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Abstract. The Implicit Factorization Problem (IFP) was first intro-
duced by May and Ritzenhofen at PKC’09, which concerns the factor-
ization of two RSA moduli N1 = p1q1 and N2 = p2q2, where p1 and
p2 share a certain consecutive number of least significant bits. Since its
introduction, many different variants of IFP have been considered, such
as the cases where p1 and p2 share most significant bits or middle bits
at the same positions. In this paper, we consider a more generalized case
of IFP, in which the shared consecutive bits can be located at any posi-
tions in each prime, not necessarily required to be located at the same
positions as before. We propose a lattice-based algorithm to solve this
problem under specific conditions, and also provide some experimental
results to verify our analysis.

Keywords: Implicit Factorization Problem · Lattice · LLL algorithm ·
Coppersmith’s algorithm.

1 Introduction

In 1977, Rivest, Shamir, and Adleman proposed the famous RSA encryption
scheme [18], whose security is based on the hardness of factoring large inte-
gers. RSA is now a very popular scheme with many applications in industry
for information security protection. Therefore, its security has been widely an-
alyzed. Although it seems infeasible to break RSA with large modulus entirely
with a classical computer now, there still exist many vulnerable RSA instances.
For instance, small public key [7,8] or small secret key [4] can lead to some at-
tacks against RSA. In addition, side-channel attacks pose a great threat to RSA
[2,5,6], targeting the decryption device to obtain more information about the
private key.

It is well known that additional information on the private keys or the prime
factors can help attack the RSA scheme efficiently. In 1997, Coppersmith [8,14]
proposed an attack that can factor the RSA modulus N = pq in polynomial time
if at least half of the most (or least) significant bits of p are given. In 2013, by
using Coppersmith’s method, Bernstein et al. [3] showed that an attacker can
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efficiently factor 184 distinct RSA keys generated by government-issued smart
cards.

At PKC 2009, May and Ritzenhofen [15] introduced the Implicit Factoriza-
tion Problem (IFP). It concerns the question of factoring two n-bit RSA moduli
N1 = p1q1 and N2 = p2q2, given the implicit information that p1 and p2 share
γn of their consecutive least significant bits, while q1 and q2 are αn-bit. Using
a two-dimensional lattice, May and Ritzenhofen obtained a heuristic result that
this implicit information is sufficient to factor N1 and N2 with a lattice-based
algorithm, provided that γn > 2αn+ 2.

In a follow-up work at PKC 2010, Faugère et al. [9] generalized the Implicit
Factorization Problem to the case where the most significant bits (MSBs) or the
middle bits of p1 and p2 are shared. Specifically, they established the bound of
γn > 2αn+ 2 for the case where the MSBs are shared, using a two-dimensional
lattice. For the case where the middle bits of p1 and p2 are shared, Faugère
et al. obtained a heuristic result that q1 and q2 could be found from a three-
dimensional lattice if γn > 4αn+ 6.

In 2011, Sarkar and Maitra [21] further expanded the Implicit Factorization
Problem by revealing the relations between the Approximate Common Divisor
Problem (ACDP) and the Implicit Factorization Problem, and presented the
bound of γ > 2α− α2 for the following three cases.

1. the primes p1, p2 share an amount of the least significant bits (LSBs);

2. the primes p1, p2 share an amount of most significant bits (MSBs);

3. the primes p1, p2 share both an amount of least significant bits and an
amount of most significant bits.

In 2016, Lu et al. [13] presented a novel algorithm and improved the bounds
to γ > 2α − 2α2 for all the above three cases of the Implicit Factorization
Problem. In 2015, Peng et al. [17] revisited the Implicit Factorization Problem
with shared middle bits and improved the bound of Faugère et al. [9] up to
γ > 4α− 3α2. The bound was further enhanced by Wang et al. [22] in 2018 up
to γ > 4α− 4α

√
α.

It is worth noting that in the previous cases, the shared bits are located at
the same position for the primes p1 and p2.

In this paper, we present a more generalized case of the Implicit Factoriza-
tion Problem that allows for arbitrary consecutive shared locations, rather than
requiring them to be identical in the primes, as in previous research. More pre-
cisely, we propose the Generalized Implicit Factorization Problem (GIFP), which
concerns the factorization of two n-bit RSA moduli N1 = p1q1 and N2 = p2q2
when p1 and p2 share γn consecutive bits, where the shared bits are not neces-
sarily required to be located at the same positions. See Fig. 1 for an example,
where the starting positions for the shared bits in p1 and p2 may be different.

We transform the GIFP into the Approximate Common Divisor Problem
and then, employ Coppersmith’s method with some optimization strategy, we
propose a polynomial time algorithm to solve it when γ > 4α(1−

√
α).
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(a) p1 (b) p2

Fig. 1: Shared bits M for p1 and p2

In Table 1, we present a comparison of our new bound on γ with the known
former bounds obtained by various methods to solve the Implicit Factorization
Problem.

LSBs MSBs both LSBs-MSBs Middle bits General

May, Ritzenhofen [15] 2α - - - -
Faugère, et al. [9] 2α - - 4α -
Sarkar, Maitra [21] 2α− α2 2α− α2 2α− α2 - -

Lu, et al. [13] 2α− 2α2 2α− 2α2 2α− 2α2 - -
Peng, et al.[17] - - - 4α− 3α2 -
Wang, et al.[22] - - - 4α(1−

√
α) -

This work - - - - 4α(1−
√
α)

Table 1: Asymptotic lower bound of γ in the Implicit Factorization Problem for
n-bit N1 = p1q2 and N2 = p2q2 where the number of shared bits is γn, q1 and
q2 are αn-bit.

It can be seen in Table 1 that the bounds for the Implicit Factorization
Problem for sharing middle bits are inferior to those of other variants. This
is because the unshared bits in the Implicit Factorization Problem for LSBs or
MSBs or both LSBs and MSBs are continuous, and only one variable is necessary
to represent the unshared bits while at least two variables are needed to represent
the unshared bits in the Implicit Factorization Problem sharing middle bits or
GIFP. In addition, our bound for GIFP is identical to the variant of IFP sharing
the middle bits located in the same position. However, it is obvious that the
GIFP relaxes the constraints for the positions of the shared bits.

Therefore, with the same bound for the number of shared bits as in the IFP
sharing middle bits at the same position, we show that the Implicit Factorization
Problem can still be solved efficiently when the positions for the sharing bits are
located differently.

There are still open problems, and the most important one is: can we improve
our bound 4α (1−

√
α) for GIFP to 2α− 2α2 or even better? A positive answer

seems not easy since the bound for GIFP directly yields a bound for any known
variant of IFP. Improving the bound for GIFP to the one better than 4α (1−

√
α)

means that we can improve the bound for the variant of IFP sharing the middle
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bits located in the same position, and improving the bound for GIFP to the
one better than 2α− 2α2 means that we can improve the bound for any known
variant of IFP.

Roadmap Our paper is structured as follows. Section 2 presents some required
background for our approaches. In Section 3, we present our analysis of the
Generalized Implicit Factorization Problem, which constitutes our main result.
Section 4 details the experimental results used to validate our analysis. Finally,
we provide a brief conclusion in Section 5.

2 Notations and Preliminaries

Notations Let Z denote the ring of integers, i.e., the set of all integers. We use
lowercase bold letters (e.g., v) for vectors and uppercase bold letters (e.g., A)
for matrices. The notation

(
n
m

)
represents the number of ways to select m items

out of n items, which is defined as n!
m!(n−m)! . If m > n, we set

(
n
m

)
= 0.

2.1 Lattices, SVP, and LLL

Let m ≥ 2 be an integer. A lattice is a discrete additive subgroup of Rm. A
more explicit definition is presented as follows.

Definition 1 (Lattice). Let v1,v2, . . . ,vn ∈ Rm be n linearly independent
vectors with n ≤ m. The lattice L spanned by {v1,v2, . . . ,vn} is the set of all
integer linear combinations of {v1,v2, . . . ,vn}, i.e.,

L =

{
v ∈ Rm | v =

n∑
i=1

aivi, ai ∈ Z

}
.

The integer n denotes the rank of the lattice L, while m represents its dimen-
sion. The lattice L is said to be full rank if n = m. We use the matrix B ∈ Rn×m,
where each vector vi contributes a row to B. The determinant of L is defined
as det(L) =

√
det (BBt), where Bt is the transpose of B. If L is full rank, this

reduces to det(L) = |det (B)|.
The Shortest Vector Problem (SVP) is one of the famous computational

problems in lattices.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice L, the
Shortest Vector Problem (SVP) asks to find a non-zero lattice vector v ∈ L of
minimum Euclidean norm, i.e., find v ∈ L\{0} such that ∥v∥ ≤ ∥w∥ for all
non-zero w ∈ L.

Although SVP is NP-hard under randomized reductions [1], there exist al-
gorithms that can find a relatively short vector, instead of the exactly short-
est vector, in polynomial time, such as the famous LLL algorithm proposed by
Lenstra, Lenstra, and Lovasz [12] in 1982. The following result is useful for our
analysis[14].
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Theorem 1 (LLL Algorithm). Given an n-dimensional lattice L, we can find
an LLL-reduced basis {v1,v2, . . . ,vn} of L in polynomial time, which satisfies

∥vi∥ ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i , for i = 1, . . . , n.

Theorem 1 presents the upper bounds for the norm of the i-th vector in the
LLL-basis using the determinant of the lattice.

2.2 Coppersmith’s method

In 1996, Coppersmith [8,14] proposed a lattice-based method for finding small
solutions of univariate modular polynomial equations modulo a positive integer
M , and another lattice-based method for finding the small roots of bivariate
polynomial equations. The methods are based on finding short vectors in a lat-
tice. We briefly sketch the idea below. More details can be found in [14].

Let M be a positive integer, and f(x1, . . . , xk) be a polynomial with integer
coefficients. Suppose we want to find a small solution (y1, . . . , yk) of the modular
equation f(x1, . . . , xk) ≡ 0 (mod M) with the bounds yi < Xi for i = 1, . . . , k.

The first step is to construct a set G of k-variate polynomial equations such
that, for each gi ∈ G with i = 1, . . . , k, we have gi(y1, . . . , yk) ≡ 0 (mod M).
Then we use the coefficient vectors of gi(x1X1, . . . , xkXk), i = 1, . . . , k, to con-
struct a k-dimensional lattice L. Applying the LLL algorithm to L, we get a
new set H of k polynomial equations hi(x1, . . . , xk), i = 1, . . . , k, with integer
coefficients such that hi(y1, . . . , yk) ≡ 0 (mod M). The following result shows
that one can get hi(y1, . . . , yk) = 0 over the integers in some cases, where
for h(x1, . . . , xk) =

∑
i1...ik

ai1...ikx
i1
1 · · ·xik

1 , the Euclidean norm is defined by

∥h(x1, . . . , xk)∥ =
√∑

i1...ik
a2i1...ik .

Theorem 2 (Howgrave-Graham [11]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be
a polynomial with at most ω monomials. Let M be a positive integer. If there
exist k integers (y1, . . . , yk) satisfying the following two conditions:

1. h(y1, . . . , yk) ≡ 0 (mod M), and there exist k positive integers X1, . . . , Xk

such that |y1| ≤ X1, . . . , |yk| ≤ Xk,

2. ∥h(x1X1, . . . , xkXk)∥ < M√
ω
,

then h(y1, . . . , yk) = 0 holds over the integers.

From Theorem 1, we can obtain the vectors v1,v2, . . . ,vk in the LLL reduced
basis of L. This yields k integer polynomials h1(x1, . . . , xk), . . . , hk(x1, . . . , xk),
all of which share the desired solution (y1, . . . , yk), that is hi(y1, . . . , yk) ≡ 0
(mod M) for i = 1, . . . , k.

To combine Theorem 1 and Theorem 2, for i = k, we set

2
n(n−1)

4(n+1−i) det(L)
1

n+1−i <
M√

dim(L)
.
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Ultimately, the attainment of the desired root hinges upon effectively resolv-
ing the system of integer polynomials using either the resultant method or the
Gröbner basis approach. However, in order for a Gröbner basis computation to
find the common root, the following heuristic assumption needs to hold.

Assumption 1 The k polynomials hi(x1, · · · , xk), i = 1, · · · , k, that are derived
from the reduced basis of the lattice in the Coppersmith method are algebraically
independent. Equivalently, the common root of the polynomials hi(x1, · · · , xk)
can be found by computing the resultant or computing the Gröbner basis.

Assumption 1 is often used in connection with Coppersmith’s method in the
multivariate scenario [4,14,21,13,22]. Since our attack in Section 3 relies on As-
sumption 1, it is heuristic. However, our experiments in Section 4 justify the
validity of our attack and show that Assumption 1 perfectly holds true.

3 Generalized Implicit Factorization Problem

This section presents our analysis of the Generalized Implicit Factorization
Problem (GIFP) in which p1 and p2 share an amount of consecutive bits at
different positions.

3.1 Description of GIFP

This section proposes the Generalized Implicit Factorization Problem (GIFP),
which concerns the factorization of two n-bit RSA moduli, N1 = p1q1 and
N2 = p2q2, under the implicit hint that the primes p1 and p2 share a specific
number, γn, of consecutive bits. In contrast to previous studies [9,13,15,19,20,22],
where the shared bits were assumed to be located at the same positions in p1
and p2, the proposed GIFP considers a more general case where the shared bits
can be situated at arbitrary positions.

Definition 3 (GIFP(n, α, γ)). Given two n-bit RSA moduli N1 = p1q1 and
N2 = p2q2, where q1 and q2 are αn-bit, assume that p1 and p2 share γn consecu-
tive bits, where the shared bits may be located in different positions of p1 and p2.
The Generalized Implicit Factorization Problem (GIFP) asks to factor N1 and
N2.

The introduction of GIFP expands the scope of the Implicit Factorization
Problem and presents a more realistic and challenging scenario that can arise in
practical applications. In real-world settings, it is more probable to encounter
situations where the shared location of bits differs between primes. Therefore, it
is essential to develop algorithms and analysis that can handle such cases where
the shared bits are situated at different positions. By considering the Generalized
Implicit Factorization Problem (GIFP), we need to avoid situations where the
system that creates RSA keys lack entropy.
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3.2 Algorithm for GIFP

We will show our analysis of the GIFP in this subsection. The main idea
is also to relate the Approximate Common Divisor Problem (ACDP) to the
Implicit Factorization Problem.

Theorem 3. Under Assumption 1, GIFP(n, α, γ) can be solved in polynomial
time when

γ > 4α
(
1−

√
α
)
,

provided that α+ γ ≤ 1.

Proof. Without loss of generality, we can assume that the starting and ending
positions of the shared bits are known. When these positions are unknown, we
can simply traverse the possible starting positions of the shared bits, which will
just scale the time complexity for the case that we know the position by a factor
O(n2).

Hence, we suppose that p1 shares γn-bits from the β1n-th bit to (β1+γ)n-th
bit, and p2 shares bits from β2n-th bit to (β2 + γ)n-th bit, where β1 and β2 are
known with β1 ≤ β2 (see Fig. 1 ). Then we can write

p1 = x1 +M2β1n + x22
(β1+γ)n, p2 = x3 +M2β2n + x42

(β2+γ)n,

with M < 2γn, x1 < 2β1n, x2 < 2(β−β1)n, x3 < 2β2n, x4 < 2(β−β2)n where
β = 1− α− γ. From this, we deduce

2(β2−β1)np1 = x12
(β2−β1)n +M2β2n + x22

(β2+γ)n

= x12
(β2−β1)n + (p2 − x3 − x42

(β2+γ)n) + x22
(β2+γ)n

= p2 + (x12
(β2−β1)n − x3) + (x2 − x4)2

(β2+γ)n.

Then, multiplying by q2, we get

N2 + (x12
(β2−β1)n − x3)q2 + (x2 − x4)q22

(β2+γ)n = 2(β2−β1)np1q2.

Next, we define the polynomial

f(x, y, z) = xz + 2(β2+γ)nyz +N2,

which shows that (x12
(β2−β1)n − x3, x2 − x4, q2) is a solutions of

f(x, y, z) ≡ 0 (mod 2(β2−β1)np1).

Let m and t be integers to be optimized later with 0 ≤ t ≤ m. To apply Copper-
smith’s method, we consider a family of polynomials gi,j(x, y, z) for 0 ≤ i ≤ m
and 0 ≤ j ≤ m− i:

gi,j(x, y, z) = (yz)jf(x, y, z)i
(
2(β2−β1)n

)m−i

N
max(t−i,0)
1 .
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These polynomials satisfy

gi,j

(
x12

(β2−β1)n − x3, x2 − x4, q2

)
= (x2 − x4)

jqj2

(
2(β2−β1)np1q2

)i (
2(β2−β1)n

)m−i

N
max(t−i,0)
1

= (x2 − x4)
jqj+i

2 q
max(t−i,0)
1

(
2(β2−β1)n

)m

p
max(t−i,0)+i
1

≡ 0
(
mod

(
2(β2−β1)n

)m

pt1

)
.

On the other hand, we have∣∣∣x12
(β2−β1)n − x3

∣∣∣ ≤ max
(
x12

(β2−β1)n, x3

)
≤ max

(
2β1n2(β2−β1)n, 2β1n

)
= 2β2n,

and
|x2 − x4| ≤ max(x2, x4) = 2(β−β2)n.

Also, we have q2 = 2αn. We then set

X = 2β2n, Y = 2(β−β1)n, Z = 2αn.

To reduce the determinant of the lattice, we introduce a new variable w for p2,
and multiply the polynomials gi,j(x, y, z) by a power ws for some s that will be
optimized later. Similar to t, we also require 0 ≤ s ≤ m

Note that we can replace zw in gi,j(x, y, z)w
s by N2. We want to eliminate

this multiple. Since gcd(N2, 2N1) = 1, there exists an inverse of N2, denoted as

N−1
2 , such that N2N

−1
2 ≡ 1

(
mod

(
2(β2−β1)n

)m
N t

1

)
. We then eliminate (zw)i

from the original polynomial by multiplying it by N−i
2 , while ensuring that the

resulting polynomial evaluation is still a multiple of
(
2(β2−β1)n

)m
pt1. By selecting

the appropriate parameter s, we aim to reduce the determinant of the lattice.

Remark 1. For simplicity, the results after the above treatment of gi,j(x, y, z)
are denoted as gi,j(x, y, z, w).

Consider the lattice L spanned by the matrix B whose rows are the coeffi-
cients of the polynomials gi,j(x, y, z, w) for 0 ≤ i ≤ m, 0 ≤ j ≤ m− i. The rows
are ordered following the rule that gi,j(x, y, z, w) ≺ gi′,j′(x, y, z, w) if i < i′ or
if i = i′ and j < j′. The columns are ordered following the monomials so that
xiyjzi+jws ≺ xi′yj

′
zi

′+j′ws if j < j′ or if j = j′ and i < i′.
Table 2 presents a matrix B with m = 2, s = 2, t = 2 where ∗ represents a

nonzero term.
By construction, the square matrix B is left triangular. Hence, the dimension

of the lattice is

ω =

m∑
i=0

m−i∑
j=0

1 =

m∑
i=0

(m− i+ 1) =
1

2
(m+ 1)(m+ 2)
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w2 yzw2 y2z2w2 xzw2 xyz2w2 x2z2w2

g0,0 M4N2
1W2 0 0 0 0 0

g0,1 0 Y M4N2
1ZW2N

−1
2 0 0 0 0

g0,2 0 0 Y 2M4N2
1Z2W2N

−2
2 0 0 0

g1,0 ∗ ∗ 0 XM3N1ZW2N
−1
2 0 0

g1,1 0 ∗ ∗ ∗ Y XM3N1Z2W2N
−2
2 0

g2,0 ∗ ∗ ∗ ∗ ∗ X2M2Z2W2N
−2
2

Table 2: The matrix of the lattice with m = 2, s = 2, t = 2 and M = 2(β2−β1)n.

and its determinant is

det(B) = det(L) = XeXY eY ZeZW eW 2(β2−β1)neMNeN
1 ,

with

eX =

m∑
i=0

m−i∑
j=0

i =
1

6
m(m+ 1)(m+ 2),

eY =

m∑
i=0

m−i∑
j=0

j =
1

6
m(m+ 1)(m+ 2),

eZ =

m∑
i=0

m−i∑
j=0

max{i+ j − s, 0}

=
1

3
m(m+ 1)(m+ 2) +

1

6
s(s+ 1)(s+ 2)− 1

2
s(m+ 1)(m+ 2),

eW =

s∑
i=0

s−i∑
j=0

j =
1

6
s(s+ 1)(s+ 2),

eN =

t∑
i=0

m−i∑
j=0

(t− i) =
1

6
t(t+ 1)(3m− t+ 4),

eM =

m∑
i=0

m−i∑
j=0

(m− i) =
1

3
m(m+ 1)(m+ 2).

The former results are detailed in Appendix A. To combine Theorem 1 and
Theorem 2, we set

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i <

(
2(β2−β1)n

)m
pt1√

ω
,

with i = 2. Then

det(L) < 1

2
ω−1

4
√
ω

(
2(β2−β1)n

)ωm

ptω1 ,
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and

XeXY eY ZeZW eW 2(β2−β1)neMNeN
1 <

1

2
ω−1

4
√
ω

(
2(β2−β1)n

)ωm

ptω1 . (1)

Next, we set s = σm with 0 ≤ σ ≤ 1, t = τm with 0 ≤ τ ≤ 1, and we use
N ≈ 2n, p1 ≈ 2(1−α)n, X = 2β2n, Y = 2(β−β1)n, Z = 2αn, W = 2(1−α)n and the
most significant parts of eX , eY , eZ , eW , eN , eM as

eX =
1

6
m3 + o

(
m3

)
,

eY =
1

6
m3 + o

(
m3

)
,

eZ =
1

3
m3 +

1

6
σ3m3 − 1

2
σm3 + o

(
m3

)
,

eW =
1

6
σ3m3 + o

(
m3

)
,

eN =
1

6
τ2(3− τ)m3 + o

(
m3

)
,

eM =
1

3
m3 + o

(
m3

)
.

Similarly, we use

mω =
1

2
m3 + o

(
m3

)
.

Then, after taking logarithms, dividing by nm3, and neglecting the very small
terms, i.e., o

(
m3

)
, the inequality (1) implies

1

6
β2 +

1

6
(β − β1) + α(

1

3
+

1

6
σ3 − 1

2
σ) +

1

6
σ3(1− α) +

1

3
(β2 − β1) +

1

6
τ2(3− τ)

<
1

2
(β2 − β1) +

1

2
(1− α)τ.

Using β = 1− α− γ, the former inequality is equivalent to

τ2(3− τ)− 3(1− α)τ + σ3 − 3ασ + 1− γ + α < 0.

The left side is optimized for τ0 = 1−
√
α and σ0 =

√
α, which gives

3α− 2α
√
α− 1− 2α

√
α+ 1 + α− γ < 0,

and finally
γ > 4α

(
1−

√
α
)
.

By Assumption 1, we can get (x0, y0, z0) = (x12
(β2−β1)n − x3, x2 − x4, q2), so we

have q2 = z0, and we calculate

p2 =
N2

q2
.

Next, we have

2(β2−β1)np1 = p2+(x12
(β2−β1)n−x3)+(x2−x4)2

(β2+γ)n = p2+y0+z02
(β2+γ)n.

Therefore, we can calculate p1 and q1 = N1

p1
. This terminates the proof. ⊓⊔
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4 Experimental Results

We provide some experiments to verify Assumption 1 and the correctness of
our analysis.

The experiments were run on a computer configured with AMD Ryzen 5
2500U with Radeon Vega Mobile Gfx (2.00 GHz). We selected the parameter
n = log(N) using gradients, validated our theory starting from small-scale ex-
periments, and continually increased the scale of our experiments. The results
are presented in Table 3:

n αn βn β1n β2n γn m dim(L) Time for LLL(s) Time for Gröbner Basis(s)

200 20 40 20 30 140 6 28 1.8620 0.0033
200 20 60 20 30 140 6 28 1.8046 0.0034
500 50 100 50 75 350 6 28 3.1158 0.0043
500 50 150 50 75 300 6 28 4.23898 0.0048
1000 100 200 100 150 700 6 28 8.2277 0.0147

Table 3: Some experimental results for the GIFP.

As can be seen from Table 3, we chose various values of n, αn, βn, β1n,
β2n and γn to investigate the behavior of our proposed algorithm. For each set
of parameters, we recorded the time taken by the LLL algorithm and Gröbner
basis algorithm to solve the Generalized Integer Factorization Problem (GIFP).

Our experiments confirm Assumption 1 and also the efficiency of our algo-
rithm in handling various values of n and related parameters. As the size of the
problem increases, the computation time for LLL and Gröbner basis algorithms
also increases. Nevertheless, our algorithm’s time complexity grows moderately
compared to the problem size. Therefore, we can conclude that our algorithm
is suitable for practical applications in the Generalized Integer Factorization
Problem (GIFP).

Besides the Generalized Implicit Factoring Problem, we also conducted ex-
periments on a special case, called the least-most significant bits case (LMSBs).
This case is characterized by β1 = 0 and β2 = β. The results of these experiments
are outlined below

5 Conclusion and Open Problem

In this paper, we considered the Generalized Implicit Factoring Problem
(GIFP), where the shared bits are not necessarily required to be located at the
same positions. We proposed a lattice-based algorithm that can efficiently factor
two RSA moduli, N1 = p1q1 and N2 = p2q2, in polynomial time, when the
primes share a sufficient number of bits.

Our analysis shows that if p1 and p2 share γn > 4α (1−
√
α)n consecutive

bits, not necessarily at the same positions, then N1 and N2 can be factored in
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n αn βn γn m dim(L) Time for LLL(s) Time for Gröbner Basis(s)

256 25 75 156 5 21 1.3068 0.0029
256 25 75 156 5 21 1.2325 0.0023
256 25 75 156 6 21 1.2931 0.0023
512 50 150 212 6 28 2.0612 0.0028
512 50 150 212 6 28 2.4889 0.0086
512 50 150 212 6 28 2.0193 0.0022

Table 4: Some experimental results for the LMSBs case.

polynomial time. However, this bound is valid when pi and qi, i = 1, 2, are not
assumed to have the same bit length, i.e., N1 and N2 are unbalanced moduli
[16].

So our work raises an open question on improving the bound 4α (1−
√
α),

which would lead to better bounds for specific cases such as sharing some middle
bits. It is known that the unshared bits in the Most Significant Bits (MSBs) or the
Least Significant Bits (LSBs) are continuous, and only one variable is required
when using variables to represent the unshared bits. This makes the MSBs or
LSBs case easier to solve than the generalized case and achieves a better bound
of 2α (1− α). However, the bound of the MSBs is not linear with the bound of
the GIFP, which is unnatural. We hope that the gap between the bounds of the
MSBs or LSBs and the GIFP case can be reduced.
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eY , eZ , eW , eN , and eM used in Section 3.2. We begin by a lemma that will be
easily proven by induction. This lemma is well-known and can be found in many
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Table 174 on page 174 in [10].

Lemma 1. The equation
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(
i
2
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=

(
n+1
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)
holds for any integer n.
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Moving on, we provide the calculations for eX as:

eX =

m∑
i=0

m−i∑
j=0

j =

m∑
i=0

(
m− i+ 1

2

)
=

m∑
i=0

(
i+ 1

2

)

=

(
m+ 2

3

)
=

1

6
m(m+ 1)(m+ 2).

The calculation of eY and eW are the same as eX .

Next, we provide the calculation for eZ :

eZ =

m∑
i=0

m−i∑
j=0

max{i+ j − s, 0}

=

m∑
t=s+1

t∑
j=0

(t− s) (Let t = i+ j)

=

m∑
t=s+1

(t− s)(t+ 1)

=

m∑
t=0

(t− s)(t+ 1)−
s∑

t=0

(t− s)(t+ 1)

=

m∑
t=0

t(t+ 1)−
m∑
t=0

s(t+ 1)−
s∑

t=0

t(t+ 1) +

s∑
t=0

s(t+ 1)

= 2

m∑
t=0

(
t+ 1

2

)
− s

m∑
t=0

(t+ 1)− 2

s∑
t=0

(
t+ 1

2

)
+ s

s∑
t=0

(t+ 1)

= 2

(
m+ 2

3

)
− s

(
m+ 2

2

)
+

1

6

(
s+ 2

3

)
=

1

3
m(m+ 1)(m+ 2) +

1

6
s(s+ 1)(s+ 2)− 1

2
s(m+ 1)(m+ 2).

Furthermore, we provide the calculation for eN :

eN =
t∑

i=0

m−i∑
j=0

(t− i) =
t∑

i=0

(t− i)(m− i+ 1) =
t∑

i=0

(t− i)(m+ 2− i− 1)

= (m+ 2)

t∑
i=0

(t− i)−
t∑

i=0

(t− i)(i+ 1) = (m+ 2)

(
t+ 1

2

)
−

t∑
i=0

t(i+ 1) +

t∑
i=0

i(i+ 1)

= (m+ 2)

(
t+ 1

2

)
− t

(
t+ 2

2

)
+

t∑
i=0

2

(
i+ 1

2

)
= (m+ 2)

(
t+ 1

2

)
− t

(
t+ 2

2

)
+ 2

(
t+ 2

3

)

=
1

6
t(t+ 1)(3m− t+ 4).
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Finally, we provide the calculation for eM :

eM =

m∑
i=0

m−i∑
j=0

(m− i) =

m∑
i=0

(m− i+ 1)(m− i) =

m∑
i=0

2

(
m− i+ 1

2

)

=

m∑
i=0

2

(
i+ 1

2

)
= 2

(
m+ 2

3

)
=

1

3
m(m+ 1)(m+ 2).
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