if dec(L,A,C0, B) = ⊥ then

return ⊥
else

M ← dec(L,A,C0, B)
return (M,L)

end if

Fig. 5: The encryption and decryption algorithms of ECT

10

3.2 Security

ECT replaces AEAD of the Dodis et al. scheme with TBC. This change does
not impact the confidentiality or binding properties. However, it does affect the
ciphertext integrity. With ECT, a candidate for the opening key can always be
obtained for a ciphertext. Thus, to ensure the ciphertext integrity, it must be
intractable to create a new valid ciphertext for the binding tag of the original
ciphertext and the opening key candidate.

Confidentiality. The confidentiality of ECT is reduced to the confidentiality of
EC and the TPRP property of TBC:

Theorem 1 (Confidentiality). Let A be an adversary against ECT making
at most qe, qd, and qc queries to Enc, Dec, and ChalEnc, respectively. Then,
there exist adversaries Ȧ and D such that

Advmo-ror
ECT (A) ≤ qc ·Advot-rorEC (Ȧ) + 2 ·AdvtprpTBC(D) + (q2e + (qe + qc)

2)/2ℓ.

The run time of Ȧ and D is at most about that of MO-REALA
ECT. D makes at

most (qe + qc) queries to its oracle.

Proof. Shown in Appendix A. ⊓⊔

Ciphertext Integrity. For the ciphertext integrity of ECT, a new notion is
introduced to the ciphertext unforgeability of encryptment EC:

Definition 1 (Targeted Ciphertext Unforgeability). Let A := (A1,A2)
be an adversary acting in two phases. First, A1 takes no input and outputs
(B, state), where B ∈ T and state is some state information. Then, A2 takes
(B, state) and Kec as input, where Kec ← kg, and outputs (A,C) ∈ A× C. The
advantage of A for targeted ciphertext unforgeability is

AdvtcuEC (A) := Pr[dec(Kec, A,C,B) ̸= ⊥].

It is not difficult to see that the HFC encryptment scheme [15] satisfies tar-
geted ciphertext unforgeability in the random oracle model, which is shown in
Appendix C.

The ciphertext integrity of ECT is reduced to the second-ciphertext unforge-
ability and the targeted ciphertext unforgeability of EC and the STPRP property
of TBC:

Theorem 2 (Ciphertext Integrity). Let A be an adversary against ECT
making at most qe, qd, and qc queries to Enc, Dec, and ChalDec, respectively.
Then, there exist adversaries Ȧ, Ä, and D such that

Advmo-ctxt
ECT (A) ≤ qe ·AdvscuEC (Ȧ) + (qd + qc) ·AdvtcuEC (Ä) + AdvstprpTBC (D)

+ (qe + qd + qc)
2/2ℓ+1.

The run time of Ȧ, Ä, and D is at most about that of MO-CTXTA
ECT. D makes

at most qe + qd + qc queries to its oracle.

11

Proof. The game MO-CTXTA
ECT is shown in Fig. 6. Without loss of generality,

it is assumed that A terminates right after win gets true.
The game MO-CTXT-GA

1 in Fig. 7 is different from MO-CTXTA
ECT in that

the former records all the histories of EK and DK by “P[B,C1] ← L” and uses
them to answer to queries to Dec and ChalDec. Thus,

Advmo-ctxt
ECT (A) = Pr[MO-CTXTA

ECT = true] = Pr[MO-CTXT-GA
1 = true].

The game MO-CTXT-GA
2 in Fig. 8 is different from MO-CTXT-GA

1 in that
the former uses a random tweakable permutation ϖ instead of TBC. Let D be
an adversary against TBC. D has either (EK ,DK) or (ϖ,ϖ−1) as an oracle and
simulates MO-CTXT-GA

1 or MO-CTXT-GA
2 with the use of its oracle. Thus,

AdvstprpTBC (D) =
∣∣Pr[MO-CTXT-GA

1 = true]− Pr[MO-CTXT-GA
2 = true]

∣∣.
D makes at most qe + qd + qc queries to its oracle, and its run time is at most
about that of MO-CTXTA

ECT.
In the game MO-CTXT-GA

3 shown in Fig. 8, Dec and ChalDec select L
uniformly at random from Σℓ, while they call ϖ−1 in MO-CTXT-GA

2 . As long
as no collision is found for L, the games are equivalent to each other. Thus,∣∣Pr[MO-CTXT-GA

2 = true]−Pr[MO-CTXT-GA
3 = true]

∣∣ ≤ (qe+qd+qc)
2/2ℓ+1.

Now, Pr[MO-CTXT-GA
3 = true] is evaluated. Suppose that win is set true

by a query (A∗, C∗, B∗) to ChalDec. Let Win1, Win2, and Win3 be the cases
that

1. P[B∗, C∗1] ̸= ⊥ and P[B∗, C∗1] is already set by Enc,
2. P[B∗, C∗1] ̸= ⊥ and P[B∗, C∗1] is already set by Dec or ChalDec, and
3. P[B∗, C∗1] = ⊥,

respectively, where C∗1 is the least significant ℓ bits of C∗. Then,

Pr[MO-CTXT-GA
3 = true] = Pr[Win1] + Pr[Win2] + Pr[Win3].

For Win1, suppose that Enc sets P[B∗, C∗1] while computing a reply (Ċ, B∗)
to a query (Ȧ, Ṁ). Then, (Ȧ, Ċ) ̸= (A∗, C∗) since (Ȧ, Ċ, B∗) ∈ Y and (A∗, C∗,
B∗) ̸∈ Y. Thus, the following adversary Ȧ with the oracle encL̇ against second-

ciphertext unforgeability is successful. Ȧ runs MO-CTXT-GA
3 except that Ȧ

guesses (Ȧ, Ṁ), asks it to encL̇ and gets (Ċ, B∗) and L̇. Finally, Ȧ outputs

(A∗, C∗) satisfying dec(L̇, A∗, C∗, B∗) ̸= ⊥. Thus, AdvscuEC (Ȧ) = Pr[Win1]/qe.
For Win2 and Win3, the following adversary Ä = (Ä1, Ä2) against tar-

geted ciphertext unforgeability is successful. First, Ä1 runs MO-CTXT-GA
3 and

guesses (B∗, C∗1). It interrupts the execution of MO-CTXT-GA
3 right after it

obtains (B∗, C∗1) and outputs (B∗, state∗). Then, Ä2 takes (B∗, state∗) and
L̈ ←← Σℓ as input and resumes the execution of MO-CTXT-GA

3 by making
use of state∗. Finally, Ä2 outputs (A∗, C∗0) satisfying dec(L̈, A∗, C∗0 , B

∗) ̸= ⊥.
Thus, AdvtcuEC (Ä) = (Pr[Win2] + Pr[Win3])/(qd + qc). ⊓⊔

12

K ←← Σn; Y ← ∅
win ← false
AEnc,Dec,ChalDec

return win

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
C0∥C1 ← C
L← DK(B,C1)
return dec(L,A,C0, B)

ChalDec(A,C,B)
if (A,C,B) ∈ Y then

return ⊥
end if
C0∥C1 ← C
L← DK(B,C1)
if dec(L,A,C0, B) = ⊥ then

return ⊥
else

win ← true
M ← dec(L,A,C0, B)
return (M,L)

end if

Fig. 6: Game MO-CTXTA
ECT

K ←← Σn; Y ← ∅
win ← false
AEnc,Dec,ChalDec

return win

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
P[B,C1]← L

return (C,B)

Dec(A,C,B)
C0∥C1 ← C
if P[B,C1] ̸= ⊥ then

L← P[B,C1]

else
L← DK(B,C1)
P[B,C1]← L

end if
return dec(L,A,C0, B)

ChalDec(A,C,B)
if (A,C,B) ∈ Y then

return ⊥
end if
C0∥C1 ← C
if P[B,C1] ̸= ⊥ then

L← P[B,C1]

else
L← DK(B,C1)
P[B,C1]← L

end if
if dec(L,A,C0, B) = ⊥ then

return ⊥
else

win ← true
M ← dec(L,A,C0, B)
return (M,L)

end if

Fig. 7: MO-CTXT-GA
1 . All the entries of the table P are initialized by ⊥.

13

ϖ ←← Pτ,ℓ; Y ← ∅
win ← false
AEnc,Dec,ChalDec

return win

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← ϖ(B,L)

C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
P[B,C1]← L
return (C,B)

Dec(A,C,B)
C0∥C1 ← C
if P[B,C1] ̸= ⊥ then

L← P[B,C1]
else

G2: L← ϖ−1(B,C1)/G3: L←← Σℓ

P[B,C1]← L
end if
return dec(L,A,C0, B)

ChalDec(A,C,B)
if (A,C,B) ∈ Y then

return ⊥
end if
C0∥C1 ← C
if P[B,C1] ̸= ⊥ then

L← P[B,C1]
else

G2: L← ϖ−1(B,C1)/G3: L←← Σℓ

P[B,C1]← L
end if
if dec(L,A,C0, B) = ⊥ then

return ⊥
else

win ← true
M ← dec(L,A,C0, B)
return (M,L)

end if

Fig. 8: MO-CTXT-GA
2 and MO-CTXT-GA

3

Binding Properties. ECT inherits (strong) receiver binding from EC.
ECT also inherits sender binding from EC. Suppose that (K,A,C,B) satisfies

DEC(K,A,C,B) ̸= ⊥ and VER(A,M,L,B) = 0, where (M,L)← DEC(K,A,C,
B). Then, L = DK(B,C1), dec(L,A,C0, B) = M and M ̸= ⊥, where C =
C0∥C1. In addition, ver(A,M,L,B) = 0.

4 Remotely Keyed ccAEAD

RK ccAEAD is a particular type of ccAEAD. Their difference is that, for RK
ccAEAD, some parts of encryption and decryption are done by a trusted device
keeping the secret key. A user or a host performs encryption and/or decryption
by making use of the trusted device. The amount of computation for the trusted
device is required to be independent of the lengths of a message, associated data,
and a ciphertext due to the common case that the computational power of the
trusted device is limited.

Dodis et al. [16] left it as an open problem to formalize and construct RK
ccAEAD schemes. An answer will be given to the problem in this section.

4.1 Syntax

RK ccAEAD is formalized as a tuple of algorithms RKCAE = (RKKg,RKEnc,
RKDec,RKVer). It is involved with a key space K := Σn, an associated-data
space A ⊆ Σ∗, a message space M ⊆ Σ∗, a ciphertext space C ⊆ Σ∗, an
opening-key space L := Σℓ, and a binding-tag space T := Στ .

In the formalization below, for simplicity, it is assumed that the trusted
device is called only once during encryption and decryption:

14

– The key generation algorithm RKKg returns a secret key K ∈ K chosen
uniformly at random.

– The encryption algorithm RKEnc takes as input (K,A,M) ∈ K × A ×M
and returns (C,B) ∈ C ×T . K is given to an algorithm TE, and it is run by
a trusted device. The encryption proceeds in the following three steps:

(Qe, Se)← Pre-TE(A,M);Re ← TEK(Qe); (C,B)← Post-TE(Re, Se),

where Se is some state information.
– The decryption algorithm RKDec takes as input (K,A,C,B) ∈ K×A×C×T

and returns (M,L) ∈M×L or ⊥ ̸∈ M×L. K is given to an algorithm TD,
and it is run by a trusted device. The decryption proceeds in the following
three steps:

(Qd, Sd)← Pre-TD(A,C,B);Rd ← TDK(Qd); (M,L)/⊥ ← Post-TD(Rd, Sd),

where Sd is some state information.
– The verification algorithm RKVer takes as input (A,M,L,B) ∈ A×M×L×T

and returns b ∈ Σ.

As well as CAE, RKCAE satisfies correctness. For every l ∈ N, Σl ⊆ M
or Σl ∩M = ∅. For any message M and the corresponding ciphertext C, |C|
depends only on |M | and let |C| = clen(|M |).

4.2 Security Requirement

For RK ccAEAD, an adversary is allowed to have direct access to the trusted
device. Thus, the adversary can run RKEnc and RKDec by using TEK and TDK

as oracles, respectively.

Confidentiality. Confidentiality of RK ccAEAD is defined as real-or-random
indistinguishability. The games RK-REAL and RK-RAND shown in Fig. 9 are
introduced. An adversary A is given access to oracles E, D, and ChalEnc. A is
not allowed to decrypt (A,C,B) obtained by asking (A,M) to ChalEnc. The
advantage of A for confidentiality is

Advrk-rorRKCAE(A) :=
∣∣Pr[RK-REALA

RKCAE = 1]− Pr[RK-RANDA
RKCAE = 1]

∣∣.
Ciphertext Integrity. The game RK-CTXTA

RKCAE, shown in Fig. 10, is intro-
duced. An adversary A is given access to oracles E, D, and ChalDec. A is not
allowed to repeat the same queries to ChalDec. The game outputs true if the
number of valid ciphertexts produced by A is greater than the number of queries
to E made by A. The advantage of A for ciphertext integrity is

Advrk-ctxtRKCAE(A) := Pr[RK-CTXTA
RKCAE = true].

15

K ← RKKg; Y ← ∅
b← AE,D,ChalEnc

return b

E(Qe)
Re ← TEK(Qe)
return Re

D(Qd)
if Qd ∈ Y then

return ⊥
end if
Rd ← TDK(Qd)
return Rd

ChalEnc(A,M)
(C,B)← RKEnc(K,A,M)
(Qd, Sd)← Pre-TD(A,C,B)
Y ← Y ∪ {Qd}
return (C,B)

(a) RK-REALA
RKCAE

K ← RKKg; Y ← ∅
b← AE,D,ChalEnc

return b

E(Qe)
Re ← TEK(Qe)
return Re

D(Qd)
if Qd ∈ Y then

return ⊥
end if
Rd ← TDK(Qd)
return Rd

ChalEnc(A,M)
(C,B)←← Σclen(|M|) ×Στ

(Qd, Sd)← Pre-TD(A,C,B)
Y ← Y ∪ {Qd}
return (C,B)

(b) RK-RANDA
RKCAE

Fig. 9: Games for confidentiality of RK ccAEAD

K ← RKKg
win ← false; ctr ← 0
AE,D,ChalDec

if ctr < 0 then
win ← true

end if
return win

E(Qe)
ctr ← ctr + 1
return TEK(Qe)

D(Qd)
return TDK(Qd)

ChalDec(A,C,B)
if RKDec(K,A,C,B) ̸= ⊥ then

ctr ← ctr − 1
end if
return RKDec(K,A,C,B)

Fig. 10: Game RK-CTXTA
RKCAE for ciphertext integrity of RK ccAEAD

16

Binding Properties. Advr-bindRKCAE, Advsr-bindRKCAE , and Advs-bindRKCAE are defined as
Advr-bindCAE , Advsr-bindCAE , and Advs-bindCAE , respectively, simply by replacing Dec with
RKDec and Ver with RKVer.

5 ECT as RK ccAEAD

5.1 Scheme

ECT functions as RK ccAEAD if E and D of TBC are used for TE and TD, respec-
tively. For simplicity, ECT as RK ccAEAD is called RK ECT in the remaining
parts.

5.2 Security

Confidentiality. The crucial difference between RK ECT and ordinary ECT
is that, for a ciphertext (C,B), the former allows adversaries to check whether
L′ ∈ L is the corresponding opening key or not only by asking (B,L′) to EK . It
requires a new notion on the confidentiality of encryptment for the confidentiality
of RK ECT:

Definition 2 (Confidentiality with Attachment). Two games ˜otREAL and

˜otRAND shown in Fig. 11 are introduced to formalize confidentiality. In both of
the games, an adversary A is allowed to ask only a single query to the oracle
enc, while A is allowed to ask multiple queries adaptively to the oracle (ϖ,ϖ−1).
The advantage of A for confidentiality is

Ãdv
ot-ror

EC (A) :=
∣∣Pr[˜otREAL

A

EC = 1]− Pr[˜otRAND
A

EC = 1]
∣∣,

It is shown that the HFC encryptment scheme [15] satisfies confidentiality with
attachment in the random oracle model in Appendix C.

Kec ← kg; ϖ ←← Pτ,ℓ

b← Aenc,(ϖ,ϖ−1)

return b

enc(A,M)
(C,B)← enc(Kec, A,M)
C′ ← ϖ(B,Kec)
return (C,B,C′)

(a) ˜otREAL
A

EC

Kec ← kg; ϖ ←← Pτ,ℓ

b← Aenc,(ϖ,ϖ−1)

return b

enc(A,M)
(C,B)←← Σclen(|M|) ×Στ

C′ ← ϖ(B,Kec)
return (C,B,C′)

(b) ˜otRAND
A

EC

Fig. 11: The games for confidentiality of encryptment

The confidentiality of RK ECT is reduced to the confidentiality of EC with
attachment and the STPRP of TBC:

17

Theorem 3 (Confidentiality). Let A be an adversary against RK ECT mak-
ing at most qe, qd, and qc queries to E, D, and ChalEnc, respectively. Then,
there exist adversaries Ȧ and D such that

Advrk-rorECT (A) ≤ qc · Ãdv
ot-ror

EC (Ȧ) + 2 ·AdvstprpTBC (D) + qc(qe + qd + qc)/2
ℓ−1.

The run time of Ȧ and D is at most about that of RK-REALA
ECT. Ȧ makes at

most qe+qd+qc queries to the uniform random tweakable permutation (ϖ,ϖ−1).
D makes at most qe + qd + qc queries to its oracle.

Proof. For the games RK-REALA
ECT and RK-RANDA

ECT in Fig. 12,

Advrk-rorECT (A) =
∣∣Pr[RK-REALA

ECT = 1]− Pr[RK-RANDA
ECT = 1]

∣∣.
The game RK-ROR-GA

1 in Fig. 13 is different from RK-REALA
ECT in that the

former uses a random tweakable permutation ϖ instead of TBC. Let D1 be an
adversary against TBC. D1 has either (EK ,DK) or (ϖ,ϖ−1) as an oracle and
simulates RK-REALA

ECT or RK-ROR-GA
1 , respectively. Then,

AdvstprpTBC (D1) =
∣∣Pr[RK-REALA

ECT = 1]− Pr[RK-ROR-GA
1 = 1]

∣∣.
D1 makes at most qe + qd + qc queries to its oracle, and its run time is at most
about that of RK-REALA

ECT.

The game RK-ROR-GA
2 in Fig. 14 is different from RK-ROR-GA

1 in that the
former selects (C0, B) uniformly at random. Thus, from the hybrid argument,
there exists some Ȧ such that∣∣Pr[RK-ROR-GA

1 = 1]− Pr[RK-ROR-GA
2 = 1]

∣∣ ≤ qc · Ãdv
ot-ror

EC (Ȧ).

Ȧ makes at most qe + qd + qc queries to (ϖ,ϖ−1). The run time of Ȧ is at most
about that of RK-REALA

ECT.

The game RK-ROR-GA
3 in Fig. 14 is different from RK-ROR-GA

2 in that
ChalEnc selects C1 uniformly at random from Σℓ in the former game. As long
as no collision is found for L and C1, RK-ROR-GA

3 is equivalent to RK-ROR-GA
2 .

Thus,∣∣Pr[RK-ROR-GA
2 = 1]− Pr[RK-ROR-GA

3 = 1]
∣∣ ≤ qc(qe + qd + qc)/2

ℓ−1.

For RK-ROR-GA
3 and RK-RANDA

ECT, similar to the transformation from
RK-REALA

ECT to RK-ROR-GA
1 , there exists some D2 such that∣∣Pr[RK-ROR-GA

3]− Pr[RK-RANDA
ECT = 1]

∣∣ ≤ AdvstprpTBC (D2).

D2 makes at most qe+ qd queries to its oracle, and its run time is at most about
that of RK-RANDA

ECT. ⊓⊔

18

K ←← Σn; Y ← ∅
b← AE,D,ChalEnc

return b

E(B,L)
C1 ← EK(B,L)
return C1

D(B,C1)
if (B,C1) ∈ Y then

return ⊥
end if
L← DK(B,C1)
return L

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(B,C1)}
return (C,B)

(a) RK-REALA
ECT

K ←← Σn; Y ← ∅
b← AE,D,ChalEnc

return b

E(B,L)
C1 ← EK(B,L)
return C1

D(B,C1)
if (B,C1) ∈ Y then

return ⊥
end if
L← DK(B,C1)
return L

ChalEnc(A,M)

(C0, B)←← Σclen(|M|) ×Στ

C1 ←← Σℓ

C ← C0∥C1

Y ← Y ∪ {(B,C1)}
return (C,B)

(b) RK-RANDA
ECT

Fig. 12: Games for confidentiality of RK ECT

ϖ ←← Pτ,ℓ; Y ← ∅
b← AE,D,ChalEnc

return b

E(B,L)
C1 ← ϖ(B,L)

return C1

D(B,C1)
if (B,C1) ∈ Y then

return ⊥
end if
L← ϖ−1(B,C1)

return L

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← ϖ(B,L)

C ← C0∥C1

Y ← Y ∪ {(B,C1)}
return (C,B)

Fig. 13: RK-ROR-GA
1

ϖ ←← Pτ,ℓ; Y ← ∅
b← AE,D,ChalEnc

return b

E(B,L)
C1 ← ϖ(B,L)
return C1

D(B,C1)
if (B,C1) ∈ Y then

return ⊥
end if
L← ϖ−1(B,C1)
return L

ChalEnc(A,M)

G2: L←← Σℓ/G3:

(C0, B)←← Σclen(|M|) ×Στ

G2: C1 ← ϖ(B,L)/G3: C1 ←← Σℓ

C ← C0∥C1

Y ← Y ∪ {(B,C1)}
return (C,B)

Fig. 14: RK-ROR-GA
2 and

RK-ROR-GA
3

19

Ciphertext Integrity. The ciphertext integrity of RK ECT is reduced to the
receiver-binding and the targeted ciphertext unforgeability of EC and the STPRP
property of TBC:

Theorem 4 (Ciphertext Integrity). Suppose that the encryptment scheme
used for RK ECT satisfies strong correctness. Let A be an adversary against RK
ECT making at most qe, qd, and qc queries to E, D, and ChalDec, respectively.
Then, there exist adversaries Ȧ, Ä, and D such that

Advrk-ctxtECT (A) ≤ Advr-bindEC (Ȧ) + (qd + qc) ·AdvtcuEC (Ä) + AdvstprpTBC (D)

+ (qe + qd + qc)
2/2ℓ.

The run time of Ȧ, Ä, and D is at most about that of RK-CTXTA
ECT. D makes

at most qe + qd + qc queries to its oracles.

Proof. Shown in Appendix B. ⊓⊔

Binding Properties. To see ECT as RK ccAEAD does not affect the bind-
ing properties. Thus, as discussed in Sect. 3.2, RK ECT inherits both (strong)
receiver binding and sender binding from EC.

6 Conclusions

We have studied the problem of constructing compactly committing AEAD
(ccAEAD) based on encryptment, originally proposed by Dodis et al. [15,16]
in the context of end-to-end messaging. We proposed ECT, a conceptually sim-
plified, more efficient construction than those proposed by Dodis et al. by using
a TBC instead of AEAD. We also present a formalization of remotely keyed vari-
ant of ccAEAD (RK ccAEAD) and show that our ECT is indeed RK ccAEAD,
which addresses the open question posed by Dodis et al. [16] positively. This
indicates that ECT is useful when ccAEAD is implemented on the platform con-
sisting of (small, slow) trusted and untrusted (but cheap and fast) modules.
Future work is to explore the relationship between remotely keyed ccAEAD and
leakage-resilient AEAD. It is also interesting to see if other generic constructions
such as CtE and CEP in [20] can be simplified.

Acknowledgements. The authors thank Akiko Inoue for fruitful discussions.
The first author was supported by JSPS KAKENHI Grant Number 21K11885.

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. In: Butler,
K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Secu-
rity 2022. pp. 3291–3308. USENIX Association (2022), https://www.usenix.org/
conference/usenixsecurity22/presentation/albertini

20

https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini

2. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated en-
cryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. Lec-
ture Notes in Computer Science, vol. 13276, pp. 845–875. Springer (2022).
https://doi.org/10.1007/978-3-031-07085-3 29

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976, pp. 531–545.
Springer (2000). https://doi.org/10.1007/3-540-44448-3 41

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
Lecture Notes in Computer Science, vol. 4004, pp. 409–426. Springer (2006).
https://doi.org/10.1007/11761679 25

5. Bellizia, D., Bronchain, O., Cassiers, G., Grosso, V., Guo, C., Momin, C.,
Pereira, O., Peters, T., Standaert, F.: Mode-level vs. implementation-level physi-
cal security in symmetric cryptography - A practical guide through the leakage-
resistance jungle. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. Lec-
ture Notes in Computer Science, vol. 12170, pp. 369–400. Springer (2020).
https://doi.org/10.1007/978-3-030-56784-2 13

6. Berti, F., Guo, C, Pereira, O., Peters, T., Standaert, F-X.,: TEDT,
a leakage-resistant AEAD mode for high physical security applications.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1): 256-320 (2020).
https://doi.org/10.13154/tches.v2020.i1.256-320

7. Berti, F., Pereira, O., Standaert, F.: Reducing the cost of authenticity with leak-
ages: a CIML2-secure AE scheme with one call to a strongly protected tweakable
block cipher. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2019. Lecture Notes in Computer Science, vol. 11627, pp. 229–249. Springer (2019).
https://doi.org/10.1007/978-3-030-23696-0 12

8. Blaze, M.: High-bandwidth encryption with low-bandwidth smartcards. In: Goll-
mann, D. (ed.) FSE ’96. Lecture Notes in Computer Science, vol. 1039, pp. 33–40.
Springer (1996). https://doi.org/10.1007/3-540-60865-6 40

9. Blaze, M., Feigenbaum, J., Naor, M.: A formal treatment of remotely keyed encryp-
tion. In: Nyberg, K. (ed.) EUROCRYPT ’98. Lecture Notes in Computer Science,
vol. 1403, pp. 251–265. Springer (1998). https://doi.org/10.1007/BFb0054131

10. Chan, J., Rogaway, P.: On committing authenticated-encryption. In: Atluri,
V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.) ESORICS 2022. Lec-
ture Notes in Computer Science, vol. 13555, pp. 275–294. Springer (2022).
https://doi.org/10.1007/978-3-031-17146-8 14

11. Chen, L., Tang, Q.: People who live in glass houses should not throw stones:
Targeted opening message franking schemes. Cryptology ePrint Archive, Report
2018/994 (2018), https://eprint.iacr.org/2018/994

12. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
’89. Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer (1989).
https://doi.org/10.1007/0-387-34805-0 39

13. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas,
R., and Unterluggauer, T.: Isap v2.0. IACR Trans. Symmetric Cryptol. 2020(S1):
390-416 (2020) https://doi.org/https://doi.org/10.13154/tosc.v2020.iS1.390-416

14. Dodis, Y., An, J.H.: Concealment and its applications to authenticated encryp-
tion. In: Biham, E. (ed.) EUROCRYPT 2003. Lecture Notes in Computer Science,
vol. 2656, pp. 312–329. Springer (2003). https://doi.org/10.1007/3-540-39200-9 19

21

https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.1007/978-3-030-23696-0_12
https://doi.org/10.1007/3-540-60865-6_40
https://doi.org/10.1007/BFb0054131
https://doi.org/10.1007/978-3-031-17146-8_14
https://eprint.iacr.org/2018/994
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.1007/3-540-39200-9_19

15. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. Lecture Notes in Computer Science, vol. 10991, pp. 155–186.
Springer (2018). https://doi.org/10.1007/978-3-319-96884-1 6

16. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. Cryptology ePrint Archive, Paper 2019/016
(2019), https://eprint.iacr.org/2019/016

17. Facebook: Facebook messenger. https://www.messenger.com, accessed on
09/10/2022

18. Facebook: Messenger secret conversations. Technical Whitepa-
per (2016), https://about.fb.com/wp-content/uploads/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf

19. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Transactions on Symmetric Cryptology 2017(1), 449–473
(2017). https://doi.org/10.13154/tosc.v2017.i1.449-473

20. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. Lecture Notes in Com-
puter Science, vol. 10403, pp. 66–97. Springer (2017). https://doi.org/10.1007/978-
3-319-63697-9 3

21. Hirose, S.: Compactly committing authenticated encryption using tweakable
block cipher. In: Kutylowski, M., Zhang, J., Chen, C. (eds.) NSS 2020. Lec-
ture Notes in Computer Science, vol. 12570, pp. 187–206. Springer (2020).
https://doi.org/10.1007/978-3-030-65745-1 11

22. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient strong desig-
nated verifier signature schemes without random oracle or with non-
delegatability. International Journal of Information Security 10(6), 373–385 (2011).
https://doi.org/10.1007/s10207-011-0146-1

23. Huguenin-Dumittan, L., Leontiadis, I.: A message franking channel. In: Yu, Y.,
Yung, M. (eds.) Inscrypt 2021. Lecture Notes in Computer Science, vol. 13007, pp.
111–128. Springer (2021). https://doi.org/10.1007/978-3-030-88323-2 6

24. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT ’96. Lecture Notes in Computer
Science, vol. 1070, pp. 143–154. Springer (1996). https://doi.org/10.1007/3-540-
68339-9 13

25. Jakobsson, M., Stern, J.P., Yung, M.: Scramble all, encrypt small. In: Knudsen,
L.R. (ed.) FSE ’99. Lecture Notes in Computer Science, vol. 1636, pp. 95–111.
Springer (1999). https://doi.org/10.1007/3-540-48519-8 8

26. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic
private-key encryption. In: Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing. pp. 245–254 (2000)

27. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M.,
Greenstadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021.
pp. 195–212. USENIX Association (2021), https://www.usenix.org/conference/
usenixsecurity21/presentation/len

28. Leontiadis, I., Vaudenay, S.: Private message franking with after opening privacy.
Cryptology ePrint Archive, Report 2018/938 (2018), https://eprint.iacr.org/
2018/938

29. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Yung, M.
(ed.) CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 31–46.
Springer (2002). https://doi.org/10.1007/3-540-45708-9 3

22

https://doi.org/10.1007/978-3-319-96884-1_6
https://eprint.iacr.org/2019/016
https://www.messenger.com
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-030-65745-1_11
https://doi.org/10.1007/s10207-011-0146-1
https://doi.org/10.1007/978-3-030-88323-2_6
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-48519-8_8
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://eprint.iacr.org/2018/938
https://eprint.iacr.org/2018/938
https://doi.org/10.1007/3-540-45708-9_3

30. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. Journal of
Cryptology 24(3), 588–613 (2011). https://doi.org/10.1007/s00145-010-9073-y

31. Lucks, S.: On the security of remotely keyed encryption. In: Biham, E. (ed.) FSE
’97. Lecture Notes in Computer Science, vol. 1267, pp. 219–229. Springer (1997).
https://doi.org/10.1007/BFb0052349,

32. Lucks, S.: Accelerated remotely keyed encruption. In: Knudsen, L.R. (ed.) FSE
’99. Lecture Notes in Computer Science, vol. 1636, pp. 112–123. Springer (1999).
https://doi.org/10.1007/3-540-48519-8 9

33. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
’89. Lecture Notes in Computer Science, vol. 435, pp. 428–446. Springer (1989).
https://doi.org/10.1007/0-387-34805-0 40

34. Naito, Y., Sasaki, Y., Sugawara, T.: Secret can be public: Low-memory AEAD
mode for high-order masking. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022.
Lecture Notes in Computer Science, vol. 13509, pp. 315–345. Springer (2022).
https://doi.org/10.1007/978-3-031-15982-4 11

35. Shen, Y., Peters, T., Standaert, F., Cassiers, G., Verhamme, C.:
Triplex: an efficient and one-pass leakage-resistant mode of operation.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4), 135–162 (2022).
https://doi.org/10.46586/tches.v2022.i4.135-162

36. Signal Foundation: Signal. https://signal.org/, accessed on 09/10/2022
37. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message

franking: Content moderation for metadata-private end-to-end encryption. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. Lecture Notes in Computer
Science, vol. 11694, pp. 222–250. Springer (2019). https://doi.org/10.1007/978-3-
030-26954-8 8

38. WhatsApp: WhatsApp Messenger. https://www.whatsapp.com, accessed on
09/10/2022

39. Yamamuro, H., Hara, K., Tezuka, M., Yoshida, Y., Tanaka, K.: Forward secure mes-
sage franking. In: Park, J.H., Seo, S. (eds.) ICISC 2021. Lecture Notes in Computer
Science, vol. 13218, pp. 339–358. Springer (2021). https://doi.org/10.1007/978-3-
031-08896-4 18

A Proof of Theorem 1

For the games MO-REALA
ECT and MO-RANDA

ECT in Fig. 15,

Advmo-ror
ECT (A) =

∣∣Pr[MO-REALA
ECT = 1]− Pr[MO-RANDA

ECT = 1]
∣∣.

The game MO-ROR-GA
1 in Fig. 16 is different from MO-REALA

ECT in that
the former records all the histories of Enc by “R[A,C,B] ← (M,L)” and uses
them to answer to the queries to Dec. Thus,

Pr[MO-ROR-GA
1 = 1] = Pr[MO-REALA

ECT = 1].

The game MO-ROR-GA
2 in Fig. 17 is different from MO-ROR-GA

1 in that
the former uses a random tweakable permutation ϖ instead of EK . Let D1 be
an adversary against TBC. D1 has either EK or ϖ as an oracle and simulates
MO-ROR-GA

1 or MO-ROR-GA
2 with the use of its oracle. Thus,

AdvtprpTBC(D1) =
∣∣Pr[MO-ROR-GA

1 = 1]− Pr[MO-ROR-GA
2 = 1]

∣∣.
23

https://doi.org/10.1007/s00145-010-9073-y
https://doi.org/10.1007/BFb0052349
https://doi.org/10.1007/3-540-48519-8_9
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-031-15982-4_11
https://doi.org/10.46586/tches.v2022.i4.135-162
https://signal.org/
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1007/978-3-030-26954-8_8
https://www.whatsapp.com
https://doi.org/10.1007/978-3-031-08896-4_18
https://doi.org/10.1007/978-3-031-08896-4_18

D1 makes at most qe+ qc queries to its oracle, and its run time is at most about
that of MO-REALA

ECT.
The game MO-ROR-GA

3 in Fig. 18 is different from MO-ROR-GA
2 in that

the former selects C1 uniformly at random from Σℓ instead of asking (B,L) to
ϖ. As long as no collision is found for L and C1, MO-ROR-GA

3 is equivalent to
MO-ROR-GA

2 . L is selected uniformly at random from Σℓ, Thus,∣∣Pr[MO-ROR-GA
2 = 1]− Pr[MO-ROR-GA

3 = 1]
∣∣ ≤ (qe + qc)

2/2ℓ.

The game MO-ROR-G4 in Fig. 19 is different from MO-ROR-GA
3 in that the

former selects (C0, B) uniformly at random from Σclen(|M |)×Στ . Thus, from the
hybrid argument, there exists some Ȧ such that∣∣Pr[MO-ROR-GA

3 = 1]− Pr[MO-ROR-GA
4 = 1]

∣∣ ≤ qc ·Advot-rorEC (Ȧ)

and the run time of Ȧ is at most about that of MO-REALA
ECT.

For MO-ROR-GA
4 and MO-RANDA

ECT, similar to the transformation from
MO-REALA

ECT to MO-ROR-GA
3 , there exists some D2 such that∣∣Pr[MO-ROR-GA

4]− Pr[MO-RANDA
ECT = 1]

∣∣ ≤ AdvtprpTBC(D2) + q2e/2
ℓ.

D2 makes at most qe queries to its oracle, and its run time is at most about that
of MO-RANDA

ECT, which is at most about that of MO-REALA
ECT.

B Proof of Theorem 4

The game RK-CTXTA
ECT is shown in Fig. 20. The game RK-CTXT-GA

1 in Fig. 21
records all the histories of EK and DK and uses them to answer to queries to E,
D, and ChalDec. The game RK-CTXT-GA

2 in Fig. 22 uses a random tweakable
permutation ϖ instead of TBC. In the game RK-CTXT-GA

3 shown in Fig. 22, E
selects C1 uniformly at random from Σℓ, andD andChalDec select L uniformly
at random from Σℓ. Thus, similar to the proof of Theorem 2, there exists some
adversary D such that

Advrk-ctxtECT (A) ≤ Pr[RK-CTXT-GA
3 = true] + AdvstprpTBC (D) + (qe + qd + qc)

2/2ℓ.

D makes at most qe + qd + qc queries to its oracles, and its run time is at most
about that of RK-CTXTA

ECT.
Now, Pr[RK-CTXT-GA

3 = true] is evaluated. Let S ⊂ A × C × T be the
sets of successful queries to ChalDec made by A. Namely, their corresponding
replies belong to M× L. Let P be the sets of all (B,L,C1)’s obtained by the
queries to E made by A.

Suppose that RK-CTXT-GA
3 outputs true. Then, |S| > |P|. Let Win1 and

Win2 be the cases that

1. For any (A,C,B) ∈ S, there exists some (B̃, L̃, C̃1) ∈ P such that (B,C1) =
(B̃, C̃1), where C1 is the least significant ℓ bits of C, and

24

K ←← Σn; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
C0∥C1 ← C
L← DK(B,C1)
M ← dec(L,A,C0, B)
return (M,L)

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

return (C,B)

(a) MO-REALA
ECT

K ←← Σn; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
C0∥C1 ← C
L← DK(B,C1)
M ← dec(L,A,C0, B)
return (M,L)

ChalEnc(A,M)

(C0, B)←← Σclen(|M|) ×Στ

C1 ←← Σℓ

C ← C0∥C1

return (C,B)

(b) MO-RANDA
ECT

Fig. 15: Games for confidentiality of ECT

K ←← Σn; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
R[A,C,B]← (M,L)

return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← R[A,C,B]

return (M,L)

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← EK(B,L)
C ← C0∥C1

return (C,B)

Fig. 16: MO-ROR-GA
1

ϖ ←← Pτ,ℓ; Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← ϖ(B,L)

C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
R[A,C,B]← (M,L)
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← R[A,C,B]
return (M,L)

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)
C1 ← ϖ(B,L)

C ← C0∥C1

return (C,B)

Fig. 17: MO-ROR-GA
2

25

Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)

C1 ←← Σℓ

C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
R[A,C,B]← (M,L)
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← R[A,C,B]
return (M,L)

ChalEnc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)

C1 ←← Σℓ

C ← C0∥C1

return (C,B)

Fig. 18: MO-ROR-GA
3

Y ← ∅
b← AEnc,Dec,ChalEnc

return b

Enc(A,M)

L←← Σℓ

(C0, B)← enc(L,A,M)

C1 ←← Σℓ

C ← C0∥C1

Y ← Y ∪ {(A,C,B)}
R[A,C,B]← (M,L)
return (C,B)

Dec(A,C,B)
if (A,C,B) ̸∈ Y then

return ⊥
end if
(M,L)← R[A,C,B]
return (M,L)

ChalEnc(A,M)

(C0, B)←← Σclen(|M|) ×Στ

C1 ←← Σℓ

C ← C0∥C1

return (C,B)

Fig. 19: MO-ROR-GA
4

2. otherwise,

respectively. Then,

Pr[RK-CTXT-GA
3 = true] = Pr[Win1] + Pr[Win2].

For Win1, since |S| > |P|, there exist (A′, C ′, B′) and (A′′, C ′′, B′′) in S
such that (B′, C ′1) = (B′′, C ′′1) and (A′, C ′0) ̸= (A′′, C ′′0), where C ′0∥C ′1 = C ′

and C ′′0 ∥C ′′1 = C ′′. Let L′ ← DK(B′, C ′1), M ′ ← dec(L′, A′, C ′0, B
′), L′′ ←

DK(B′′, C ′′1), and M ′′ ← dec(L′′, A′′, C ′′0 , B
′′). Then, L′ = L′′. Since EC is

strongly correct, enc(L′, A′,M ′) = (C ′0, B
′) and enc(L′′, A′′,M ′′) = (C ′′0 , B

′′).
Thus, since EC is correct, ver(A′,M ′, L′, B′) = 1 and ver(A′′,M ′′, L′′, B′′) = 1.
Suppose that (L′, A′,M ′) = (L′′, A′′,M ′′). Then, (C ′0, B

′) = (C ′′0 , B
′′) since

enc is determinisrtic, which contradicts (A′, C ′0) ̸= (A′′, C ′′0). Thus, (A
′,M ′) ̸=

(A′′,M ′′) since L′ = L′′. Consequently, there exists some adversary Ȧ such that
Advr-bindEC (Ȧ) = Pr[Win1]. Ȧ simply runs RK-CTXT-GA

3 .

For Win2, suppose that (A∗, C∗, B∗) ∈ S and that (B∗, L̃, C∗1) ̸∈ P for
any L̃ ∈ Σℓ, where C∗1 is the least significant ℓ bits of C∗. Then, the follow-
ing adversary Ä = (Ä1, Ä2) against EC for targeted ciphertext unforgeability
is successful. First, Ä1 executes RK-CTXT-GA

3 and guesses (B∗, C∗1) in the
queries to D or ChalDec. It interrupts the execution of RK-CTXT-GA

3 right
after it finds (B∗, C∗1). Then, Ä2 gets L̈ ←← Σℓ and resumes the execution of
RK-CTXT-GA

3 . Finally, Ä2 outputs (A∗, C∗0) satisfying dec(L̈, A∗, C∗0 , B
∗) ̸= ⊥,

where C∗ = C∗0∥C∗1 . Thus, Adv
tcu
EC (Ä) = Pr[Win2]/(qd + qc).

26

K ←← Σn

win ← false; ctr ← 0
AE,D,ChalDec

if ctr < 0 then
win ← true

end if
return win

E(B,L)
ctr ← ctr + 1
C1 ← EK(B,L)
return C1

D(B,C1)
L← DK(B,C1)
return L

ChalDec(A,C,B)
C0∥C1 ← C
L← DK(B,C1)
if dec(L,A,C0, B) ̸= ⊥ then

ctr ← ctr − 1
M ← dec(L,A,C0, B)
return (M,L)

else
return ⊥

end if

Fig. 20: Game RK-CTXTA
ECT

K ←← Σn; Z ← ∅
win ← false; ctr ← 0
AE,D,ChalDec

if ctr < 0 then
win ← true

end if
return win

E(B,L)
ctr ← ctr + 1
if (B,L, C̃1) ∈ Z then

C1 ← C̃1

else
C1 ← EK(B,L)
Z ← Z ∪ {(B,L,C1)}

end if
return C1

D(B,C1)

if (B, L̃, C1) ∈ Z then

L← L̃
else

L← DK(B,C1)
Z ← Z ∪ {(B,L,C1)}

end if
return L

ChalDec(A,C,B)
C0∥C1 ← C

if (B, L̃, C1) ∈ Z then

L← L̃
else

L← DK(B,C1)
Z ← Z ∪ {(B,L,C1)}

end if
if dec(L,A,C0, B) ̸= ⊥ then

ctr ← ctr − 1
M ← dec(L,A,C0, B)
return (M,L)

else
return ⊥

end if

Fig. 21: RK-CTXT-GA
1

27

ϖ ←← Pτ,ℓ; Z ← ∅
win ← false; ctr ← 0
AE,D,ChalDec

if ctr < 0 then
win ← true

end if
return win

E(B,L)
ctr ← ctr + 1
if (B,L, C̃1) ∈ Z then

C1 ← C̃1

else
G2: C1 ← ϖ(B,L)/G3: C1 ←← Σℓ

Z ← Z ∪ {(B,L,C1)}
end if
return C1

D(B,C1)

if (B, L̃, C1) ∈ Z then

L← L̃
else

G2: L← ϖ−1(B,C1)/G3: L←← Σℓ

Z ← Z ∪ {(B,L,C1)}
end if
return L

ChalDec(A,C,B)
C0∥C1 ← C

if (B, L̃, C1) ∈ Z then

L← L̃
else

G2: L← ϖ−1(B,C1)/G3: L←← Σℓ

Z ← Z ∪ {(B,L,C1)}
end if
if dec(L,A,C0, B) ̸= ⊥ then

ctr ← ctr − 1
M ← dec(L,A,C0, B)
return (M,L)

else
return ⊥

end if

Fig. 22: RK-CTXT-GA
2 and RK-CTXT-GA

3

C HFC and Its Security for New Security Notions

The HFC encryptment scheme [15] HFC := (Hkg,Henc,Hdec,Hver) uses a com-
pression function f : Στ×Σℓ → Στ , where τ and ℓ satisfies ℓ ≥ τ ≥ 128. The key
space is Σℓ, and the binding-tag space is Στ . To simplify the description, it is
assumed that the associated-data space is

⋃
i>0 Σ

ℓi and the message and cipher-
text spaces are

⋃
i>0 Σ

τi. Let parsew be a function which takesX ∈
⋃

i>0 Σ
wi as

input and outputs X1, X2, . . . , Xx such that X = X1∥X2∥ · · · ∥Xx and |Xi| = w
for 1 ≤ i ≤ x.

The key generation algorithm Hkg simply selects Kec uniformly at random
from Σℓ. The encryptment algorithm Henc and the decryptment algorithm Hdec
are described in Fig. 23. The description of the verification algorithm Hver is
omitted since it is apparent from Hdec.

HFC satisfies targeted ciphertext unforgeability if the underlying compression
function f is a random oracle:

Theorem 5. Suppose that f is a random oracle. Then, for any adversary A :=
(A1,A2) against HFC concerning targeted ciphertext unforgeability such that A1

and A2 make at most q1 and q2 queries to f, respectively,

AdvtcuHFC(A) ≤ (q1 + 1)q2/2
τ + q1/2

ℓ.

Proof. Suppose that A2 takes (B, state) and Kec as input and outputs (A,C),
where (B, state) is the output of A1 and Kec ←← Σℓ. Suppose that, for 1 ≤
j1 ≤ q1, A1 receives Z1,j1 ∈ Στ from f as a response to a query (Y1,j1 ,W1,j1) ∈

28

Henc(Kec, A,M)
(A1, . . . , Aa)← parseℓ(A)
(M1, . . . ,Mm)← parseτ (M)
V0 ← f(IV , Kec)
for i = 1 to a do

Vi ← f(Vi−1, Kec ⊕ Ai)
end for
for i = 1 to m do

Ci ←Mi ⊕ Va+i−1

M ′
i ←Mi∥0ℓ−τ

Va+i ← f(Va+i−1, Kec ⊕M ′
i)

end for
M ′

m+1 ← 0ℓ−128∥⟨A⟩64∥⟨M⟩64
B ← f(Va+m, Kec ⊕M ′

m+1)

C ← C1∥C2∥ · · · ∥Cm

return (C,B)

Hdec(Kec, A, C,B)
(A1, . . . , Aa)← parseℓ(A)
(C1, . . . , Cc)← parseτ (C)
V0 ← f(IV , Kec)
for i = 1 to a do

Vi ← f(Vi−1, Kec ⊕ Ai)
end for
for i = 1 to c do

Mi ← Ci ⊕ Va+i−1

M ′
i ←Mi∥0ℓ−τ

Va+i ← f(Va+i−1, Kec ⊕M ′
i)

end for
M ′

c+1 ← 0ℓ−128∥⟨A⟩64∥⟨C⟩64
B′ ← f(Va+c, Kec ⊕M ′

c+1)

if B′ = B then
M ←M1∥M2∥ · · · ∥Mc

return M
else

return ⊥
end if

Fig. 23: Henc and Hdec. IV ∈ Στ is a fixed initial vector. ⟨X⟩64 denotes the
64-bit binary representation of |X| for X ∈ Σ∗.

Στ × Σℓ. Suppose that, for 1 ≤ j2 ≤ q2, A2 receives Z2,j2 ∈ Στ from f as a
response to a query (Y2,j2 ,W2,j2) ∈ Στ × Σℓ. Without loss of generality, it is
assumed that all the queries made by A1 and A2 to f are distinct from each
other and sufficient to compute Hdec(Kec, A,C,B).

Let ColK be the event that there exists some j∗1 such that Kec = W1,j∗1
.

Then,

AdvtcuHFC(A) ≤ Pr[Hdec(Kec, A,C,B) ̸= ⊥]
≤ Pr[ColK] + Pr[Hdec(Kec, A,C,B) ̸= ⊥ | ColK],

and Pr[ColK] ≤ q1/2
ℓ. Suppose that ColK does not happen. Then, to satisfy

Hdec(Kec, A,C,B) ̸= ⊥, it is necessary that there exists some j∗2 such that
Z2,j∗2

= B or Z2,j∗2
= Z1,j1 for some j1. Thus,

Pr[Hdec(Kec, A,C,B) ̸= ⊥ | ColK] ≤ (q1 + 1)q2/2
τ .

⊓⊔

HFC satisfies confidentiality with attachment if the underlying compression
function f is a random oracle:

Theorem 6. Suppose that f is a random oracle. Let A be any adversary against
HFC concerning confidentiality with attachment. Suppose that A makes at most
qt and qf queries to (ϖ,ϖ−1) and f, respectively. Suppose that a query to enc
made by A induces σ calls to f. Then,

Ãdv
ot-ror

HFC (A) ≤ qf/2
ℓ + σ(σ + 1)/2ℓ+1 + (qf + qt)/(2

ℓ − qf − qt).

29

Proof. A is given f as an oracle in addition to enc and (ϖ,ϖ−1). Let QA
1 and

QA
2 be the set of queries to f made by A before and after the query to enc,

respectively, where QA
i ⊆ Στ × Σℓ for i ∈ {1, 2}. Let QHenc ⊆ Στ × Σℓ be the

set of queries to f made by Henc for the query to enc. Let us first specify the

following events in ˜otREAL
A

HFC:

– Dupi is the event that QA
i ∩QHenc ̸= ∅ for i ∈ {1, 2};

– Col is the event that there exists some X ∈ QHenc such that f(X) = IV or
f(X) = f(X ′) for some X ′ ∈ QHenc such that X ̸= X ′;

– Hit is the event that A asks (B,Kec) to ϖ.

Notice that Henc asks each query in QHenc only once if Col does not happen.

˜otREAL
A

HFC is equivalent to ˜otRAND
A

HFC as long as Dup1, Col, Dup2, and Hit in

˜otREAL
A

HFC. Thus,

Ãdv
ot-ror

EC (A) =
∣∣Pr[˜otREAL

A

EC = 1]− Pr[˜otRAND
A

EC = 1]
∣∣

≤ Pr[Dup1 ∨ Col ∨ Dup2 ∨ Hit]
≤ Pr[Dup1] + Pr[Col] + Pr[Dup2 ∨ Hit | Dup1 ∧ Col].

Without loss of generality, Kec is assumed to be chosen right after the query
to enc made by A. Thus, Pr[Dup1] ≤ qf/2

ℓ. It is easy to see Pr[Col] ≤ σ(σ +
1)/2ℓ+1.

If Dup1 ∧ Col happens, then a query to f made by A reduces at most one
candidate for Kec as long as Dup2 does not happen. As long as Hit does not
happen, a query to (ϖ,ϖ−1) made by A also reduces at most one candidates
for Kec. Thus, Pr[Dup2 ∨ Hit | Dup1 ∧ Col] ≤ (qf + qt)/(2

ℓ − qf − qt). ⊓⊔

D Proof of Proposition 1

Let Ȧ be an adversary against EC for receiver binding. Ȧ runs A. For a query
(A,M) made by A to enc, Ȧ executes Kec ← kg and (C,B) ← encKec

(A,M).
After receiving Kec and (C,B) from Ȧ, A outputs (A′, C ′). Finally, Ȧ outputs
((Kec, A,M), (Kec, A

′,M ′), B), where M ′ is chosen at random if decKec(A
′, C ′,

B) = ⊥ and M ′ ← decKec(A
′, C ′, B) otherwise.

Since EC is correct, ver(A,M,Kec, B) = 1. It is shown in the remaining parts
that, if (A,C) ̸= (A′, C ′) and decKec

(A′, C ′, B) = M ′ ̸= ⊥, then (A,M) ̸=
(A′,M ′) and ver(A′,M ′,Kec, B) = 1.

Suppose that decKec
(A′, C ′, B) ̸= ⊥. Then, encKec

(A′,M ′) = (C ′, B) since
EC is strongly correct. Thus, ver(A′,M ′,Kec, B) = 1 since EC is correct. In
addition, suppose that (A,C) ̸= (A′, C ′). If A ̸= A′, then (A,M) ̸= (A′,M ′).
If A = A′, then C ̸= C ′. Suppose that M = M ′. Then, it contradicts with
C ̸= C ′ since encKec

(A,M) = (C,B), encKec
(A′,M ′) = (C ′, B) and enc is a

deterministic algorithm.

30

	 Compactly Committing Authenticated Encryption Using Encryptment and Tweakable Block Cipher

