
Parallel SAT Framework to Find Clustering of
Differential Characteristics and Its Applications

Kosei Sakamoto1, Ryoma Ito2, and Takanori Isobe3

1 Mitsubishi Electric Corporation, Kamakura,
Japan.Sakamoto.Kosei@dc.MitsubishiElectric.co.jp

2 National Institute of Information and Communications Technology, Koganei,
Japan. itorym@nict.go.jp

3 University of Hyogo, Kobe, Japan.
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. The most crucial but time-consuming task for differential
cryptanalysis is to find a differential with a high probability. To tackle
this task, we propose a new SAT-based automatic search framework to
efficiently figure out a differential with the highest probability under a
specified condition. As the previous SAT methods (e.g., the Sun et al’s
method proposed at ToSC 2021(1)) focused on accelerating the search
of an optimal single differential characteristic, these are not optimized
for evaluating a clustering effect to obtain a tighter differential proba-
bility of differentials. In contrast, our framework takes advantage of a
method to solve incremental SAT problems in parallel using a multi-
threading technique, and consequently, it offers the following advantages
compared with the previous methods: (1) speedy identification of a dif-
ferential with the highest probability under the specified conditions; (2)
efficient construction of the truncated differential with the highest prob-
ability from the obtained multiple differentials; and (3) applicability to
a wide class of the symmetric-key primitives. To demonstrate the ef-
fectiveness of our framework, we apply it to the block cipher PRINCE
and the tweakable block cipher QARMA. We successfully figure out the
tight differential bounds for all variants of PRINCE and QARMA within
the practical time, thereby identifying longest distinguisher for all the
variants, which improve existing ones by one to four more rounds. Be-
sides, we uncover notable differences between PRINCE and QARMA in
the behavior of differential, especially for the clustering effect. In the
context of key recovery attacks, our framework allows us to derive the
key-recovery-friendly truncated differentials for all variants of QARMA
and give the first key recovery attack based on differential cryptanalysis.
We believe that our findings shed light on new structural properties of
these important primitives.

Keywords: Differential · SAT-based automatic search · Incremental
SAT problem · Low-latency primitives.

2 K. Sakamoto et al.

1 Introduction

Background. The most crucial but time-consuming part of differential cryptanl-
ysis [7] is to determine a pair of plaintext differences and the corresponding
ciphertext differences and construct a differential distinguisher with high prob-
ability. To this end, cryptographers frequently use a differential characteristic,
which is a sequence of the internal differences in each round. However, from
the attackers’ viewpoint, they are interested in not the internal differences but
only a pair of the input and output differences, which is called a differential in
literature. A differential is more useful than a differential characteristic for the
attackers, as a differential has a higher probability than that of a differential
characteristic.

Several studies investigated relationship between a differential characteristic
and a differential, revealing that a gap between their probabilities can be sig-
nificant [2, 8, 19]. Most of these studies focused on a differential constructed by
only a differential characteristic with the highest probability, which is called the
optimal differential characteristic. This seems reasonable, as the probability of
the optimal differential characteristic dominates the probability of a differential
in numerous designs. However, Kölbl and Roy [20] demonstrated an interesting
case in Simeck32 [31] where a differential with a higher probability can be con-
structed by the non-optimal differential characteristic. Although this appears to
be a special case, it can be valid for any design. From these aspects, finding a
differential with a higher probability still remains a challenging task.

Finding such a differential is not only useful from the attackers’ aspect, but
also crucial from the designers’ aspect. In particular, the ultra-low-latency de-
signs must be carefully designed against differential cryptanalysis, because they
are usually based on a substitution–permutation network with a small number
of rounds, and the growth of the differential probability is not sufficient at the
beginning of the rounds. In fact, the designers of MANTIS [6] and SPEEDY [22]
invested significant efforts into guaranteeing the resistance against differential
cryptanalysis in their works. Nevertheless, they were broken by differential crypt-
analysis [10, 15]. Furthermore, the best attack to the first low-latency design
PRINCE [9] is also (multiple) differential cryptanalysis on 10 (out of 12) rounds
proposed by Canteaut et al. [12]. Hence, it is evidently important to investigate
a differential in detail, especially for low-latency designs.

Limitations of SAT-based Automatic Search Tools. The existing SAT-based au-
tomatic search tools, proposed by Sun et al. [27, 28], focused on accelerating
the search of an optimal differential characteristic by incorporating the Matsui’s
bounding conditions [25]. These tools are valid for evaluating a single differen-
tial characteristic, but the Matsui’s bounding conditions are not suitable for the
purpose of evaluating the clustering effect of multiple differential characteristics;
thus, the existing tools are not suitable for efficiently finding a differential with
a higher probability. Certainly, it can be applied to evaluate the clustering ef-
fect of multiple differential characteristics by removing the Matsui’s bounding
conditions and adding some new conditions. However, such a straightforward

Parallel SAT Framework to Find Clustering of Differential Characteristics 3

adjustment can be inefficient because Sun et al. assumed only an environment
with a single thread execution even though their SAT solver accepts an exe-
cution on multiple threads. Considering that the evaluation for the clustering
effect of multiple differential characteristics having different input and output
differences requires a much more computational cost than that for finding the
optimal differential characteristic, the tool for finding a differential with the
highest possible probability should be optimized for an execution on multiple
threads. Moreover, it is also of great importance to investigate the impact of
relation on the efficiency in which between the number of threads to be assigned
to solve a single SAT problem and the degree of the parallelization for the eval-
uation of the clustering effect, as we have to evaluate the clustering effect for
each found differential characteristic having different input and output differ-
ences with a high probability. Therefore, without these considerations, it is hard
to efficiently investigate the clustering effect of numerous differential character-
istics having different input and output differences in detail. This investigation
leads to understanding the behavior of the probability about differentials more
deeply; thus, optimizing these SAT-based tools to evaluate for the clustering
effect of differential characteristics is crucial.

Our Contributions. In this study, we propose a new generic SAT-based au-
tomatic search framework that aims to figure out a differential with a higher
probability under the specified condition, in contrast to existing approaches. The
main concept of the framework involves investigating the clustering effect of all
differential characteristics having different input and output differences with a
specified range of weight and identifying the good differential. Our framework
fully leverages a method to solve incremental SAT problems, which can effi-
ciently solve a SAT problem with small modifications multiple times, in parallel
using a multi-threading technique. As an incremental SAT problem can be effi-
ciently solved by the bounded variable elimination method [16], it is known that
we can efficiently evaluate the clustering effect by converting the evaluation of
the clustering effect into an incremental SAT problem. In our method, we also
take advantage of an incremental SAT problem to efficiently find all differential
characteristics having different input and output differences that are seeds to
construct differentials, as well as the evaluation of the clustering effect. By care-
fully investigating the most suitable parameters, such as the number of thread
to be assigned to solve a single incremental SAT problem and the degree of
the parallelization for the evaluation of the clustering effect, to solve multiple
incremental SAT problems efficiently, our framework enables us to thoroughly
evaluate the clustering effect of such all differential characteristics not only with
the highest probability but also with any probability. Hence, we evaluate the
probability of differentials more comprehensively than any other previous meth-
ods.

Identifying Good Differentials on PRINCE and QARMA. To demonstrate the
effectiveness of our framework, we apply it to PRINCE [9] and QARMA [3], which

4 K. Sakamoto et al.

Table 1: Comparison of our results with existing ones regarding distinguishers.

Cipher
Total Attacked

Setting† Type‡ Time/Data Reference
Rounds # Rounds

PRINCE
12

4 SK ID – [14]

PRINCEv2

6 SK D 262 [2]
6 SK I 262 [11]
6 SK D 256.42 [12]
7 SK D 255.771 Sect. 4.1

QARMA64 16

6 SK ID – [30]
7 SK D 258.921 Sect. 4.2

4.5 RT ID – [24]
7 RT ID – [33]
8 RT SS 257 [23]
9 RT ZC/I 244 [1]
10 RT D 260.831 Sect. 4.2

QARMA128 24

6 SK ID – [30]
10 SK D 2121.549 Sect. 4.2
6.5 RT ID – [24]
8 RT TDIB 2124.1 [23]
12 RT D 2120.024 Sect. 4.2

† SK: Single-Key, RT: Related-Tweak
‡ D: Differential, I: Integral, ID: Impossible Differential, SS: Statistical Saturation,
ZC: Zero-Correlation, TDIB: Tweak Difference Invariant Bias

are the reflection ciphers for low-latency applications. As a result, we significantly
improve previous differential bounds for all variants of these ciphers as shown
in Table 1, and our differential distinguishers are longest ones among existing
one. It is important to note that while the previous attacks may have been
adjusted for key recovery, identifying longest distinguisher is very important
to deeply comprehend the structural properties of these primitives as pseudo
random permutations. These results demonstrate that the proposed framework
is effective for evaluating the tight differential bounds.

Difference in Behavior of Clustering Effect between PRINCE and QARMA. We
look into the difference between PRINCE and QARMA in the behavior of a dif-
ferential. Our experiments observe that the gaps in the probability between a
differential characteristic and a differential can be large in QARMA under the SK
setting compared to that in PRINCE. Specifically, QARMA under the single-key
(SK) setting has a large impact on the clustering effect, and the case reported
by Kölbl and Roy [20] can occur in QARMA under the SK setting. A detailed

Parallel SAT Framework to Find Clustering of Differential Characteristics 5

investigation of such gaps reveals that they are influenced by different design
strategies for the linear layers (i.e., matrices). After conducting the additional
experiments using four types of matrices with different properties, we find that
the target cipher has a good resistance to a clustering effect when each output
bit of the round function depends on as many input bits of the round function
as possible. We conclude that a cipher using a matrix with the same property as
that used in QARMA has a large impact on a clustering effect, and a clustering
effect in non-optimal weights can strongly affect the probability of a differential.

In the context of the key recovery attack, we only show the summary of our
key recovery attacks to QARMA in Appendix D due to the page limitation (the
detailed attack procedure will be given in the full version of this paper). To date,
no study has been reported on a key recovery attack based on straightforward
differential cryptanalysis against QARMA. One possible issue is that it was dif-
ficult to find the key-recovery-friendly differentials for QARMA, as QARMA has
a large impact on a clustering effect. Our proposed SAT-based automatic search
framework can solve this issue, and consequently, a key recovery attack based
on the straightforward differential cryptanalysis can be performed with the time
and data complexities comparable to the best attacks. Our framework can be
applied to any symmetric-key primitive. Also, it is very important to analyze the
tight differential bound in the field of the symmetric-key cryptanalysis. There-
fore, we believe that our work is a significant contribution in terms of the tight
security analysis for a wide class of symmetric-key primitives.

2 Preliminaries

2.1 Definitions of Differential Characteristic and Differential

We frequently use terms differential characteristic and differential throughout
this paper. To avoid mixing these terms, we specify their definitions and how to
calculate their probabilities. Further, we provide the definition of weight that is
also frequently used in this paper. Notably, we explain a differential characteristic
and differential over an r-round iterated block cipher E(·) = fr(·) ◦ · · · ◦ f1(·).

Definition 1 (Differential characteristic) A differential characteristic is a
sequence of differences over E defined as follows:

C = (c0
f1−→ c1

f2−→ · · · fr−→ cr) := (c0, c1, · · · , cr),

where (c0, c1, · · · , cr) denotes the differences in the output of each round, i.e.,
c0 and cr denote the differences in a plaintext and ciphertext, respectively.

The probability of a differential characteristic is estimated by the product of
the corresponding differential probabilities for each round on the Markov cipher
assumption [21] as follows:

Pr(C) =

r∏
i=1

Pr(ci−1
fi−→ ci).

6 K. Sakamoto et al.

Definition 2 (Differential) A differential is a pair of the input and output
differences (c0, cr).

The probability of a differential is estimated by a sum of probabilities for all
differential characteristics sharing the same input and output differences (c0, cr)
as follows:

Pr(c0
E−→ cr) =

∑
c1,c2,···cr−1

Pr(c0
f1−→ c1

f2−→ · · · fr−→ cr).

We finally provide the definition of weight which corresponds to the proba-
bility of a differential characteristic.

Definition 3 (Weight) A weight w is a negated value of the binary logarithm
of the probability Pr defined as follows:

w = − log2 Pr

2.2 SAT-Based Automatic Search for Differential Characteristics

SAT. When a formula consists of only AND (∧), OR (∨), and NOT (·) opera-
tions based on Boolean variables, we refer to it as a Boolean formula. In a SAT
problem, a SAT solver checks whether there is an assignment of Boolean vari-
ables that can validate a Boolean formula or not. If such an assignment exists,
a SAT solver returns satisfiable or “SAT”. Generally, a SAT problem is an NP-
complete [13]. However, owing to numerous efforts for SAT problems, nowadays,
there are numerous excellent SAT solvers that can solve a SAT problem very
efficiently, such as CaDiCaL, Kissat, and CryptoMiniSat5.

A Boolean formula can be converted into a Conjunctive Normal Form (CNF),
which is expressed by the conjunction (∧) of the disjunction (∨) on (possibly
negated) Boolean variables, such as

∧i
a=0(

∨ja
b=0 ci,j), where ci,j is a Boolean

variable. We call each disjunction
∨ja

b=0 ci,j in a Boolean formula a clause.

SAT-Based Automatic Tools. SAT-based automatic tools are known as a valid
approach to find optimal differential/linear characteristics and more powerful
than MILP-based ones as shown in [28]. To implement its approach with the
SAT method, the differential/linear propagation over all operations in a prim-
itive must be converted into a CNF, and then we check if there exists a dif-
ferential/linear characteristic along with a specified weight as a SAT problem.
We can know the optimal differential/linear characteristics by solving some SAT
problems with changing the number of specified weights.

SAT Models for Basic Operations. Our framework is based on a pure-SAT model
proposed by Sun et al. [27, 28]. Due to the page limitation, we do not give the
detailed modeling method (for more information, please refer to Sun et al.’s
work). Herein, we specify some basic notations that are used in this study to
construct a whole SAT model as follows:

Parallel SAT Framework to Find Clustering of Differential Characteristics 7

MSAT : A whole SAT model that we solve.
Mcla.operations : Clauses to express the propagation of differences in a certain

operation. These clauses also contain variables to express a weight corre-
sponding to the propagation of differences in a probabilistic operation.

Mvar : Variables to construct clauses.

In this study, we useMcla.xor,Mcla.matrix, andMcla.sbox as clauses to express
the propagation of differences in PRINCE and QARMA. In addition, we also use
Mcla.input andMcla.sec(B) to evaluate a minimum weight. These clauses play a
role as follows:

Mcla.input : Clauses to avoid a trivial differential propagation, such as all input
differences being zero at the same time.

Mcla.sec(B) : Clauses to count the total weight of a primitive. More specifically,
the constraint of

∑j
i=0 pi ≤ B can be added, where pi is a Boolean variable

to express a weight and j is the total number of pi. There are several methods
to realize such a constraint in a Boolean formula [4,26,29]. Among these, we
employ Sequential Encoding Method [26] that was used in numerous works.

Finding Differential Characteristics with Minimum Weight. With the clauses
and variables introduced in this section, we construct a whole SAT model as
follows:

MSAT ← (Mcla.matrix, Mcla.sbox, Mcla.sec, Mcla.input).

Now, we are ready to find a differential characteristic with the minimum weight
by feedingMSAT andMvar to a SAT solver. If a SAT solver returns “UNSAT”,
there is no differential characteristic with a weight of ≤ B. In that case, we
increment B and repeat it until a SAT solver returns “SAT”. This means that
we obtain a differential characteristic with the minimum weight of B.

Modeling for a Clustering Effect. To take a clustering effect into account, we
must solve a SAT problem multiple times with the same input and output dif-
ferences, while the identical internal differential propagation is deleted from the
solution space of the initial SAT problem. To realize this procedure, we introduce
the following clauses:

Mcla.clust : Clauses to fix the input and output differences to find multiple
differential characteristics with the same input and output differences.

Mcla.clust : Clauses to remove the internal differential propagation from a SAT
model. These will be repeatably added to a SAT model whenever another
internal differential propagation is found.

When evaluating a clustering effect, we attempt to find a differential characteris-
tic with the weight of B, not the weight of ≤ B so as to calculate the exact prob-
ability of a differential. due to the same reason mentioned in [27].

∑r·i−1
j=0 pj = B

can be obtained by applying both
∑r·i−1

j=0 pj ≤ B and
∑r·i−1

j=0 pj ≥ B. The first

8 K. Sakamoto et al.

constraint is already given above, and the second one can be easily obtained from∑r·i−1
j=0 pj ≤ B with a small change. More information is provided in the previous

study [27]. Hereafter,Mcla.sec(B) denotes the clauses to express
∑r·i−1

j=0 pj ≥ B.
The detailed comprehensive algorithm for finding differential characteristics and
evaluating the clustering effect will be given in the following section.

3 A New SAT Framework to Find the Best Differential

In this section, we propose a new generic SAT-based automatic search frame-
work to find a differential with a higher probability under a specified condition
(we refer to it as a good differential in this paper). Specifically, our framework
can efficiently investigate the clustering effect of all differential characteristics
having different (c0, cr) with a specified range of probability and identify a good
differential. Our framework leverages a method to solve incremental SAT prob-
lems in parallel using a multi-threading technique, leading to an efficient search
for all differentials under the specified condition. Specifically, the unique features
of our framework are listed as follows:

Speedy identification of a good differential. Most of existing studies on
the solver-aided search methods have focused on searching for the optimal
differential characteristics as efficiently as possible. In contrast, our frame-
work aims to identify a good differential among numerous differential charac-
teristics having different (c0, cr) by evaluating the clustering effect of them
within the practical time. This can be realized by taking a method to solve
incremental SAT problems in parallel using a multi-threading technique into
consideration. Thereby, our framework enables us to find good differentials
under the specified range of the weight that the corresponding differential
characteristic has.

Efficient construction of a good truncated differential. Our framework also
enables us to find a good truncated differential. This can be realized by com-
bining all the obtained differentials under the specified truncated differential.
The truncated differential attack is more powerful than ordinary differential
attack; thus, our framework leads to a better differential attack on many
symmetric-key primitives.

Applicability to a wide class of the symmetric-key primitives. Our frame-
work leverages the existing SAT-based automatic search method proposed
by Sun et al. [28] and maintains its availability of applications; thus, our
framework can be applied to a wide class of the symmetric-key primitives.
Therefore, compared with existing solver-aided tools, our framework can be
the best tool to construct the (truncated) differential distinguisher for a wide
class of the symmetric-key primitives.

3.1 Our Approach

Conventionally, when we attempt to obtain a good differential, we adopt a strat-
egy of searching it based on the optimal differential characteristic. This strategy

Parallel SAT Framework to Find Clustering of Differential Characteristics 9

Prob.Popt Popt · 2
−1

Popt · 2
−3

Popt · 2
−2

differential characteristics

(a) Conventional approach
Prob.Popt Popt · 2

−1
Popt · 2

−3
Popt · 2

−2

differential characteristics

(b) Our approach

Fig. 1: Approaches to identifying a good differential. “# differential character-
istics” denotes the total number of differential characteristics having different
(c0, cr) with the corresponding probability in horizontal axis. Popt denotes the
probability of an optimal differential characteristic. The gray area depicts eval-
uated differentials.

seems reasonable in many cases; therefore, most of existing studies followed this
strategy and improved the differential attacks based on the differentials obtained
by this strategy. However, this strategy might overlook the better one because
the non-optimal differential characteristic sometimes constructs the better dif-
ferentials than that by the optimal differential characteristic, as the case on
Simeck32 reported by Kölbl and Roy [20].

To investigate differentials in more detail, we need to evaluate a clustering
effect of numerous differential characteristics having different (c0, cr). Since this
requires a huge computational cost, it is a time-consuming task even with the
state-of-the-art approach, such as a pure SAT-based automatic search method
proposed by Sun et al. [28]. To tackle this task, we focus on a method to efficiently
solve an incremental SAT problem and consider a new strategy to speedily obtain
all differential characteristics having different (c0, cr) with a specified range of
weight to evaluate the clustering effect of them. The essential idea of our search
strategy is very simple; we first enumerate all single differential characteristics
having different (c0, cr) with a relatively high probability and then investigate
the clustering effect of every obtained differential characteristic. Fig. 1 illustrates
the overview of our approach in comparison with the conventional one.

3.2 Incremental SAT Problem

An incremental SAT problem is a kind of SAT problem, which solves a general
SAT problem multiple times with a small modification, which the bounded vari-
able elimination method [16] can efficiently realize. Several SAT solvers support
the function to efficiently solve the incremental SAT problem, such as Crypto-
MiniSAT which is the most popular SAT solver in the field of symmetric-key
cryptography. Fig. 2 illustrates flowcharts of solving the general and an incre-
mental SAT problem.

10 K. Sakamoto et al.

Start

Give a CNF

Output ”SAT” Output ”UNSAT”

End

UNSAT

SAT

Judge if a CNF is SAT or not

(a) General SAT problem

Start

Output ”SAT” Output ”UNSAT”

EndAdd clauses

Give a CNF

UNSAT

SAT

Judge if a CNF is SAT or not

(b) Incremental SAT problem

Fig. 2: Flowcharts of solving the general and an incremental SAT problem.

Some Insights about Solving an Incremental SAT Problem. According to the
Erlacher et al’s work [17], assigning multiple threads to solve a single general
SAT problem has a positive impact on reducing the runtime, but does not obtain
the same degree of the gain as the degree of the parallelization. From this fact,
our work starts at investigating whether the same phenomenon happens in the
case of an incremental SAT problem. As a result, we find that it happens in the
case of an incremental SAT problem as well. Moreover, we also find that assigning
multiple threads to solve a single incremental SAT problem does not improve
the efficiency of the evaluation at all (see Sect. 3.4). This means that solving
multiple incremental SAT problems in parallel on each single thread is more
efficient than solving a single incremental SAT problem on multiple threads. We
leverage this insight into our framework.

Good Solver for an Incremental SAT Problem. There are numerous excellent
SAT solvers tending to solve a general SAT problem, while not so many of them
support solving an incremental SAT problem. Since our framework requires to
efficiently solve not a general SAT problem but an incremental SAT problem, we
must employ a SAT solver suitable for solving an incremental SAT problem. To
the best of our knowledge, CryptoMiniSat54 is the most efficient SAT solver to
solve an incremental SAT problem5. Hence, we use CryptoMiniSat5 throughout
all of our evaluations.

3.3 Finding a Good Differential

We present a new method to find a good differential under a specified condition.
Our method requires several basic algorithms to find differential characteristics,
such as ones presented in [28]. We leave the detailed explanation of them in
Appendix B due to a page limitation.
4 https://www.msoos.org/cryptominisat5/
5 CryptoMiniSat5 is the winner of the incremental library track at SAT competition

2020.

Parallel SAT Framework to Find Clustering of Differential Characteristics 11

Algorithm 1: Finding the best differential.
input : Wmin, r, Tw, Tc

output: D,N

1 begin
2 D ← (D0,D1, . . . ,DTw−1)
3 N ← (N0,N1, . . . ,NTw−1)
4 for i = Wmin to Wmin + Tw − 1 do
5 Di−Wmin ← SATdiff.all(i, r,1,1)
6 Ni−Wmin ← ∅
7 j ← 0
8 for all pairs in Di−Wmin do
9 add SATdiff.clust(i, i+ Tc − 1, r,D

(j)
i−Win

) to Ni−Win

10 j ← j + 1

11 /* j denotes the index of Di−Win
, i.e., MAX(j) = |Di−Win

| */

12 return (D,N)

The idea of our method is to investigate a clustering effect about all differen-
tial characteristics having different (c0, cr) with not only the minimum weight,
but also a specified range of weight, and then identify a good differential. Be-
fore giving a detailed algorithm of our method, we explain the procedure of this
method step by step as follows:

Step 1: Identify the weight Wmin of the r-round optimal differential character-
istic by SATdiff.min().

Step 2: Obtain all differential characteristics having different (c0, cr) with the
weight from Wmin to Wmin + α by SATdiff.all().

Step 3: Evaluate the clustering effect of all differential characteristics obtained
in Step 2, and then find a good differential.

As can be seen in the above steps, this method can investigate the probability
of differentials in more detail than any other existing tools. We give the detailed
algorithm of this method in Algorithm 1.

As inputs to Algorithm 1, we provide the minimum weight Wmin, the num-
ber of target rounds r, and two thresholds Tw and Tc. We can obtain Wmin

by SATdiff.min() and decide Tw as the range of weights taken into account in
the whole evaluation. For example, suppose that we obtain Wmin = 60 by
SATdiff.min() and set Tw = 3, Algorithm 1 searches a good differential in all
differential characteristics having different (c0, cr) with the weight of 60, 61, and
62. We can also decide Tc as the range of weight taken into account in a clus-
tering effect for each differential characteristic. After executing Algorithm 1, we
obtain lists of D and N which store all differentials (c0, cr) and the number of
the differential characteristics for each weight in each differential, respectively.
Then, we can calculate the probability for each differential with D and N .

The computational cost of Algorithm 1 highly depends on Tw and Tc, because
these two thresholds highly influence the number of times to solve an incremental

12 K. Sakamoto et al.

SAT problem in the whole procedure of Algorithm 1. Therefore, Tw and Tc must
be set depending on the computational environment. It should be noted that
the clustering effect for each differential will be evaluated in parallel because of
some observations discussed in Sect. 3.4.

3.4 Optimizing the Efficiency by a Multi-Threading Technique

To optimize the efficiency of our algorithms, we investigate the feature of an in-
cremental SAT problem, e.g., the most efficient way to solve multiple incremental
SAT problems. More specifically, we examine the difference in the runtimes de-
pending on the relationship between the number of threads assigned to solve each
incremental SAT problem and the degree of parallelization to solve multiple in-
cremental SAT problems. To this end, we define a rule for assigning the number
of threads and the degree of parallelization to satisfy the following equation:

Pdeg =
Tm

Ts
, (1)

where Pdeg, Tm, and Ts denote the degree of parallelization to solve multiple
incremental SAT problems, the total number of threads assigned for our eval-
uations, and the number of threads assigned to solve a single incremental SAT
problem, respectively. Based on the above assignment rule, to clarify the re-
lationship between the number of threads and the degree of parallelization, we
conduct experimental evaluations for the 5-round PRINCE, the 9-round PRINCE,
and the 6-round QARMA64 under the SK setting based on Algorithm 1. Due to
the limitations of our experimental environments, the total number of threads
Tm assigned for our evaluations of PRINCE and QARMA is 8 and 16, respectively.

Fig. 3 shows the runtime of each evaluation. In this figure, the vertical axis
represents the runtime of each evaluation and the horizontal axis represents the
degree of parallelization Pdeg. Besides, to further investigate the effect of the
number of threads assigned to a single incremental SAT problem, we conduct
additional experiments for PRINCE and QARMA on the environment of (Pdeg =
4, Tm = 4, Ts = 1) and (Pdeg = 8, Tm = 8, Ts = 1), respectively6. These results
show the runtime of 1h8m8s, 1h26m31s, and 35m15s for the 5-round PRINCE,
the 9-round PRINCE, and the 6-round QARMA64, respectively. From all our
evaluations, we can see the following interesting observations:

– Increasing the degree of parallelization is greatly useful to improve the run-
time of our algorithms. This can be intuitively seen from Fig. 3.

– Assigning many threads to solve a single incremental SAT problem does
not improve the runtime of our algorithms even though we can improve
in the case of a general SAT problem by the same approach to some ex-
tent. Unfortunately, it worsens the efficiency of our algorithms in the case of
the 6-round QARMA64. This is because our experimental results for the
6-round QARMA64 show the runtime of 35m15s on the environment of

6 Both evaluations are conducted by the same computers as the evaluation in Fig. 3.

Parallel SAT Framework to Find Clustering of Differential Characteristics 13

1 2 8 16

1

4

2

3

4

5

11

12

Pdeg

Hour

QARMA64 SK setting (6 round Wmin = 52)

PRINCE (5 round Wmin = 40)

PRINCE (9 round Wmin = 74)

13

Fig. 3: The runtime for each environment according to Eq. (1). The evaluations
of PRINCE and QARMA are conducted on computers with 8 and 16 threads,
respectively. Wmin denotes the weight of the differential characteristics evaluated
for the clustering effect.

(Pdeg = 8, Tm = 8, Ts = 1) but the runtime of 1h6m4s on the environment
of (Pdeg = 8, Tm = 16, Ts = 2).

These features probably could come from how to solve a given SAT problem
on multiple threads in a SAT solver. CryptoMiniSat5 employs the portfolio ap-
proach7 that provides the interface to efficiently share the learned clauses for a
set of CDCL solver instances [18]. The essence of this approach is to assign the
same SAT problems to each thread, each of which attempts to solve them indi-
vidually by sharing learned clauses with other threads. Hence, it seems natural
that this approach is more effective for a difficult SAT problem than for an easy
SAT problem, because the overhead for sharing learned clauses cannot be negli-
gible in a small SAT problem. In the evaluation of the clustering effect, we solve
an incremental SAT problem that aims to very efficiently solve a general SAT
problem with a modification multiple times. Therefore, we expect that evaluat-
ing the clustering effect of a single differential by multiple threads does not have
a positive effect on the efficiency of our algorithms. We would like to mention
that this phenomenon could be also observed in not only SAT solvers with port-
folio approach but also ones with other approaches because assigning multiples
threads to a single small SAT problem is excess even in other approaches.

From the above observations, we conclude that assigning a single incremental
SAT problem to each thread is more advantageous than assigning many threads
to a single incremental SAT problem. It should be mentioned that this observa-
tion may be consistent between incremental SAT problems whose the number
7 The portfolio approach is a popular approach to solve a given SAT problem on

multiple threads. Note that the portfolio approach is not for an incremental SAT
problem but for a general SAT problem.

14 K. Sakamoto et al.

of clauses and Boolean variables vary because we can see the same feature in
the results of the 5-round PRINCE and the 9-round PRINCE. Thus, we decide to
assign an independent incremental SAT problem to each thread when evaluating
the clustering effect.

Therefore, based on the above observations, we incorporate a method to
solve incremental SAT problems in parallel using a multi-threading technique
into Algorithm 1.

3.5 A More Efficient Algorithm to Find a Good Differential

Algorithm 1 can find a good differential under the specified condition, while a
computational cost becomes vast along with increasing Tw and Tc. The downside
of Algorithm 1 is that it never returns any result when all differentials cannot be
found out, and this situation happens often along with a weight far from Wmin.

To address this problem, we propose Algorithm 2, which can evaluate a clus-
tering effect whenever a differential characteristic having different (c0, cr) is
found. In Algorithm 2, it is not always possible to identify a good differential
under a specified condition, as we discard some differentials (c0, cr) in the middle
of the procedure. However, we place emphasis on evaluating a clustering effect as
efficiently as possible. To reduce the entire computational cost, we screen the dif-
ferential (c0, cr) depending on its differential probability by a certain threshold
whenever evaluating a clustering effect. If it does not satisfy a certain threshold,
the evaluation of a clustering effect for this differential (c0, cr) halts, and this
differential is discarded. In Algorithm 2, we assume to execute it in parallel on
an environment with multiple threads based on the fact in Sect. 3.4. We explain
the overview of the procedure step by step as follows:

Step 1: Find the same number of differential characteristics having different
(c0, cr) with the weight Wmin as the degree of parallelization.

Step 2: Evaluate the clustering effect for each obtained differential characteris-
tic in parallel. During this evaluation, we store or update the information of a
differential (c0, cr) with the highest probability (specifically, the differential
and its probability), and this information is used to specify the threshold. If
the probability of a differential (c0, cr) in the middle of evaluating the clus-
tering effect does not surpass a certain threshold, this evaluation halts, and
such a differential is discarded. Otherwise, the evaluation proceeds, and the
highest probability is updated if the probability of the resulting differential
exceeds the previous highest one.

Step 3: Repeat Step 1–2 until all differential characteristics having different
(c0, cr) with the weight Wmin are found. If it is infeasible to find all dif-
ferential characteristics having different (c0, cr), we stop the evaluation and
obtain the highest probability of a differential in this evaluation so far.

Step 4: Increase Wmin and repeat Step 1–3 until Wmin reaches a specified
weight.

As inputs to Algorithm 2, we provide the same parameters in Algorithm 1
and the additional two thresholds Ts and Tt which are the bounding condition

Parallel SAT Framework to Find Clustering of Differential Characteristics 15

Algorithm 2: Finding the (almost) good differential for a multi thread
programming technique

input : Wmin, r, Tw, Tc, Ts, Tt, Nthr

output: (copt.in, copt.out), Popt

1 begin
2 Popt ← 0, Pthr ← (P 0

thr, P
1
thr, . . . , P

Nthr−1
thr)

3 D ← (D0,D1, . . . ,DNthr−1)
4 for i = Wmin to Wmin + Tw − 1 do
5 (MSAT ,Mvar)← SETmodel(i, r)
6 add auxiliary Boolean variables of Mcla.sec(i) toMvar

7 addMcla.sec(i) toMSAT

8 count← 0
9 /* incremental SAT problem */

10 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
11 Dcount mod Nthr ← (c0, cr)
12 count← count+ 1
13 if count mod Nthr = 0 then
14 for each thread do
15 P thread

thr ← Thread(i, r, Tc, Ts, Tt, Popt,Dthread)

16 if MAX(Pthr) > Popt then
17 (Dopt, Popt)←MAX(D,Pthr)

18 add
∨n−1

k=0 (v0,k ⊕ c0,k) ∨ (vr,k ⊕ cr,k) toMSAT

19 if count mod Nthr ̸= 0 then
20 for each thread do
21 P thread

thr ← Thread(i, r, Tc, Ts, Tt, Popt,Dthread)

22 if MAX(Pthr) > Popt then
23 (Dopt, Popt)←MAX(D,Pthr)

24 return (Dopt, Popt)

25 Function Thread(W, r, Tc, Ts, Tt, Popt,D) // A multi-threading technique
26 begin
27 N ← (N0, N1, . . . , NTc−1)
28 N ← SATdiff.clust(W,W + Tt − 1, r,D)

29 Ptmp ←
∑W+Tt−1

i=W (Ni−W · 2−i)
30 if Ts · Ptmp > Popt then
31 N ← SATdiff.clust(W + Tt,W + Tc − 1, r,D)

32 Ptmp ← Ptmp +
∑W+Tc−1

i=W+Tt
(Ni−W · 2−i)

33 return Ptmp

used to narrow down the search space. We specify Tt and Ts as a range of the
evaluated weight in the clustering effect before screening and a specific threshold
of screening, respectively. Besides, we specify the degree of parallelization in

16 K. Sakamoto et al.

Table 2: Differential probabilities of (almost) good differentials of PRINCE. Wmin

denotes the same parameter as in Algorithms 1 and 2. #differentials denotes the
number of different differentials with a particular weight. The minimum weight
of a differential characteristic for each round is written in bold. The highest
differential probability for each round is written in red. The probabilities in a
white and gray cell are obtained by Algorithms 1 and 2, respectively. For all
results, we set Tw = 1 and Tc = 10.
PRINCE

Rounds 4 (1+2+1) 5 (1+2+2/2+2+1)
Wmin 32 33 34 35 36 39 40 41 42 43
Prob. 2−30.868 2−31.861 2−32.587 2−33.333 2−32.979 2−38.810 2−39.385 2−40.017 2−40.607 2−40.837

differentials 477452 3792944 4929816 5537848 5547896 576 12512 113840 598592 2231756
Time 6h06m57s 48h48m43s 47h34m17s 47h35m06s 48h01m15s 1m21s 26m09s 4h08m26s 23h14m24s 48h03m32s

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2)
Wmin 44 45 46 47 48 56 57 58 59 60
Prob. 2−43.907 2−44.907 2−45.195 2−46.111 2−46.374 2−55.771 2−55.887 2−56.810 2−57.37 2−57.990

differentials 64 512 1984 6592 25968 5632 100976 835456 205272 212280
Time 51s 4m21s 17m57s 1h07m16s 4h46m53s 5h07m16s 90h40m16s 48h00m00s 73h03m01s 71h43m12s

Rounds 8 (3+2+3) 9 (3+2+4/4+2+3)
Wmin 66 67 68 69 70 74 75 76 77 78
Prob. 2−64.389 2−65.384 2−66.303 2−66.970 2−67.075 2−73.888 2−74.881 2−74.970 2−75.970 2−76.166

differentials 256 3584 46736 18352 24056 64 544 3400 26592 13968
Time 1h55m50s 24h34m09s 290h41m48s 47h32m37s 48h4m28s 34m49s 5h11m49s 32h10m51s 235h42m42s 48h04m53s

Step 2 by Nthr. After executing Algorithm 2, we obtain a good differential Dopt

with its probability Popt.
In Appendix C, we show experimental results for some parameters of Ts and

Tt and discuss how parameters are acceptable to be set.

4 Applications to PRINCE and QARMA

We apply our framework to PRINCE and QARMA in some rounds. To make our
results clear, we show the results on each Wmin with Tw = 1, i.e., we consistently
set Tw = 1 for each Wmin. Furthermore, we set Tc = 10 unless noted otherwise.

4.1 Good Differentials for PRINCE

Table 2 shows the results of PRINCE, which are evaluated on Apple M1 MAX
with 64 GB of main memory. In the case where the number of all differential
characteristics having different (c0, cr) is not so many, and the number of rounds
is small, we can apply Algorithm 1, i.e., we can find a good differential with
Tc = 10. In other cases, the cost of the evaluation of a clustering effect becomes
so high that we apply Algorithm 2. For the results by Algorithm 1, the evaluation
of a clustering effect is parallelized on multiple threads to make the most of our
computational environment, as described in Sect. 3.3 and 3.4. For the results
by Algorithm 2, we pick up the best one among results on several combination
of Tt and Ts.

Parallel SAT Framework to Find Clustering of Differential Characteristics 17

Table 2 shows that the distinguishing attack can be applied up to seven
rounds of PRINCE/PRINCEv2 that improves the previous best attack by one
round [2,12]. It must be mentioned that the previous best distinguishing attack
by differential cryptanalysis is adjusted for the key recovery that restricts the
space of the input and output differences.

4.2 Good Differentials for QARMA

Table 3 shows the results of QARMA64 and QARMA128, both of which are evalu-
ated on Linux machine with Intel Xeon Gold 6258R CPU (2.70 GHz) and 256 GB
of main memory. As with the case of PRINCE, we apply Algorithm 1 when the
number of all differential characteristics having different (c0, cr) is not so many,
and the number of rounds is small. Otherwise, we apply Algorithm 2. Particu-
larly, the computational cost becomes excessive in the evaluation of QARMA128,
because the state length is 128 bits. Hence, we apply only Algorithm 2 in most
cases of the evaluation of QARMA128. For the results by Algorithm 1, the eval-
uation of a clustering effect is parallelized on multiple threads to make the most
of our computational environment, as well as the evaluation of PRINCE. For
the results by Algorithm 2, we pick up the best one among results on several
combinations of Tt and Ts.

As shown in Table 3, the distinguishing attack in the SK setting can be
applied up to 7 and 10 rounds of QARMA64 and QARMA128, both of which
improve the previous best attack [30] by 1 and 4 rounds, respectively. Further,
the distinguishing attack in the RT setting can be applied up to 10 and 12
rounds of QARMA64 and QARMA128, both of which improve the previous best
attacks [1, 23] by 1 and 4 rounds, respectively. As with the case of PRINCE, we
note that the previous best distinguishing attack may be adjusted for the key
recovery. Besides, it must be mentioned that the same case reported by Kölbl
and Roy [20] often happens in both QARMA64 and QARMA128, i.e., there are
some better differentials corresponding to a differential characteristic with not
the highest probability than that by the optimal differential characteristic.

4.3 Discussion: Comparison with PRINCE and QARMA

We observe that the gaps in the probability between a differential characteristic
and a differential can be large in QARMA64 and QARMA128 under the SK set-
ting compared to that in PRINCE. When looking at each construction in detail,
for the non-linear layer, the 4-bit S-boxes used in PRINCE and QARMA have
the same property in terms of security, such as a full diffusion property and
guaranteeing the maximum differential probability and the absolute linear bias
of 2−2. In contrast, their linear layers are designed with a different strategy. The
linear layer of PRINCE is designed to ensure 16 active S-boxes in consecutive
four rounds, while that of QARMA is designed based on an almost MDS matrix
suitable for hardware implementation. We summarize the difference in their ma-
trices from the macro and micro perspectives as follows. Hereafter, we mainly

18 K. Sakamoto et al.

Table 3: Differential probabilities of (almost) good differentials of QARMA. Wmin

denotes the same parameter as in Algorithms 1 and 2. #differentials denotes the
number of different differentials with a particular weight. The minimum weight
of a differential characteristic for each round is written in bold. The highest
differential probability for each round is written in red. The probabilities in a
white and gray cell are obtained by Algorithms 1 and 2, respectively. For all
results, we set Tw = 1 and Tc = 10.
QARMA64 under the SK setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (3+2+3)

Wmin 52 53 54 64 65 66 72 73 74

Prob. 2−45.741 2−46.019 2−46.112 2−60.278 2−60.111 2−58.921 2−64.845 2−64.503 2−64.693

differentials 1024 18048 315360 512 16896 313280 400 21904 333776

Time 35m15s 19h47m31s 109h51m44s 48m19s 39h48m41s 186h21m10s 15h47m58s 53h01m41s 508h11m56s

QARMA64 under the RT setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (3+2+3)

Wmin 14 15 16 28 29 30 36 37 38

Prob. 2−14.000 2−14.913 2−15.193 2−27.541 2−28.000 2−28.286 2−36.000 2−36.679 2−36.679

differentials 17 202 2571 84 3030 48840 20 840 18509

Time 36s 1m44s 13m33s 5m35s 1h15m24s 15h28m20s 11m16s 30m22s 10h18m25s

Rounds 9 (3+2+4/4+2+3) 10 (4+2+4) 11 (4+2+5/5+2+4)

Wmin 52 53 54 62 63 64 77 78 79

Prob. 2−51.415 2−51.415 2−52.246 2−60.831 2−60.831 2−60.831 2−77.000 2−77.415 2−77.509

differentials 8 688 11290 273 4822 49585 64 7616 18424

Time 6h32m25s 10h27m32s 49h31m02s 96h12m59s 114h45m17s 303h33m25s 596h07m26s† 1317h17m08s† 1317h16m57s†

QARMA128 under the SK setting

Rounds 6 (2+2+2) 7 (2+2+3/3+2+2) 8 (2+2+4/4+2+2)

Wmin 60 61 62 76 77 78 87 88 89

Prob. 2−54.494 2−54.521 2−54.581 2−71.930 2−72.321 2−72.614 2−84.850 2−85.093 2−85.539

differentials 1312 98984 391352 516 32880 31960 16 708 14300

Time 15h27m17s 499h19m12s 1316h25m40s† 40h57m50s 530h05m58s 430h44m47s 57h59m37s 92h7m23s 693h25m04s

Rounds 9 (3+2+4/4+2+3) 10 (3+2+5/5+2+3)

Wmin 106 107 108 125 126 127

Prob. 2−104.285 2−103.616 2−103.255 2−121.549 2−121.667 2−122.304

differentials 240 561 1172 12 54 31

Time 249h25m14s† 1004h00m44s† 1004h00m32s† 794h25m35s† 794h25m23s† 794h25m13s†

QARMA128 under the RT setting

Rounds 7 (2+2+3/3+2+2) 8 (3+2+3) 9 (3+2+4/4+2+3)

Wmin 28 29 30 42 43 44 64 65 66

Prob. 2−28.000 2−27.415 2−28.000 2−42.000 2−42.415 2−42.187 2−63.679 2−64.415 2−64.679

differentials 32 2144 64368 64 5248 203200 1815 6870 26105

Time 38m43s 4h51m52s 48h32m23s 21h17m20s 52h32m19s 470h54m17s 1154h39m26s† 1154h39m16s† 1154h39m05s†

Rounds 10 (4+2+4) 11 (4+2+5/5+2+4) 12 (5+2+5)

Wmin 80 81 82 100 101 102 125 126 127

Prob. 2−78.005 2−79.005 2−78.408 2−96.466 2−97.929 2−96.521 2−120.024 2−123.499 2−124.084

differentials 2 72 51 9 6 2 3 3 2

Time 978h51m03s† 1316h34m33s† 1316h33m53s† 794h24m09s† 794h23m59s† 1036h39m39s† 794h16m56s† 1036h44m17s† 1036h44m02s†

† These experiments were stopped before all differentials were obtained because the
program took too long to run.

take a comparison between PRINCE and QARMA64 as an example for a better
understanding.

Parallel SAT Framework to Find Clustering of Differential Characteristics 19

Table 4: Probability of differential characteristic and differential.
PRINCE (6 (2+2+2) rounds) Tw = 1, Tc = 10

Matrix Original Me1 Me2 Me3

Wmin 44 40 44 42
Prob. 2−43.907 2−38.526 2−38.616 2−37.458

Gap (Prob./2−Wmin) 20.093 21.474 25.384 24.542

differentials 64 256 8 272

Macro perspective. When looking at the matrices of PRINCE and QARMA64
as a single 64 × 64 matrix, the matrix of PRINCE consists of two 16 × 16
matrices M̂ (0) and M̂ (1) while that of QARMA64 consists of only one 16×16
matrix M . Hence, the (forward and backward) round function of PRINCE
can be seen as constructed on two super S-boxes, while that of QARMA64
can be seen as constructed on the one super S-box.

Micro perspective. When focusing on output nibbles, each output nibble in
the matrix of PRINCE comes from four input nibbles, while that of QARMA64
comes from three input nibbles. Thus, each output bit of the round function
of PRINCE depends on 16 input bits of the round function, while that of
QARMA64 depends on 12 input bits of the round function.

To further investigate an impact of a matrix on a gap in the probability, we
conduct three experiments with a change of the matrix in PRINCE focusing on
the above perspectives. Hence, we change the matrix in PRINCE to:

Me1 = diag(M̂ (0), M̂ (0), M̂ (0), M̂ (0));
Me2 = diag(circ(0, ρ1, ρ2, ρ1), circ(0, 1, ρ2, 1), circ(0, 1, ρ2, 1), circ(0, ρ1, ρ2, ρ1));
Me3 = diag(circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1), circ(0, ρ1, ρ2, ρ1)).

Notably, circ(0, 1, ρ2, 1) in Me2 has the same diffusion property as circ(0, ρ1, ρ2, ρ1)
given in [3]. With Me1, the round function can be viewed as constructed on the
one super S-box, but each output bit of the round function still depends on 16
input bits of the round function. With Me2, the round function can be viewed as
constructed on two super S-boxes like the original PRINCE, but each output bit
of the round function depends on 12 input bits of the round function. With Me3,
the matrix in PRINCE changes to the same matrix as QARMA64 into PRINCE,
that is, the round function can be viewed as constructed on the one super S-box
and each output bit of the round function depends on 12 input bits of the round
function.

Tables 4 and 5 show the gap in the probability of the differential charac-
teristic and differential on the six rounds of each variant of PRINCE and their
distribution of the differential characteristics, respectively. From a macro per-
spective, the number of super S-boxes based on a primitive does not seem to
have an impact on the gap as far as comparing the cases of the original matrix
with Me1 and Me2 with Me3. Meanwhile, the number of the input bits influenc-
ing each output bit seems to have a large impact on the gap as far as comparing

20 K. Sakamoto et al.

Table 5: Distribution of differential characteristics.
PRINCE (6 (2+2+2) rounds) Tw = 1, Tc = 10

Matrix
Weight

Wmin Wmin + 1 Wmin + 2 Wmin + 3 Wmin + 4 Wmin + 5 Wmin + 6 Wmin + 7 Wmin + 8 Wmin + 9

DC†

Original 1 0 0 0 1 0 0 0 1 0
Me1 2 0 0 0 11 0 0 0 23 0
Me2 1 2 7 16 55 116 452 848 2152 3498
Me3 1 0 5 2 56 38 358 210 1719 1102

† DC: Differential Characteristic

the cases of the original matrix with Me2 and Me1 with Me3. These observations
can fit into MIDORI64 [5] and SKINNY64 [6], both of which have the matrix
with each output nibble depending on less than four input nibbles. Ankele and
Kölbl showed that the probability of the optimal differential characteristic in
MIDORI64 and SKINNY is dramatically increased by considering a clustering
effect [2]. When each output bit depends on 16 input bits, the number of the dif-
ferential characteristics for each weight is curbed very few. Therefore, we predict
that a cipher can have good resistance to a clustering effect when each output
bit of the round function depends on more input bits of the round function.

In the RT setting, this gap of QARMA becomes small compared to that in
the SK setting, i.e., the permutation-based tweak update function like that used
in QARMA brings resistance to a clustering effect. That is mainly because the
transition of the differential propagation is uniquely fixed in the tweak update
function, and it contributes to making clustering difficult in the whole cipher.
Therefore, we expect that a tweakable block cipher with a linear tweak (tweakey)
update function can have a good resistance to the clustering effect.

Finally, the case reported by Kölbl and Roy [20] can occur in any cipher, as
a clustering effect in non-optimal weights can strongly affect the probability of
a differential, especially for a cipher like QARMA.

5 Conclusion

We provide a new generic SAT-based automatic search framework to find a good
differential under the specified conditions. Our framework introduces a method
to solve incremental SAT problems in parallel using a multi-threading technique,
and consequently, it allows us to evaluate differentials more comprehensively
than any other previous methods.

Our framework can be applied to a wide class of symmetric-key primitives.
In this study, to demonstrate the effectiveness of our framework, we apply it to
PRINCE and QARMA from aspects of distinguishing and key recovery attacks.
Our results are summarized as follows:

– We specify the conditions of finding a good differential to build a distin-
guisher and conduct experiments using our framework. As a result, we im-
prove previous differential bounds for all variants of the target ciphers.

Parallel SAT Framework to Find Clustering of Differential Characteristics 21

– We investigate the gap in the probability between a differential characteristic
and a differential for PRINCE and QARMA and find that different design
strategies for the linear layers has a significant impact on this gap.

For future direction, it would be interesting to expand the incremental SAT
problem to more efficiently find the optimal differential/linear characteristics
and other kinds of distinguishers. Further, it would be useful for future designs
to more comprehensively investigate the impact of the design construction on
the gap in the probability between a differential characteristic and a differential.

Acknowledgments

Takanori Isobe is supported by JST, PRESTO Grant Number JPMJPR2031.
These research results were also obtained from the commissioned research (No.05801)
by National Institute of Information and Communications Technology (NICT),
Japan.

References

1. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion. IACR
Trans. Symmetric Cryptol. 2019(1), 192–235 (2019)

2. Ankele, R., Kölbl, S.: Mind the gap - A closer look at the security of block ciphers
against differential cryptanalysis. In: SAC. Lecture Notes in Computer Science,
vol. 11349, pp. 163–190. Springer (2018)

3. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

4. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: CP. Lecture Notes in Computer Science, vol. 2833, pp. 108–122.
Springer (2003)

5. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: ASIACRYPT (2). Lecture
Notes in Computer Science, vol. 9453, pp. 411–436. Springer (2015)

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: CRYPTO (2). Lecture Notes in Computer Science, vol. 9815,
pp. 123–153. Springer (2016)

7. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 2–21. Springer (1990)

8. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: FSE. Lecture Notes in Computer Science, vol. 8540, pp. 546–570.
Springer (2014)

9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: ASIACRYPT. Lecture Notes in Computer
Science, vol. 7658, pp. 208–225. Springer (2012)

22 K. Sakamoto et al.

10. Boura, C., David, N., Boissier, R.H., Naya-Plasencia, M.: Better steady than
speedy: Full break of SPEEDY-7-192. IACR Cryptol. ePrint Arch. p. 1351 (2022)

11. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T.,
Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: Princev2 - more security for
(almost) no overhead. In: SAC. Lecture Notes in Computer Science, vol. 12804,
pp. 483–511. Springer (2020)

12. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: FSE. Lecture Notes in
Computer Science, vol. 8540, pp. 591–610. Springer (2014)

13. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151–
158. ACM (1971)

14. Ding, Y., Zhao, J., Li, L., Yu, H.: Impossible differential analysis on round-reduced
PRINCE. J. Inf. Sci. Eng. 33(4), 1041–1053 (2017)

15. Dobraunig, C., Eichlseder, M., Kales, D., Mendel, F.: Practical key-recovery attack
on MANTIS5. IACR Trans. Symmetric Cryptol. 2016(2), 248–260 (2016)

16. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: SAT. Lecture Notes in Computer Science, vol. 3569, pp. 61–75.
Springer (2005)

17. Erlacher, J., Mendel, F., Eichlseder, M.: Bounds for the security of ascon against
differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1),
64–87 (2022)

18. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. J. Satisf. Boolean
Model. Comput. 6(4), 245–262 (2009)

19. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015)

20. Kölbl, S., Roy, A.: A brief comparison of simon and simeck. In: LightSec. Lecture
Notes in Computer Science, vol. 10098, pp. 69–88. Springer (2016)

21. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In:
EUROCRYPT. Lecture Notes in Computer Science, vol. 547, pp. 17–38. Springer
(1991)

22. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021)

23. Li, M., Hu, K., Wang, M.: Related-tweak statistical saturation cryptanalysis and
its application on QARMA. IACR Trans. Symmetric Cryptol. 2019(1), 236–263
(2019)

24. Liu, Y., Zang, T., Gu, D., Zhao, F., Li, W., Liu, Z.: Improved cryptanalysis of
reduced-version QARMA-64/128. IEEE Access 8, 8361–8370 (2020)

25. Matsui, M.: On correlation between the order of s-boxes and the strength of DES.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 950, pp. 366–375.
Springer (1994)

26. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
CP. Lecture Notes in Computer Science, vol. 3709, pp. 827–831. Springer (2005)

27. Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and
midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)

28. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021)

Parallel SAT Framework to Find Clustering of Differential Characteristics 23

29. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

30. Yang, D., Qi, W., Chen, H.: Impossible differential attack on QARMA family of
block ciphers. IACR Cryptol. ePrint Arch. p. 334 (2018)

31. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck Family
of Lightweight Block Ciphers. In: CHES. Lecture Notes in Computer Science,
vol. 9293, pp. 307–329. Springer (2015)

32. Zong, R., Dong, X.: Meet-in-the-middle attack on QARMA block cipher. IACR
Cryptol. ePrint Arch. p. 1160 (2016)

33. Zong, R., Dong, X.: Milp-aided related-tweak/key impossible differential attack
and its applications to qarma, joltik-bc. IEEE Access 7, 153683–153693 (2019)

A Specifications of PRINCE, PRINCEv2, and QARMA

PRINCE and PRINCEv2. PRINCE [9] and PRINCEv28 [11] are two family of
a block cipher with a 64-bit block and 128-bit key. Both ciphers have the same
structure except for the round constant, key scheduling, and how to insert the
round keys. Both PRINCE and PRINCEv2 are constructed in the same three
functions the forward round function FR, middle round function MR, and backward
round function BR as follows:

FR(·) = SR ◦MC ◦ SB(·),
MR(·) = SB−1 ◦MC ◦ SB(·),
BR(·) = SB−1 ◦MC−1 ◦ SR−1(·).

SB is the parallel use of the 4-bit S-box defined by Table 6. SR is the shift row
operation that applies the same permutation used in AES as shown in Table 7.
MC is the MixColumns operation composed from the following four basic 4× 4
binary matrices:

M1 = diag(0, 1, 1, 1), M2 = diag(1, 0, 1, 1), M3 = diag(1, 1, 0, 1), M4 = diag(1, 1, 1, 0),

where diag() denotes a diagonal matrix. These four matrices build two 16× 16
binary matrices as follows:

M̂ (0) =

M1 M2 M3 M4

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

 , M̂ (1) =

M2 M3 M4 M1

M3 M4 M1 M2

M4 M1 M2 M3

M1 M2 M3 M4

 .

Finally, M̂ (0) and M̂ (1) build the 64× 64 matrix M ′ applied in MC as follows:

M ′ = diag(M̂ (0), M̂ (1), M̂ (1), M̂ (0)).

8 The differential characteristics and differentials are identical since PRINCE and
PRINCEv2 have the same round function except for the round constants and how to
insert the round keys and we do not care about the influence of the round keys on
the internal differences in this work.

24 K. Sakamoto et al.

Table 6: 4-bit S-box of SB.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) b f 3 2 a c 9 1 6 7 8 0 e 5 d 4

Table 7: Permutation of SR.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

The total number of rounds can be expressed as (r1+2+r2) when the number
of rounds for FR, MR, and BR are r1, 2, and r2, respectively. Notably, MR has two
rounds while FR and BR have one, i.e., the number of rounds is counted by the
number of SB and SB−1. More information is provided in [9, 11].

QARMA. QARMA [3] is a family of lightweight tweakable block ciphers. It has
two variants, QARMA64 and QARMA128, that support the block size n of 64
bits and 128 bits, respectively. The corresponding tweak size is equal to n bits,
while the master key K has 2n bits. All n-bit values can be viewed as an array
of 16 m-bit cells or 4× 4 matrices, i.e.,

IS = s0||s1|| · · · ||s14||s15 =

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

so that 4×4 matrices operate column-wise on these values by left multiplication.

Next, we briefly introduce the round and tweak update functions.

Round Function. The round function is composed of the following operations:

AddRoundTweakey. The i-th round tweakey, which consists of the round key and
round constant, is XORed to IS.

ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the cell permutation
of Midori [5], i.e., τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

MixColumns. Each column of IS is multiplied by the matrix M , i.e., IS = M · IS.
The matrix M is defined as follows:

M = circ(0, ρa, ρb, ρc) =

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ,

where ρi is a simple left circular rotation of the element by i bits. The
matrix of QARMA64 is selected as M = M = Q = circ(0, ρ1, ρ2, ρ1), while
the matrix of QARMA128 is selected as M = M = Q = circ(0, ρ1, ρ4, ρ5).

SubCells. si ← σ(si) for 0 ≤ i ≤ 15, where σ is the chosen S-box. We choose
σ0 = [0, 14, 2, 10, 9, 15, 8, 11, 6, 4, 3, 7, 13, 12, 1, 5]. Details are provided in [3].

In this study, we separate the round function of QARMA into five parts: the
initial tweakey masking IT, forward round function FR, middle round function

Parallel SAT Framework to Find Clustering of Differential Characteristics 25

MR, backward round function BR, and final tweakey masking FT. Notably, this
separation differs from that of the original design [3]. IT and FT execute only
AddRoundTweakey. FR, MR, and BR are redefined as follows:

FR(IS) = M ◦ τ ◦ AddRoundTweakey ◦ S(IS),
MR(IS) = S ◦ τ ◦ AddRoundTweakey ◦Q ◦ τ ◦ S(IS),
BR(IS) = S ◦ AddRoundTweakey ◦ τ ◦M(IS).

This structural separation allows QARMA to be considered to have the same
structure as PRINCE and PRINCEv2, i.e., MR has two rounds in these ciphers. In
the following, the total number of rounds is expressed as (r1+2+r2) when the
number of rounds for FR, MR, and BR are r1, 2, and r2, respectively.

Tweak Update. The cells of the tweak are permuted as h(T) = th(0)|| · · · ||th(15),
where h is the same permutation h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]
used in MANTIS [6]. Then, an LFSR ω updates the tweak cells with indexes 0, 1,
3, 4, 8, 11, and 13. For QARMA64, ω is a maximal period LFSR that maps cell
(b3, b2, b1, b0) to (b0 ⊕ b1, b3, b2, b1). For QARMA128, it maps cell (b7, b6, . . . , b0)
to (b0 ⊕ b2, b7, b6, . . . , b1).

B Basic Algorithms

We describe the basic algorithms employed to construct our framework with the
notations in Sect. 2.2. Sun et al. [27,28] already briefly presented the algorithm
to evaluate the clustering effect of a certain differential characteristics. Herein,
we describe it more formally, such that we must adjust some parameters ap-
propriately in our new search framework. In the following sections, all our SAT
models assume that the target cipher is based on an S-box, permutation, and
matrix (XOR), such as PRINCE and QARMA.

Algorithm to Construct a Certain Differential. As a first step to investigate the
clustering effect of the differential characteristics, we must find such differential
characteristics with a high probability, which are the seeds of differentials in
advance. Let Cr = (c0, c1, . . . , cr) be an r-round differential characteristic with
the minimum weight Wmin on an n-bit cipher, where ci = (ci,0, ci,1, . . . , ci,n−1)
for 0 ≤ i ≤ r. Note that c0 and cr imply the input and output differences,
respectively. Algorithm 3 shows the procedure to obtain the differential char-
acteristics Cr with the minimum weight Wmin for an r-round cipher. vr =
(vr,0, vr,1, . . . , vr,n−1) denotes Boolean variables to express the input differences
of the r-th round, where v0 and vr express differences in plaintext and cipher-
text, respectively. We describe each function as follows:

Function SATdiff.min(): This function takes the lower threshold T and the num-
ber of target rounds r as inputs. T is basically set to the minimum weight of
(r − 1) rounds. As outputs, it returns an r-round differential characteristic
Cr with the minimum weight Wmin.

26 K. Sakamoto et al.

Algorithm 3: The underlying functions to obtain the differential char-
acteristics Cr with the minimum weight Wmin for an r-round cipher.
1 Function SATdiff.min(T, r)
2 begin
3 (MSAT ,Mvar)← SETmodel(T, r)
4 while SATdiff.char(MSAT ,Mvar) = (“UNSAT”, ∅) do
5 T ← T + 1
6 (MSAT ,Mvar)← SETmodel(T, r)

7 Wmin ← T
8 return (Cr,Wmin)

9 Function SETmodel(T, r)
10 begin
11 Mvar ← All Boolean variables to produce all clauses, such as vi for 0 ≤ i ≤ r

12 MSAT ←

Mcla.matrix for all matrices in the r-round cipher
Mcla.sbox for all S-boxes in the r-round cipher
Mcla.sec(T)

Mcla.input

13 return (MSAT ,Mvar)

14 Function SATdiff.char(MSAT ,Mvar)
15 begin
16 if Solver(MSAT ,Mvar) = “SAT” then
17 for i = 0 to r do
18 ci ← vi

19 return (“SAT”, Cr)
20 else
21 return (“UNSAT”, ∅)

Function SETmodel(): This function takes the weight T and the number of target
rounds r as inputs. It is used to set a SAT model to verify whether there is a
differential characteristic with the weight of ≤ T on the r-round cipher. As
outputs, it returns a SAT model MSAT and its Boolean variables Mvar.

Function SATdiff.char(): This function takes a SAT modelMSAT and its Boolean
variables Mvar as inputs. It is used to check whether the given SAT model
is “SAT” or “UNSAT”. If a SAT solver Solver() returns “SAT”, this func-
tion returns “SAT” and Boolean variables to express the input differences
of each round which are equal to the differential characteristics Cr. Other-
wise, it returns “UNSAT” and ∅. In Algorithm 3, SATdiff.min() does not use
Cr, whereas SATdiff.char() returns Cr because the algorithm described later
utilizes it to take a clustering effect into account.

After obtaining (Cr,Wmin) from SATdiff.min(), the clustering effect of Cr is
evaluated by Algorithm 4, namely, this algorithm find the differential character-

Parallel SAT Framework to Find Clustering of Differential Characteristics 27

Algorithm 4: The basic algorithm to evaluate the clustering effect.
1 Function SATdiff.clust(Tlow, Tupp, r, (c0, cr))
2 begin
3 NTupp−Tlow+1 ← (N0, N1, . . . , NTupp−Tlow)
4 for i = Tlow to Tupp do
5 (MSAT ,Mvar)← SETmodel(i, r)
6 addMcla.clust toMSAT

7 add auxiliary Boolean variables of Mcla.sec(i) toMvar

8 addMcla.sec(i) toMSAT

9 Ni−Tlow ← 0
10 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
11 Ni−Tlow ← Ni−Tlow + 1
12 addMcla.clust toMSAT

13 return NTupp−Tlow+1

istics with the same input and output differences (c0, cr) for a specified range
of weight. Notably, we do not solve a general SAT problem but an incremental
SAT problem to find differential characteristics in Algorithm 4.

As inputs to Algorithm 4, we provide two thresholds Tlow and Tupp, the num-
ber of target rounds r, as well as a pair of input and output differences, namely
(c0, cr). We specify the two thresholds Tlow and Tupp as the lower and upper
weights taken into account in a clustering effect, respectively. Upon executing
Algorithm 4, we obtain a list indicating the number of differential characteristics
with (c0, cr) for each weight. Subsequently, we can compute the probability of
the differential (c0, cr) by applying the formula

∑Tupp

i=Tlow
Ni−Tlow

· 2−i.
Note that our new method described later employs a variety of values of Tlow

while Tlow is generally set to the minimum weight of the differential character-
istics Wmin.

Algorithm to Enumerate All Differential Characteristics in a Certain Weight.
Our new method requires all differential characteristics having different (c0, cr)
with a specified range of weight to evaluate their clustering effects and identify
the best differential. This can be easily realized by Algorithm 3 with a small
modification, as shown in Algorithm 5. However, a SAT problem changes from a
general SAT problem to an incremental SAT problem to efficiently find all differ-
ential characteristics. As inputs to Algorithm 5, we provide a weight W and the
number of target rounds r. Additionally, we can optionally provide the constraint
in the input and output differences to search the specific (truncated) differentials,
denoted by (din,dout) where din/out = (din/out,0, din/out,1, · · · , din/out,n−1), din/out,i ∈
F2. We specify din/out as the position of inactive bits, that is, the i-th bit in the
input/output differences is fixed to 0 if din/out,i = 0. Otherwise, the i-th bit in
the input/output differences can take either 1 or 0. After executing Algorithm 5,
we obtain a list of all differential characteristics having different (c0, cr) with
the weight W .

28 K. Sakamoto et al.

Algorithm 5: Finding all the input and output differences.
1 Function SATdiff.all(W, r,din,dout)
2 begin
3 D = ∅
4 (MSAT ,Mvar)← SETmodel(W, r)
5 for i = 0 to n− 1 do
6 /* n denotes the index of bits in the input and output differences */
7 if din,i = 0 then
8 add v0,i ⊕ din,i toMSAT

9 if dout,i = 0 then
10 add vr,i ⊕ dout,i toMSAT

11 add auxiliary Boolean variables of Mcla.sec(W) toMvar

12 addMcla.sec(W) toMSAT

13 while SATdiff.char(MSAT ,Mvar) = (“SAT”, Cr) do
14 add (c0, cr) to D

15 add
∨n−1

k=0 (v0,k ⊕ c0,k) ∨ (vr,k ⊕ cr,k) toMSAT

16 return D

C Good Parameters for Algorithm 2

As mentioned in Sect. 3.5, the result by Algorithm 2 depends on the parameters
Tt and Ts, i.e., we must appropriately set Tt and Ts to obtain the best differential.
However, it is impossible to show the specific parameters of Tt and Ts for any
primitive, as they depend on several factors, including the construction of a
primitive and the number of rounds. Hence, we provide some experimental results
about Tt and Ts on PRINCE and QARMA128 in Table 8. To investigate an effect
of a combination of Tt and Ts on a range of results that is as wide as possible, we
show the results of all combinations 3 ≤ Tt ≤ 7 and 1.1 ≤ Ts ≤ 2.0 in increments
of 0.1, i.e., 50 combinations.

Table 8 shows that we can obtain the best differential when 5 ≤ Tt in both
cases of PRINCE and QARMA128. In particular, we can obtain the best differ-
ential of the six rounds of PRINCE, regardless of a choice of Tt and Ts. This is
because the distribution of the differential characteristics for a weight in PRINCE
is sparse, and the most contributing differential characteristic to the probability
of a differential is the one with a weight of Wmin. Hence, the probability of the
best differential is dominated by that of the differential characteristics with a
weight of Wmin.

In contrast, for QARMA128, we often fail to determine the best differential
when Tt is low. This is because the distribution of the differential characteristics
is dense, like QARMA64, in contrast to PRINCE, i.e., the differential characteris-
tics with not only a weight of Wmin but also a weight of > Wmin contribute to
enhancing the probability of a differential.

Parallel SAT Framework to Find Clustering of Differential Characteristics 29

Table 8: Comparison of several combinations of Tt and Ts.
PRINCE (4 (1+2+1) rounds) Wmin = 32, Tw = 1, Tc = 10, Nthr = 8

Tt 3
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 2h36m23s 2h33m48s 2h33m08s 2h36m26s 2h35m35s 2h35m08s 2h37m57s 2h36m29s 2h35m21s 2h37m09s

Tt 4
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 3h08m50s 3h11m28s 3h10m50s 3h11m35s 3h06m52s 3h09m32s 3h11m20s 3h11m11s 3h09m16s 3h12m30s

Tt 5
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 3h42m41s 3h43m46s 3h43m39s 3h41m44s 3h46m42s 3h47m24s 3h46m00s 3h45m41s 3h47m00s 3h49m03s

Tt 6
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 4h19m52s 4h21m12s 4h20m16s 4h22m59s 4h22m59s 4h19m27s 4h20m31s 4h18m33s 4h19m39s 4h23m02s

Tt 7
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868 2−30.868

Time 4h56m43s 4h56m51s 4h53m21s 4h57m08s 4h55m13s 4h54m22s 4h53m10s 4h55m17s 4h53m59s 4h56m03s

QARMA128 under the SK setting (6 (2+2+2) rounds) Wmin = 60, Tw = 1, Tc = 10, Nthr = 8

Tt 3
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−55.177 2−55.805 2−54.494 2−54.494 2−55.177 2−55.177 2−55.177 2−55.177 2−54.494 2−54.494

Time 7h02m02s 6h47m35s 7h24m59s 6h40m27s 6h46m13s 6h48m24s 6h18m13s 6h16m06s 6h50m11s 7h24m04s

Tt 4
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−55.177 2−55.177 2−55.177 2−55.177 2−54.494 2−54.494 2−54.494 2−54.494

Time 8h04m30s 8h19m41s 8h56m52s 8h50m04s 8h58m59s 8h59m46s 9h20m47s 8h35m39s 8h58m39s 8h49m44s

Tt 5
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 9h34m53s 9h31m51s 9h40m25s 9h40m37s 10h02m59s 9h53m17s 10h35m23s 10h24m21s 10h03m32s 10h13m55s

Tt 6
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 11h24m58s 11h23m24s 10h55m20s 10h44m30s 11h44m56s 12h19m07s 11h22m33s 11h33m24s 11h23m19s 12h43m52s

Tt 7
Ts 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Prob. 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494 2−54.494

Time 12h31m34s 11h25m49s 11h11m23s 11h55m37s 11h47m58s 12h14m15s 12h41m06s 12h39m31s 12h42m19s 13h08m30s

For Ts, it is trivially better to set it to high, but it seems like that the choice
of Ts does not have as significant influence on the obtained differential compared
with that of Tt. Besides, it also does not so affect a runtime compared with that
of Tt. From these observations, we summarize our recommendation for the choice
of Tt and Ts as follows:

For a cipher with a big clustering effect like QARMA. For Tt, it is rec-
ommended to set it to about half of Tc. For Ts, it is recommended to set it

30 K. Sakamoto et al.

around 2.0. It must be mentioned that a differential with not the highest,
but a high probability can be obtained, even though Tt is set to a low value
in our experiments. Therefore, it is another choice to set Tt to a low value if a
computational environment is not expensive and finding the best differential
is not required.

For a cipher with a small clustering effect like PRINCE. For Tt, it is rec-
ommended to set it around one-third of Tc. For Ts, it is recommended to set
it around 2.0 as well as for cipher with a high clustering effect like QARMA.
Note that our experimental results imply that we can set Tt to a lower value
than our recommendation. However, we highly recommend to investigate a
feature of a target cipher before setting it to a low value, because that is
expected to depend on each cipher.

D Summary of Key Recovery Attacks

To show the key recovery attacks, we search the key-recovery-friendly truncated
differentials on QARMA64 and QARMA128 by Algorithm 1. Due to a page lim-
itation, we only give the summary of our key recovery attacks in Table 9. The
detailed attack procedure will be given in the full version of this paper.

Table 9 shows that our key recovery attacks do not outperform the best know
attacks. However, we would like to emphasize that our attacks are the first key
recovery attack based on straightforward differential cryptanalysis with the time
and data complexities comparable to the best attacks.

Parallel SAT Framework to Find Clustering of Differential Characteristics 31

Table 9: Comparison of our results with existing ones regarding key recovery.

Cipher Attacked
Type‡

Outer
Time Data Memory Validity$ Reference

(Setting†) # Rounds whitening

QARMA64
10 (3+2+5) MITM No 270.1 253 2116 ✓ [32]

(SK)
10 (3+2+5) ID Yes 2119.3 261 272 × [30]
11 (3+2+6) ID Yes 2120.4 261 2116 × [30]

QARMA64

10 (2+2+6) ID Yes 2125.8 262 237 × [33]

(RT)

10 (4+2+4) TD Yes 283.53 247.06 280 × Our
10 (3+2+5) TD Yes 275.13 247.12 272 ✓ Our
10 (3+2+5) SS Yes 259.0 259.0 229.6 ✓ [23]
11 (4+2+5) TD Yes 2111.16 234.26 2108 × Our
11 (4+2+5) ID No 264.92 258.38 263.38 ✓ [24]
12 (3+2+7) ZC/I Yes 266.2 248.4 253.7 ✓ [1]

QARMA128
10 (3+2+5) MITM No 2141.7 2105 2232 ✓ [32]

(SK)
10 (3+2+5) ID Yes 2237.3 2122 2144 × [30]
11 (3+2+6) ID Yes 2241.8 2122 2232 × [30]

QARMA128

11 (4+2+5) TDIB Yes 2126.1 2126.1 271 ✓ [23]

(RT)

11 (4+2+5) ID No 2137.0 2111.38 2120.38 ✓ [24]
11 (7+2+2) TD Yes 2104.60 2124.05 248 ✓ Our
12 (7+2+3) TD Yes 2154.53 2108.52 2144 × Our
12 (3+2+7) MITM Yes 2156.06 288 2154 ✓ [24]
13 (8+2+3) TD Yes 2238.02 2106.63 2240 × Our

† SK: Single-Key, RT: Related-Tweak
‡ MITM: Meet-in-the-Middle, ID: Impossible Differential, TD: Truncated Differ-
ential, SS: Statistical Saturation, ZC: Zero-Correlation, I: Integral, TDIB: Tweak
Difference Invariant Bias
$ The designer claims that the multiplication of time and data complexities for
QARMA64 and QARMA128 should be less than 2128−ϵ and 2256−ϵ for a small ϵ
(e.g., ϵ = 2), respectively. The symbol ‘✓’ indicates that the attack is feasible
within the designer’s security claim and the symbol ‘×’ indicates otherwise.

