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Abstract. The use of deep learning techniques in cryptanalysis has garnered
considerable interest following Gohr’s seminal work in 2019. Subsequent studies
have focused on training more effective distinguishers and interpreting these
models, primarily for differential attacks. In this paper, we shift our attention
to deep learning-based distinguishers for rotational XOR (RX) cryptanalysis on
AND-RX ciphers, an area that has received comparatively less attention. Our
contributions include a detailed analysis of the state-of-the-art deep learning
techniques for RX cryptanalysis and their applicability to AND-RX ciphers like
Simeck and Simon. Our research proposes a novel approach to identify DL-
based RX distinguishers, by adapting the evolutionary algorithm presented in
the work of Bellini et al. to determine optimal values for translation (δ) and
rotation offset (γ) parameters for RX pairs. We successfully identify distinguish-
ers using deep learning techniques for different versions of Simon and Simeck,
finding distinguishers for the classical related-key scenario, as opposed to the
weak-key model used in related work. Additionally, our work contributes to the
understanding of the diffusion layer’s impact in AND-RX block ciphers against
RX cryptanalysis by focusing on determining the optimal rotation parameters
using our evolutionary algorithm, thereby providing valuable insights for design-
ing secure block ciphers and enhancing their resistance to RX cryptanalysis.

Keywords: AND-RX ciphers· Deep Learning · Cryptanalysis · Rotational-XOR crypt-
analysis.

1 Introduction

Cryptography plays a crucial role in ensuring the security and privacy of information
in modern communication systems. Block ciphers, in particular, are widely used to
provide encryption for data transmission, ensuring that the content remains confidential
and secure from unauthorized access. However, the effectiveness of block ciphers is
always being tested, and researchers are continually exploring new ways to improve
their resilience against attacks like differential [7], linear [19], algebraic attacks [3],
etc. Among several cryptanalysis techniques, Rotational-XOR (RX) cryptanalysis has
emerged as a powerful method to evaluate the security of block ciphers, particularly
ARX and AND-RX ciphers such as Speck, Simon, and Simeck [1].
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In recent years, artificial intelligence (AI) and deep learning have shown great po-
tential in a variety of applications, including cryptanalysis. Their ability to analyze
complex patterns and relationships in large datasets has motivated researchers to ex-
plore new techniques for breaking cryptographic algorithms[10, 6, 20]. This paper aims
to investigate the application of deep learning in the RX cryptanalysis of AND-RX
block ciphers, with a focus on Simon and Simeck, and proposes an approach to see the
impact of diffusion layers in these ciphers.

The conventional cryptographic analysis techniques utilized in RX cryptanalysis
commonly depend on weak-key models, wherein statistical methods are utilized to
detect distinguishers and possible vulnerabilities. Nevertheless, these methods are con-
strained, as achieving a good distinction with a limited weak-key model may not be
feasible. In this context, deep learning has been proposed as an alternative technique,
offering the possibility of improved results in cryptanalysis tasks. Our proposed method
has enabled us to acquire distinguishers for full-key classes concerning Simeck and Si-
mon ciphers.

In addition to assessing the security of ciphers, finding the best parameters for dif-
fusion layers is a crucial aspect of cipher design. The diffusion layer plays a significant
role in ensuring that minimal alterations in plaintext or key inputs lead to substantial
changes in the ciphertext output, making it challenging for adversaries to decipher the
original data. In this paper, we propose a new approach that involves using a mod-
ified version of the optimizer in [5] to determine the best RX differential inputs and
the optimal shift parameter for finding the longest round distinguisher with the aid of
deep learning classifiers. Furthermore, we use this optimizer to identify the best set of
rotations in the diffusion layer that works against deep learning optimizers, specifically
for Simeck-like ciphers. Our approach ensures that deep learning distinguishers cannot
find the optimal distinguishers, thereby enhancing the overall security of the ciphers.
Therefore, our method demonstrates the potential for improving the security of ciphers
while also enhancing the efficiency of the design process by utilizing deep learning clas-
sifiers in combination with an optimizer. Our findings contribute to the ongoing efforts
to enhance the security of AND-RX block ciphers and highlight the potential of AI
applications in Rotational-XOR cryptanalysis.

Our Deep Learning (DL)-based distinguishers demonstrate superior performance on
the Simeck cipher compared to the Simon cipher. In order to juxtapose our achieved
Deep Learning (DL)-based distinguishers with other related-key DL-based distinguish-
ers for the Simeck cipher, the results are presented in Table 1. It’s important to note
that our distinguisher was trained exclusively on a single pair, whereas the existing lit-
erature offers distinguishers trained on eight pairs for the Simeck cipher. Consequently,
we implemented the technique introduced in [11] to compute an amalgamated score for
eight pairs. Furthermore, a comparison between our DL-based RX distinguishers and
past RX distinguishers of the Simeck cipher can be found in Table 2.

Our work introduces a superior related-key DL distinguisher for Simeck 64/128 ci-
pher and marginally behind for Simeck 32/64, according to Table 1. Furthermore, our
research introduces a novel distinguisher that is specifically designed for RX cryptanal-
ysis and trained on the entire key space. This distinguisher can be further scrutinized
to assess how the accuracy of these distinguishers is affected by different keys.
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Table 1: Comparison of related-key DL-based distinguishers for Simeck. RX:
Rotational-Xor cryptanalysis, RD: Related-key Differential cryptanalysis. The Com-
bined Accuracy Score [11] for m pairs is 1

1+
∏m

i=1
1−pi
pi

Simeck 32/64

Round Combined Accuracy Score Pairs Attack Type Ref.
13 0.9950 8 RD [17]
14 0.6679 8 RD [17]
15 0.5573 8 RD [17]
15 0.5134 1 RX This Work
15 0.5475 8 RX This Work

Simeck 64/128

18 0.9066 8 RD [17]
19 0.7558 8 RD [17]
20 0.6229 8 RD [17]
20 0.5212 1 RX This Work
20 0.6338 8 RX This Work

Table 2: Comparison of the RX distinguishers for different versions of Simeck
Cipher Rounds Data Complexity Size of Weak Key Class DL-based Ref.

15 220 Full Yes This Work
Simeck32/64 15 218 244 No [18]

19 224 230 No [18]
20 226 230 No [18]
17 220 Full Yes This Work
16 218 268 No [18]

Simeck48/96 18 222 266 No [18]
19 224 262 No [18]
27 244 246 No [18]
20 220 Full Yes This Work

Simeck64/128 25 234 280 No [18]
34 256 258 No [18]

1.1 Related Works

Simon [4] and Simeck [22] are lightweight block ciphers that have gained popularity due
to their simplicity and efficiency. However, several attacks have been proposed against
these ciphers, including related-key and weak-key attacks.

Liu et al. [16] propose an automatic search algorithm to find optimal differential
trails in Simon and Simeck ciphers. The authors use Matsui’s branch-and-bound algo-
rithm to traverse input differences from low Hamming weight and break unnecessary
branches. They also derive a more accurate upper bound on the differential probability
of the Simon-like round function, which helps to improve the efficiency of the search
algorithm. With this algorithm, they find the provably optimal differential trails for all
versions of Simon and Simeck ciphers. In [21] a detailed analysis of Simon-like block
ciphers and their related-key differential trails is presented. The authors identify that
not only the Hamming weight but also the positions of active bits in the input dif-
ference affect the probability of differential trails. The authors proceed to reconstruct
the Mixed Integer Linear Programming (MILP) model for Simon-like block ciphers,
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eliminating quadratic constraints, and introducing an accurate objective function that
reduces its degree to one through the inclusion of auxiliary variants. Additionally, they
investigate and identify the optimal differential trails for Simon and Simeck, utilizing
this model, and they obtain related-key differential trails. Their core findings encom-
pass the discovery of optimal related-key differential trails for various versions of Simon
and Simeck (Simon32/64, Simon48/96, Simon64/128, Simeck32/64, Simeck48/96, and
Simeck64/128), along with the identification of impossible differentials for several iter-
ations of Simon and Simeck.

Rotational cryptanalysis is a technique that explores the propagation of rotational
pairs, which consist of pairs (x, x ≪ γ) where γ is the rotational offset. The success
of this attack can be compromised when non-rotation-invariant constants are injected
into the rotational pairs. Rotational-XOR (RX) cryptanalysis, a generalized attack
method, accounts for these constants by incorporating their effect into the analysis
of the propagation probability. RX-cryptanalysis considers an RX-pair of the form
(x, (x ≪ γ)⊕ δ) where δ is known as the translation.

Ashur and Liu [1] introduced the concept of an RX-difference, and demonstrated
how RX-differences behave around modular addition. They presented a formula for
computing the transition probability of RX-differences, which was verified experimen-
tally using Speck32/64. Additionally, they provided guidance on the optimal choice of
parameters and discussed two types of constants: round constants and constants that
result from a fixed key.

Khovratovich et al [13] provided theoretical and practical support for the security
of modular addition, rotation, and XOR-based (ARX) systems. They used rotational
cryptanalysis to illustrate the best-known attack on reduced versions of the Threefish
block cipher.

Lu et al. [18] extended RX-cryptanalysis to AND-RX ciphers that can be described
using bitwise AND, XOR, and cyclic rotation operations. The authors formulated an
equation for predicting the likelihood of RX-differences progressing through AND-RX
rounds and established an SMT (Satisfiability Modulo Theories) model to investigate
RX-characteristics in Simon and Simeck. They discovered RX-characteristics in Simeck
across diverse block sizes, specifically for expansive groups of weak keys within the
related-key model, and conducted an analysis of how the key schedule and the rotation
quantities of the round function affect the propagation of RX-characteristics in Simon-
like ciphers.

AI and ML methods have been utilized in various data security applications such as
cryptographic algorithms, cryptanalysis, steganography, and others. At CRYPTO’19,
Gohr introduced a novel cryptanalysis approach that harnessed the power of ma-
chine learning algorithms [10]. By employing deep neural networks, he successfully
constructed a neural-based distinguisher, outperforming existing cryptanalysis on a
version of the widely examined NSA block cipher Speck. This distinguisher could be
incorporated into a broader key recovery attack scheme. He could perform an attack
on 11 rounds of Speck with the help of the AI-based distinguishers. Subsequently, nu-
merous other scholarly works have been published on the application and examination
of AI and deep learning-based distinguishers for cryptanalysis, following Gohr’s initial
contribution.
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Jaewoo So presents a novel approach to cryptanalysis in [20] wherein a generic model
is established using deep learning (DL) to discover the key of block ciphers through an-
alyzing known plaintext-ciphertext pairs. The author illustrates the effectiveness of the
DL-based cryptanalysis model through successful attacks on lightweight block ciphers,
including simplified DES, Simon, and Speck. The experimental outcomes suggest that
DL-based cryptanalysis is capable of accurately retrieving key bits when the keyspace
is limited to 64 ASCII characters. Baksi et. al in [2] describe two innovative approaches
that utilize machine learning to identify distinguishers in symmetric key primitives. The
authors demonstrate that their techniques can significantly reduce the complexity of
differential cryptanalysis for round-reduced ciphers, resulting in an approximate cube
root reduction in the claimed complexity. Through experiments on various non-Markov
ciphers, the authors demonstrate the efficacy of their methods. The researchers also
evaluate the selection of machine learning models and illustrate that even a shallow
three-layer neural network can perform effectively for their purposes. This study serves
as a proof of concept for how machine learning may be utilized as a comprehensive tool
in symmetric key cryptanalysis.

Another research direction in AI-assisted cryptanalysis involves the interpretation
of neural network distinguishers. Benamira et al. [6] provided a comprehensive analy-
sis of a neural distinguisher proposed by Gohr. They analyzed classified sets of data
to identify patterns and gain a better understanding of Gohr’s results. Their findings
revealed that the neural distinguisher primarily depends on differential distribution
in ciphertext pairs, as well as differential distribution in the penultimate and ante-
penultimate rounds. The researchers subsequently developed a distinguisher for the
Speck cipher, independent of any neural network use, which matched the accuracy and
efficiency levels of Gohr’s neural-based distinguisher. Furthermore, the researchers de-
veloped a machine learning-based distinguisher that utilized standard machine learning
tools to approximate the Differential Distribution Table (DDT) of the cipher, similar
to Gohr’s neural distinguisher. This allowed for full interpretability of the distinguisher
and contributed towards the interpretability of deep neural networks.

In [5], researchers presented a novel tool for neural cryptanalysis that comprises two
components. Firstly, an evolutionary algorithm is proposed for the search of single-
key and related-key input differences that are effective with neural distinguishers,
thereby enabling the search for larger ciphers while eliminating the dependence on
machine learning and prioritizing cryptanalytic methods. Secondly, DBitNet, a neu-
ral distinguisher architecture independent of the cipher structure, is introduced and
demonstrated to outperform current state-of-the-art architectures. Using their tool,
the researchers improved upon the state-of-the-art neural distinguishers for various
ciphers and provided new neural distinguishers for others. The paper also provides a
comparative review of the current state-of-the-art in neural cryptanalysis.

1.2 Our Contribution

In this paper, we present several contributions to the rotational-XOR cryptanalysis of
AND-RX block ciphers such as Simon and Simeck. Our research advances the under-
standing of these ciphers and their resistance to attacks by incorporating deep learning
techniques. Our main contributions are as follows:
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1. We propose the first study of neural-assisted RX cryptanalysis. We modified the
evolutionary algorithm presented in the work of Bellini et al. [5] to determine the
optimal values for the translation parameter, denoted as δ, and the rotation offset
parameter, represented as γ, for RX pairs, and by doing so we were able to find
new RX distinguishers for Simon and Simeck ciphers

2. Our research successfully identifies RX distinguishers using deep learning tech-
niques for different versions of Simon and Simeck in the related-key scenario, as
opposed to the traditional weak-key model.

3. Our work contributes to finding the best parameters for diffusion layer for Simeck-
like ciphers. The practical implications of these findings offer insights for designing
secure AND-RX block ciphers and improving their resistance to RX cryptanalysis.

1.3 Outline

The current paper’s structure is outlined as follows. The background concepts relevant
to AND-RX ciphers, RX cryptanalysis, and deep learning-based cryptanalysis are dis-
cussed in Section 2. The methodology employed, which includes a modified evolution-
ary algorithm, is presented in Section 3. In Section 4, we report new distinguishes that
have been discovered for Simon and Simeck. Section 5 proposes a technique for iden-
tifying the optimal permutation parameters for the diffusion layer of AND-RX block
ciphers against DL-based attacks. Finally, Section 6 provides a concluding remark for
the paper.

2 Preliminaries

In this section, we provide an overview of the key concepts and terms related to AND-
RX ciphers, Rotational-XOR (RX) cryptanalysis, and deep learning techniques for
cryptanalysis. Understanding these foundational concepts is essential for comprehend-
ing the methods and results presented in this paper.

2.1 AND-RX ciphers

Simon and Simeck are block ciphers intended for use in environments with limited
resources, such as IoT devices. They utilize the AND-RX design paradigm, which
employs only three basic operations: bitwise XOR (⊕), bitwise AND (∧), and left
circular shift (≪ i) by i bits. The general round function, R, of AND-RX ciphers can
be defined by the following equation:

R(x, y) = (y ⊕ f(x)⊕ k, x),

where f(x) = ((x ≪ a) ∧ (x ≪ b)) ⊕ x ≪ c and k is the subkey for corresponding
round.

In 2013, the NSA designed a family of lightweight block ciphers called Simon [4].
Each cipher in the family employs a word size of n bits, represented as Simon2n where
n ∈ {16, 24, 32, 48}. Simon2n with a key size of m ∈ 2, 3, 4 words (mn bits) is denoted



Deep Learning-Based Rotational-XOR Cryptanalysis 7

as Simon2n/mn. For example, Simon32/64 operates on 32-bit plaintext blocks and
utilizes a 64-bit key. In this paper, we focus on Simon2n/4n. The f(x) function for
Simon2n encryption is f(x) = ((x ≪ 1) ∧ (x ≪ 8))⊕ x ≪ 2

Simon’s key schedule produces r key words k0, . . . , kr−1 from a given key, where r
is the number of rounds. This process also involves using a sequence of 1-bit round
constants to remove slide properties and circular shift symmetries.

xr yr

≪ 8

∧

≪ 1

≪ 2

yr+1
xr+1

kr+3 kr+2
kr+1 kr

≫ 3

≫ 1

cr

Simon cipher for m = 4

xr yr

≪ 5

∧

≪ 1

yr+1
xr+1

tr+3 tr+2
tr+1 kr

≪ 5

∧

≪ 1

cr

Simeck cipher

Fig. 1: The Simon and Simeck ciphers

In this paper, we assess another lightweight block cipher known as Simeck [22]. It is
represented by Simeck2n/mn, where the word size n must be either 16, 24, or 32, and
2n is the block size, while mn represents the key size.

The round function R used in Simeck is identical to the one used in the Simon cipher,
as shown by the equation. However, Simeck’s function f is distinct from Simon’s and
is defined as

f(x) = (x ∧ (x ≪ 5))⊕ (x ≪ 1).

In Simeck cipher, the round key ki is generated from a given master key K by
first dividing the master key K into four words and using them as the initial states
(t2, t1, t0, k0) of a feedback shift register. To produce round keys and update the regis-
ters, the round function f is utilized as well as a 1-bit round constant cr. The number
of rounds r for Simeck32/64, Simeck48/96, and Simeck64/128 are 32, 36, and 44, re-
spectively. Figure 1 demonstrate the round function and key schedule of Simon and
Simeck ciphers.

2.2 Rotational-XOR (RX) Cryptanalysis

Rotational cryptanalysis is a technique used to analyze the security of symmetric al-
gorithms. Khovratovich and Nikolić introduced and formalized this approach for ARX
structures in their work cited as [13], and subsequently applied it to scrutinize other
ciphers like Skein [14]. In this technique, the attacker focuses on rotational pairs of
plaintext and ciphertext, where the input values are related through a fixed rotation.
The attacker then looks for statistical biases or patterns in the ciphertexts of these
pairs that can be exploited to recover the secret key.
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However, rotational cryptanalysis can be less effective in the presence of constants, as
these fixed values can disrupt the rotational properties of the pairs. This is because the
rotation operation alone does not account for the XOR operations that involve these
constants, which can be present in many cryptographic algorithms. When constants
are involved, the rotational relations between the input and output values might be ob-
scured, making it harder to analyze the cipher using traditional rotational cryptanalysis
techniques.

To address the limitations of traditional rotational cryptanalysis, Rotational-XOR
cryptanalysis has been introduced as an extension. Ashur and Liu [1] have developed
this technique to account for the XOR operations with constants that are commonly
present in cryptographic algorithms. Rotational-XOR pairs and Rotational-XOR dif-
ferences are defined to provide a more comprehensive framework for analyzing cryp-
tographic primitives that involve both rotation and XOR operations with constants.
The following are the definitions for RX pairs, RX difference, and RX cryptanalysis,
respectively

Definition 1 (Rotational XOR Pair [1]). An RX-pair is a rotational pair with
rotational offset γ under translations δ1 and δ2, defined as the pair x0 ⊕ δ1, (x0 ≪
γ)⊕ δ2. However, for the sake of simplicity, a slightly different notation is used, where
an RX-pair is represented by x0 and x1 = (x0 ≪ γ)⊕ δ, or alternatively as x0, (x0 ≪
γ)⊕ δ, where δ = δ1 ⊕ δ2.

Definition 2 (Rotational XOR Difference [1]). An RX-difference of x0 and x1,
denoted by ∆γ(x0, x1), is formed by the rotational XOR of x0 with a constant δ such
that x1 = (x0 ≪ γ)⊕ δ, where 0 < γ < n and δ ∈ F 2

n is a constant. In another word

∆γ(x0, x1) = x1 ⊕ (x0 ≪ γ)

Definition 3 (Rotational XOR Cryptanalysis [1]). Rotational XOR Cryptanal-
ysis is a cryptanalytic technique that extends traditional rotational cryptanalysis to
handle XOR operations with non-rotational-invariant constants between input and out-
put pairs of a cryptographic primitive. This method aims to estimate the transition
probability with respect to non-linear operations in block ciphers (like modular addition
or ∧ operation) of two input RX-differences to an output RX-difference. The technique
introduces the concept of a (δ, γ)-Rotational-XOR-difference (or RX-difference), which
represents a rotational pair with rotation γ under translation δ, i.e., (x, (x ≪ γ)⊕ δ).
The method seeks to analyze the propagation of RX-differences through the crypto-
graphic primitive.

The transmission of RX-differences through linear operations is known to be deter-
ministic; however, this is not the case for nonlinear operations. Prior research conducted
by Ashur et al. [1] and Lu et al. [18] delved into the investigation of the transmission
of RX-differences through modular addition and AND (∧) operations, respectively.

2.3 Deep Learning and its Application on Symmetric Cryptography

Deep learning has proven to be a game-changer in various challenging tasks, including
image recognition, natural language processing, and speech recognition, to name a few.
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Although machine learning techniques have been applied to cryptography, much of the
practical work has focused on side-channel analysis [12, 20, 23]. However, in 2019, Gohr
explores the application of deep learning techniques for cryptanalysis [10], specifically
for attacking the Speck [4] cipher. This approach aims to differentiate between real
and random pairs of ciphertexts resulting from the encryption of plaintext pairs with
fixed and arbitrary input differences, respectively. While pure differential distinguishers
have traditionally been used for this purpose, his research has shown that deep learning
(DL) can outperform their traditional counterparts. Gohr’s study focused on Speck-
32/64 and compared the accuracy of a pure differential distinguisher with a DL-based
distinguisher for 5 to 8 rounds. The results demonstrated that the DL-based distin-
guisher achieved higher accuracy than the pure differential distinguisher, highlighting
the potential of DL-based approaches in differential cryptanalysis.

Algorithm 1 is the algorithm employed by Gohr in training a deep learning (DL)-
based distinguisher for differential attack. The algorithm considers a pair of plaintexts
P0 and P1 with a predetermined input difference ∆, i.e., P0 ⊕ P1 = ∆. Additionally,
C0 = Ek(P0) and C1 = Ek(P1), where Ek signifies encryption of plaintext P with key
k. Furthermore, in the context of Feistel structured block ciphers, the left and right
halves of a data block are typically referred to as L and R, respectively.

Algorithm 1 DL-based Differential Distinguisher for r rounds of Speck32/64

1: Input: r (number of rounds), AI machine, (C0, C1)
2: Output: Trained AI machine, differential distinguisher status
3: Generate 107 plaintext pairs (P0, P1) with ∆ = (L0 ⊕ L1, R0 ⊕R1) = (0x0040, 0x0000)
4: Randomly allocate 107 labels Y ∈r {0, 1} to the pairs
5: for each pair (P0, P1) with label Y do
6: if Y = 0 then
7: P1 ← P1 ∈r {0, 1}32

8: Encrypt the pairs with r rounds of Speck32/64 to get ciphertext pairs (C0, C1)
9: Store (C0, C1) with corresponding labels in a dataset

10: Train DL-distinguisher using the dataset and their corresponding labels
11: Repeat steps 3-11 for another 106 pairs for testing
12: Measure the accuracy of the DL-based distinguisher
13: if accuracy > 50% then
14: The machine is a DL-based differential distinguisher

In deep learning (DL)-based distinguishers, determining the optimal input difference
can significantly improve their performance. Gohr [10] presented a novel algorithm for
identifying appropriate input differences for neural network distinguishers, without
requiring prior human knowledge. This algorithm employs few-shot learning, where a
neural network learns features from a large dataset and a simpler machine learning
algorithm is trained on a smaller set of samples.

In [5], Bellini et al. presented an alternative approach that does not rely on neural
networks for finding the best input difference for DL-based distinguishers. In order
to find the best input difference they had a bias score hypothesis which states that
the optimal input difference for neural distinguishers cryptographically is the input
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difference that maximizes the bias of output difference bits. Computing the bias score
for block ciphers is infeasible due to the requirement of enumerating all keys and
plaintexts. However, we can use an approximation derived from a limited number of
samples t:

Definition 4 (Approximate Bias Score [5]). Let E : Fn
2 × Fk

2 → Fn
2 be a block

cipher, and let ∆ ∈ Fn
2 be an input difference. The Approximate Bias Score for ∆,

denoted by b̃t(∆), is defined as the sum of the biases of each bit position j in the output
difference, computed over t samples. Formally, we have:

b̃t(∆) =

∣∣∣∣∣∣
n−1∑
j=0

2 ·
∑t

i=0(EKi(Xi)⊕ EKi(Xi ⊕∆))j
t

− 1

∣∣∣∣∣∣
The authors’ hypothesis is confirmed, and they propose an evolutionary-based search

algorithm that leverages the approximate bias score to explore a larger set of candi-
date input differences. The algorithm starts with a population of randomly generated
input differences, and an approximate bias score is computed for each of them. The
top 32 input differences with the highest score are retained for further evaluation. The
algorithm then proceeds with 50 iterations, during which new individuals are derived
and evaluated. To ensure the starting round’s influence on the bias score is accounted
for, the number of rounds is incremented if the maximum bias score obtained surpasses
a threshold limit. At the end of the algorithm, the authors obtain a list of 32 input
differences for each round. The final step involves computing a weighted cumulative
bias score for all the obtained input differences from round 1 to round R. The au-
thors’ search algorithm based on the biased score demonstrates improved performance
in identifying input differences compared to other methods and can be useful for cryp-
tographic applications. Algorithm 2 can show their method. The algorithm has several
key parameters, including the initial population size for each generation (P ), the mu-
tation probability (pm), the approximate bias score sample size (t), and the relevance
threshold (T ). The specific values of these parameters can be adjusted as needed to
optimize the algorithm’s performance. Also curr populationi indicates the ith bit of the
current population we have.

3 Identification of Optimal RX Distinguishers in Cryptanalysis
with Evolutionary Algorithm

In this section, we present a modified evolutionary algorithm that builds upon the
algorithm of [5]. Our algorithm facilitates the discovery of novel RX differential pairs
that can be leveraged to train deep-learning-based RX distinguishers. Initially, we
discuss the artificial intelligence (AI) tools and deep learning model utilized in our
study. Subsequently, we explore the relation between the rotational bias score and
the accuracy of deep learning-based RX distinguishers. Drawing upon this insight, we
introduce our evolutionary algorithm designed to identify the optimal RX input for
training a deep learning-based distinguisher.
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Algorithm 2 Evolutionary optimizer [5]

1: init population← [RandomInt(0, 2n − 1) for 1024 times]

2: Sort init population by b̃t(·) in descending order
3: curr population← first P elements of init population
4: for iter← 0 to 50 do
5: cand← [ ]
6: for i← 0 to P − 1 do
7: for j ← i+ 1 to P − 1 do
8: if RandomFloat(0, 1) < pm then
9: m← 1
10: else
11: m← 0
12: Add curr populationi⊕curr populationj⊕ (m ≪ RandomInt(0, n−1)) to cand

13: Sort cand by b̃t(·) in descending order
14: curr population← first P elements of cand

return cand

3.1 AI Tools and Model Development

In this study, we employ the Keras [9] library to develop our deep learning model,
which is inspired by the architecture proposed by Aron Gohr in his groundbreaking
CRYPTO’19 paper [10]. Gohr’s model focuses on using a neural network to differen-
tiate between pairs of Speck32/64 ciphertexts corresponding to fixed differences (non-
random) and random message pairs (random). His neural distinguisher is a residual
network comprising four main components, achieving remarkable accuracy for varying
rounds of Speck32/64 and enabling practical key recovery attacks.

The input to Gohr’s neural distinguisher consists of a 64-bit ciphertext pair from
Speck32/64, which is reshaped and permuted into a 16-bit wide tensor with four
channels. This input reshaping takes into account the unique 16-bit word structure
of Speck32/64. The second component of the architecture involves a one-dimensional
convolution, denoted as Conv1D with kernel size 1 and 32 filters, that slices through
the four-channel bits.

Following the convolutional layer, batch normalization and ReLU activation function
are applied as per conventional deep learning practices. The third component consists
of residual blocks, with each block containing two convolutional layers, represented as
Conv1D with kernel size 3 and 32 filters. The number of residual blocks in the network
determines the depth of the neural distinguisher.

Lastly, a densely connected prediction head with ReLU activations is employed, along
with an output layer featuring a single neuron with sigmoid activation. L2 regulariza-
tion with a value of 10−5 is used throughout the network to penalize large weights and
reduce the likelihood of overfitting. Also, the Adam optimization method [15] is used
for this architecture.

The present research employs Gohr’s neural distinguisher architecture to train RX
differential distinguishers for analyzing AND-RX ciphers such as Simon and Simeck.
The rationale behind this choice is that Simon and Simeck, specifically the 32-bit
version, share the same 16-bit structure as Speck32/64, which is extensively investigated
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in Gohr’s previous research. The aim of this approach is to harness the potential of
deep learning to discover new RX distinguishers and enhance our comprehension of the
security of these ciphers.

We also employed a sequential training approach in which we increased the number
of rounds in each iteration. Previous research has shown that this approach can improve
model performance [5], as it utilizes knowledge learned in previous rounds. We trained
our model using a dataset of 107 training samples and 106 validation samples, with a
batch size of 1000. Our model had a depth of 1 and we used 5 epochs for training.

3.2 Training DL-based RX distinguishers

This section outlines the training process for our RX distinguishers, which is based on
deep learning. Furthermore, it elaborates on the potential of DL-based RX distinguish-
ers in gaining insights from pairs of ciphertext.

Training phase. The training process involves data preparation, model configuration,
and evaluation of the trained model on AND-RX ciphers such as Simon and Simeck.
The first step in training the RX distinguishers is data preparation. We generate a
dataset consisting of pairs RX of ciphertexts, labeled as either non-random ( for fixed
(δ, γ)) or random (random message pairs). Since RX cryptanalysis is a related-key
cryptanalysis, in addition to a translation δ that exists for the RX plaintext pairs,
there may also be a translation for the keys used to encrypt each plaintext within
the pair, which can be shown by δkey. According to the research presented in [18],
the propagation of the RX differential in AND-RX ciphers primarily depends on the
Hamming weight of the difference and their rotations.

In this part, we chose to focus on an input difference zero for the initial training
of the deep learning-based RX distinguisher for lightweight ciphers Simon32/64 and
Simeck32/64. Specifically, we set both the input difference and key RX difference to
0x0000 and 0x00000000, respectively, using hexadecimal representation to represent
the n-bit (n×m-bit) binary representation of plaintexts (keys). By doing so, we aimed
to first train the RX distinguisher as a starting point and subsequently analyze its
behavior and performance in the context of Simon32/64 and Simeck32/64 ciphers, and
then investigate possible improvements.

For that, we fixed δ = 0 for both plaintexts and keys and iterated through all possible
γs to determine the γ that would produce the best distinguisher for the longest number
of rounds r for both Simon and Simeck. Our results indicated that for the case of
Simeck32/64, γ ∈ {1, 15} and for the case of Simon32/64, γ ∈ {4, 12} produced the
best distinguishers for 14 and 10 rounds, respectively. The detailed training method
for r rounds is presented in Algorithm 3.

Machine Interpretation. In this part, we present an interpretation of the deep
learning-based RX distinguishers trained on AND-RX ciphers, specially on Simeck32/64.
Our objective is to investigate the factors affecting the accuracy of the distinguisher
and its ability to analyze RX cryptanalysis.
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Algorithm 3 DL-based RX Distinguisher for r rounds of a Cryptographic Primitive

1: Input: r (number of rounds), AI machine, (C0, C1)
2: Output: Trained AI machine, RX distinguisher status
3: Choose a rotational offset γ and constants δ1, δ2, with δγ = δ1 ⊕ δ2
4: Generate 107 plaintext pairs (P0, P1) with RX-difference δγ(P0, P1) = (L1 ⊕ (L0 ≪

γ), R1 ⊕ (R0 ≪ γ))
5: Randomly allocate 107 labels Y ∈r {0, 1} to the pairs
6: for each pair (P0, P1) with label Y do
7: if Y = 0 then
8: P1 ∈r {0, 1}32

9: Encrypt the pairs with r rounds of the cryptographic primitive to get ciphertext pairs
(C0, C1)

10: Store (C0, C1) with corresponding labels in a dataset

11: Train DL-RX-distinguisher using the dataset and their corresponding labels
12: Repeat steps 3-11 for another 106 pairs for testing
13: Measure the accuracy of the DL-based RX distinguisher
14: if accuracy ≥ 50% then
15: The machine is a DL-based RX distinguisher

In prior studies on deep learning-based differential distinguishers, it has been shown
that the bias of the output differential plays a crucial role in determining the accuracy
and the number of rounds for which a distinguisher can be trained. To investigate the
possible impact of bias on our RX distinguishers, we first define the Approximate Bias
Score for RX attack, inspired by the definition presented in [5].

Definition 5 (Approximate RX Bias Score). Let E : Fn
2 × Fk

2 → Fn
2 be a block

cipher, and let δ ∈ Fn
2 be an input RX-difference with a given rotational offset γ. The

Approximate RX Bias Score for δ, denoted by b̃t(δ, γ), is defined as the sum of the
biases of each bit position j in the output RX-difference, computed over t samples.
Formally, we have:

b̃t(δ, γ) =

∣∣∣∣∣∣
n−1∑
j=0

2 ·
∑t

i=0((EKi(Xi))⊕ E(Ki≪γ)⊕δ((Xi ≪ γ)⊕ δ)))j

t
− 1

∣∣∣∣∣∣
In our study, we investigated the relationship between bias score, accuracy of the

RX distinguisher, and number of rounds for the trained distinguisher.

To do this, we trained distinguishers for a range of γ values while keeping δ fixed at
0. For each distinguisher, we then calculated its bias score and accuracy across various
rounds. This process was repeated for multiple iterations to ensure the robustness of
our results. the Pearson correlation coefficient and The resulting scatter plot (Figure 2)
maps bias scores (x-axis) against distinguisher accuracy (y-axis), with each dot rep-
resenting a different γ value for Simeck32/64. Different colors are used to denote the
number of rounds for each distinguisher: red for 11 rounds, green for 12 rounds, and
blue for 13 rounds.

Upon examining the plot, we observed a general trend: higher bias scores often
corresponded to higher accuracy (or more rounds). There was one notable exception:
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γ = 11 produced the highest bias, but no distinguisher could be trained above 12
rounds with this γ value.

In order to gain a deeper understanding of these patterns, we conducted a weighted
correlation analysis. This analysis validated the presence of a positive connection be-
tween the bias score and accuracy. During our experiment, we utilized formula (1) for
our analysis, and the resulting score was approximately 0.65. This score indicates that
there is indeed a positive correlation between the bias and the accuracy of the trained
machine. In the formula, ρ represents the Pearson correlation coefficient, and a repre-
sents the accuracy of the DL-based distinguisher. We further scrutinized outliers, such
as the aforementioned γ = 11 case, and hypothesize that these may be due to variations
in the cipher structure or other unidentified factors that warrant further investigation.

correlation coefficient = ρ
(
b̃t, a× e2r

)
(1)

These results underpin our claim that the output RX difference bias score is a key
determinant of the accuracy of a deep learning-based RX distinguisher. They also
prompted us to introduce an adapted evolutionary algorithm aimed at identifying op-
timal (δ, γ) pairs for RX plaintext.

Fig. 2: Scatter plot of Bias Score vs Accuracy of RX Distinguisher (Colored by Rounds)

3.3 Evolutionary Optimization of Deep Learning RX Differential
Distinguishers

Now, we propose an evolutionary optimization algorithm for finding the best RX input
differences. The goal is to adapt the evolutionary-based search algorithm, leveraging
the approximate RX bias score, to explore a more extensive set of candidate RX pairs.
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The modified algorithm will account for the rotational offset γ and the XOR translation
δ.

The main modification of this algorithm involves introducing a novel search strategy
for the optimal shift parameter, γ, while also evaluating the impact of input difference.
Notably, to the best of our knowledge, this approach is the first to simultaneously search
for both the optimal δ and γ parameters, instead of solely searching for the best δ for
a fixed γ value, which is commonly set to γ = 1 in the literature. To enable this search
strategy, we have developed a methodology for generating a binary representation for
the shift parameter based on the block size, with the final bits appended to each
member of the population. For example, for the Simeck32/64, γ and γkey represented
by two 4-bit words. So, we increase the number of bits in the search by an additional
8, where the final 8 bits represent the value of γ.

The new algorithm starts with a population of randomly generated input differences
and corresponding rotational offsets. For each of them, an approximate RX bias score is
computed. The top 32 input differences with the highest score are retained for further
evaluation. The algorithm proceeds with 50 iterations, during which new individuals are
derived and evaluated. If the highest bias score returned is greater than a threshold,
the number of rounds is incremented by one. At the end of the algorithm, a list of
32 input differences for each round is obtained. The final step involves computing a
weighted cumulative RX bias score for all the obtained input differences from round 1
to round R.

Algorithm 4 shows the modified optimizer for RX attack. The algorithm has sev-
eral key parameters, including the initial population size for each generation (P ), the
mutation probability (pm), the approximate RX bias score sample size (t), and the
threshold (T ). The specific values of these parameters can be adjusted as needed to
enhance the algorithm’s performance. Also, curr populationi,δ and curr populationi,γ
indicate the value of ith bit of δ and γ, respectively.

Algorithm 4 Evolutionary optimizer for RX differential distinguishers

1: init population← [RandomInt(0, 2n − 1)||RandomInt(1, n− 1) for 1024 times]

2: Sort init population by b̃t(δ,γ)(·) in descending order
3: curr population← first P elements of init population
4: for iter← 0 to 50 do
5: cand← [ ]
6: for i← 0 to P − 1 do
7: for j ← i+ 1 to P − 1 do
8: mγ ← 1
9: if RandomFloat(0, 1) < pm then
10: mδ ← 1
11: else
12: mδ ← 0
13: Add (((curr populationi,δ ≪ RandomInt(0, n − 1)) ⊕ curr populationj,δ ⊕

mδ) ||(curr populationi,γ ⊕mγ) to cand

14: Sort cand by b̃t(·) in descending order
15: curr population← first P elements of cand

return cand
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The modified algorithm presented in Algorithm 4 is specifically designed for opti-
mizing RX differential distinguishers for cryptographic primitives such as Simon32/64
and Simeck32/64. By incorporating the rotational offset γ and the XOR translation δ,
the search space for potential input differences is expanded, increasing the likelihood
of discovering more effective RX input pairs for deep learning-based RX distinguishers.
One significant improvement afforded by this method is the capability to identify ef-
fective RX distinguishers for full-key classes, which represents a marked advancement
over prior research that only succeeded in identifying such distinguishers for classes
that were not full-key.

4 Results and Discussion

In this section, we present the results of applying our evolutionary optimization method
to different versions of Simon and Simeck block ciphers. Our goal is to determine the
most effective RX input differences (δ) and rotational offsets (γ) for each cipher version,
allowing us to train deep learning-based RX distinguishers.

In this study, we utilized an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz to run
the evolutionary algorithm and employed Colab [8] for training the distinguishers. The
experiments for the highest weight version of Simon and Simeck lasted approximately
3 hours each.

We used an evolutionary optimization approach, applying Algorithm 4 to the various
versions of Simon and Simeck. The optimization was run 10 times, with each trial
randomly initializing the values of δ and γ. The evolutionary algorithm subsequently
updated these values to achieve higher distinguisher accuracy.

Each trial was trained on a dataset of 106 cipher text pairs, which were generated
using different random keys. The key space was varied over the course of the trials to
ensure thorough testing.

In the following subsections, we discuss our findings for each cipher version, high-
lighting the specific δ and γ values that led to the most effective RX distinguishers.

4.1 Simeck Cipher

For the Simeck cipher family, our evolutionary optimization method was success-
ful in identifying effective RX distinguishers for 15, 17, 20 rounds of Simeck32/64,
Simeck48/96, and Simeck/128, respectively. The results for each version of the Simeck
cipher are detailed in Table 3, which includes the optimal RX input differences (δ),
rotational offsets (γ), the number of rounds, and the corresponding distinguisher ac-
curacy.

Our proposed method for training deep learning-based RX distinguishers demon-
strates notable advantages despite not necessarily achieving the best possible distin-
guisher performance for the Simeck cipher family. Although there exist distinguishers
with higher round coverage, As shown in Table 2, such as 20 rounds for Simeck32/64,
27 rounds for Simeck48/96, and 34 rounds for Simeck64/128, these distinguishers op-
erate under significantly smaller weak key classes, specifically of size 230, 246, and 258,
respectively, while our distinguishers cover the entire key space.
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Table 3: Summary of the optimal RX input differences (δ), key differences (δkey),
rotational offsets (γ), the number of rounds, and distinguisher accuracy for different
versions of Simeck block ciphers.

Cipher Version δ δkey γ Number of Rounds Accuracy

Simeck32/64 (0, 0x0002) 0002 1
15 51.34
14 57.08
13 70.57

Simeck48/96 (0, 0x000002) 0002 1
17 52.06
16 57.67
15 69.85

Simeck64/128 (0, 0x00000002) 0002 1
20 52.12
19 57.01
18 70.15

In our investigation, it was found that the Simeck cipher is more susceptible to RX
cryptanalysis compared to Simon. While searching for vulnerabilities in Simon, we
did not find any effective deep learning-based distinguishers with γ ̸= 0 that perform
better than conventional DL-differential distinguishers. However, this is not the case
for Simeck, as shown by the results presented in Table 1, where DL-RX distinguishers
can almost match the performance compared to related key distinguishers reported in
the literature for the same round.

4.2 Simon Cipher

The results of applying our proposed method to the Simon cipher family, specifically
Simon32/64, Simon64/128, and Simon128/256 is shown in Table 4. We obtained deep
learning-based RX distinguishers for 11 rounds for Simon32/64, 13 rounds for Si-
mon64/128, and 16 rounds for Simon128/256, respectively. It should be noted that
these results exhibit worse performance in terms of round coverage when compared to
existing distinguishers from the literature that also cover the full key space.

Additionally, we introduce RX distinguishers with rotational offsets γ other than 1,
which, to the best of our knowledge, has not been previously explored. This highlights
the potential of our proposed method to uncover new insights in the realm of RX crypt-
analysis and contribute to the development of more secure cryptographic primitives.

In our study, we observed that the performance of the proposed method was worse
for the Simon cipher family compared to the Simeck cipher family, even though both
ciphers share the AND-RX design paradigm. One possible explanation could be the
different structures of the diffusion layer in the round functions of Simon and Simeck
ciphers. The different choices of shift parameters in these functions could result in
different resistance to RX cryptanalysis. The rotation offsets in the f(x) functions
might interact differently with the proposed distinguishers, making it harder for the
evolutionary search algorithm to find strong RX distinguishers for Simon compared to
Simeck.
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Table 4: Summary of the optimal RX input differences (δ), key differences (δk), ro-
tational offsets (γ), the number of rounds, and distinguisher accuracy for different
versions of Simon block ciphers.

Cipher Version δ δk γ Number of Rounds Accuracy

Simon32/64 (0x0, 0x0002) 0002 3
11 54.45
10 74.11
9 98.48

Simon64/128 (0x0, 0x0) 0000 30
13 51.51
12 73.15
11 98.5

Simon128/256 (0x0, 0x0) 0000 60
16 50.62
15 72.26
14 96.87

5 Impact of the Diffusion Layer and Optimal Rotation
Parameters

In the design of AND-RX ciphers, the choice of round constants and shift parame-
ters are crucial in improving the security against RX cryptanalysis. While Lu et al.
investigated the impact of round constants on RX cryptanalysis [18], the present study
aims to extend this line of inquiry by examining the influence of shift parameters in
AND-RX ciphers. Our primary focus is on identifying the ideal rotation parameters,
(a, b, c) for f(x) function of AND-RX ciphers that can be defined as below:

f(x) = ((x ≪ a) ∧ (x ≪ b))⊕ x ≪ c

In this section, our exploration of optimal parameters is centered on AND-RX ciphers
with non-linear key schedules. The rationale behind this choice is based on our observa-
tion that Simon outperforms Simeck in resisting RX cryptanalysis. Consequently, our
aim is to ascertain whether it is feasible to devise a variant of the Simeck-like cipher
that could rival Simon in its defense against deep learning-based RX and differential
attacks, or find other parameters that can enhance the security of Simeck-like ciphers.

In our pursuit of the optimal rotation parameters, we employed our previously dis-
cussed evolutionary algorithm (see Algorithm 4). This involved an iterative process
where we tested various combinations of a, b, and c parameters for Simeck32/64. For
each combination, we identified the highest bias score and the maximum number of
rounds for which our algorithm could determine an appropriate input for the DL dis-
tinguisher. Notably, as our algorithm effectively searches for the best inputs with any
γ values, even γ = 0, the optimal shift parameters identified also enhance resistance
against both differential and RX differential attacks.

Among the shift sets found during our comprehensive exploration, (4, 6, 3) stood out
due to its superior cumulative bias score, indicating enhanced resistance to these types
of attacks. We could not find any distinguisher for more than 13 round for a Simeck-
like cipher with these parameters as their shift parameter based on our optimizer.
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Notably, for other optimal parameter sets, we were successful in training DL-based
distinguishers for up to 14 rounds. These findings, including the six shift parameter
sets that performed optimally in our experiments, are detailed in Table 5.

Table 5: Optimal rotation sets for AND-RX ciphers with non-linear key schedule and
n = 32 determined by the evolutionary algorithm

Rotation Set Highest Cumulative Bias Highest Round Distinguisher
(4, 6, 3) 14.32 13
(4, 5, 7) 17.28 14
(6, 7, 4) 17.99 14
(3, 7, 2) 18.25 14
(3, 5, 6) 18.67 14
(3, 6, 1) 18.95 14

Our findings provide useful considerations for the design of block ciphers. The opti-
mal rotation parameters we identified demonstrate how specific configuration choices
can influence a cipher’s behavior against RX and related-key differential attacks. It
should be noted, however, that the parameters we found optimal for security may not
directly apply to practical cipher design, as designers also have to consider other fac-
tors such as hardware efficiency. Therefore, our insights should be considered along
with other factors like hardware efficiency during the selection of shift parameters in
the development of AND-RX ciphers. This balanced approach could yield designs that
optimize both security and efficiency, aligning with the core goals of ARX/AND-RX
cipher designers.

6 Conclusion

This paper has investigated the application of deep learning techniques to the RX
cryptanalysis of AND-RX block ciphers, with a particular focus on the Simon and
Simeck families. We have uncovered distinguishers in the related-key model, which is
opposed to the conventional weak-key models found for these ciphers.

Our deep learning models have shown a promising ability to identify effective RX
distinguishers for various rounds of the Simeck cipher. Specifically, a combined accuracy
score of 0.5475 was achieved for 15 rounds of Simeck32/64 and 0.6429 for 18 rounds of
Simeck64/128. Moreover, optimal RX input differences, key differences, and rotational
offsets for different versions of Simeck and Simon block ciphers were identified.

In addition, this study presented a novel approach to optimizing diffusion layers
in AND-RX block ciphers. As a result, several optimal rotation sets for Simeck-like
ciphers were identified.
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