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•Password-checking in 

Microsoft Edge 


•OPAQUE

•Privacy pass


•Private-set intersection


•Adaptive OT


•….
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•Server doesn't learn 

anything ✓


•Output is 
deterministic ✓


•Client only learns 

one output ✓
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Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs
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Part 1 Part 2

• Repeat the attack 3 times
• Find a basis on Ek

• Evaluate the PRF on any message

The server can check the


degree with the PoK!

Actual complexity: sub-exponential
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[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

E0 Ker = <P + H1(m)Q> Em1

Ek Em1k

Ker = <P + H2(m)Q> Em

Attacker recovers

P’, Q’ on Ek

Can only evaluate

the first half
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One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

Masked torsion points

[Fou22,FMP23]

p ≈ 26000 
needs new PoIK

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌
it works

✅
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PoIK with masked torsion

challenges from {-1, 0, 1} 

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

[a1]

[a2]

[a3]
soundness error = 2/3

⇒  need 1.7λ repetitions

p ≈ ord P, Q ⤫ deg Φ ⤫ deg →

≈ 29000
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Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel


to commitment

Interactive (5 rounds)

Non-interactive

Saves computations

Run together

Prove “parallelness" when

revealing horizontal isogeny
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more efficient than original
• One-more unpredictability countermeasure

• Integrated SIDH countermeasures

• New PoPI more efficient than original

round optimal

new security assumption 

novel proof of isogeny knowledge 
prime is still large



Results 


