
16th August, 2023
Selected Areas in Cryptography 2023

A Post-Quantum Round-Optimal
Oblivious PRF from Isogenies
Andrea Basso

Oblivious PRF

User Server

[[m]]

f(k, [[m]])

Oblivious PRF

User Server

[[m]]

F(k, m)

f(k, [[m]])

Oblivious PRF

User Server

[[m]]

F(k, m) ⊥

f(k, [[m]])

Oblivious PRF

User Server

[[m]]

F(k, m) ⊥

com(k)

f(k, [[m]])

Oblivious PRF

User Server

[[m]]

F(k, m) ⊥

com(k)

f(k, [[m]]) , π

Oblivious PRF

User Server

[[m]]

F(k, m) ⊥

com(k)

f(k, [[m]]) , π

•Password-checking in

Microsoft Edge

•OPAQUE

•Privacy pass

•Private-set intersection

•Adaptive OT

•….

HashDH OPRF

Client Server

m

HashDH OPRF

Client Server

H(m)m

HashDH OPRF

Client Server

H(m)m
b

HashDH OPRF

Client Server

H(m)m
b

k
H(m)m

b

HashDH OPRF

Client Server

H(m)

H(m)k

m
b

k
H(m)m

b

HashDH OPRF

Client Server

H(m)

⊥H(m)k

m
b

k
H(m)m

b

HashDH OPRF

Client Server

H(m)

⊥H(m)k

m
b

k
H(m)m

b

•Server doesn't learn

anything ✓

•Output is
deterministic ✓

•Client only learns

one output ✓

Post-quantum OPRFs

• VOPRF based on lattices [ADDS19] • round optimal

• feasibility result (> 240 bits of comms)

• VOPRF based on SIDH [BKW20] • six rounds

• broken by attack on PR and on SIDH

• OPRF based on CSIDH [BKW20] • three rounds (OT required)

• CSIDH parameters?

• Generic MPC techniques • many rounds (can’t be optimal)

Post-quantum OPRFs

• VOPRF based on lattices [ADDS19] • round optimal

• feasibility result (> 240 bits of comms)

• VOPRF based on SIDH [BKW20] • six rounds

• broken by attack on PR and on SIDH

• OPRF based on CSIDH [BKW20] • three rounds (OT required)

• CSIDH parameters?

• Generic MPC techniques • many rounds (can’t be optimal)

The original OPRF [BKW20]

E0 m Em

EmkEk

k

The original OPRF [BKW20]

E0 m Em

EmkEk

k

The original OPRF [BKW20]

E0 m Em

EmkEk

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
Emx

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
Emx

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
Emx

Emxk

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
Emx

Emxk

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

PoIK

Emx

Emxk

k

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

PoIK

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
E

PoIK

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
E

k

PoIK

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k
E

E’

k

PoIK

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

PoIK

E

E’

k

PoIK

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

PoIK

E

E’

k

PoIK

PoPI

Emx

Emxk

k

PoIK

The original OPRF [BKW20]

E0 m Em

Emk

x

Ek

k

F(k, m) = H(m, jmk, E')

PoIK

E

E’

k

PoIK

PoPI

Emx

Emxk

k

PoIK

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

• Repeat the attack 3 times

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

• Repeat the attack 3 times
• Find a basis on Ek

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

• Repeat the attack 3 times
• Find a basis on Ek

• Evaluate the PRF on any message

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

• Repeat the attack 3 times
• Find a basis on Ek

• Evaluate the PRF on any message

The server can check the

degree with the PoK!

Breaking pseudorandomness [BKMPS21]
Pseudorandomness: after n interactions, an attacker cannot generate n+1 PRF outputs

E0 m Em

Emk

Emx

Emxk

x

k
Ek

k

E'm

E'mk

…

Part 1 Part 2

• Repeat the attack 3 times
• Find a basis on Ek

• Evaluate the PRF on any message

The server can check the

degree with the PoK!

Actual complexity: sub-exponential

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits

valid message isogenies

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for

server’s computations

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for

server’s computations

The PRF needs to

be deterministic

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Scale parameters

Attack is sub exponential

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for

server’s computations

The PRF needs to

be deterministic

Countermeasures?
It seems hard to prevent an attacker from recovering a basis on Ek

Scale parameters

Attack is sub exponential

p > 216,000

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for

server’s computations

The PRF needs to

be deterministic

Countermeasures?

Idea: make the basis on Ek not enough for an attack

It seems hard to prevent an attacker from recovering a basis on Ek

Scale parameters

Attack is sub exponential

p > 216,000

Validate more

Ensure that the client submits

valid message isogenies

The protocol is oblivious

Update values

Use dynamic values for

server’s computations

The PRF needs to

be deterministic

An efficient countermeasure

[BKW20]

An efficient countermeasure

[BKW20]

E0 Ker = <P + H(m)Q> Em

An efficient countermeasure

[BKW20]

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek

An efficient countermeasure

[BKW20]

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

An efficient countermeasure

[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

An efficient countermeasure

[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

E0 Ker = <P + H1(m)Q> Em1

An efficient countermeasure

[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

E0 Ker = <P + H1(m)Q> Em1 Ker = <P + H2(m)Q> Em

An efficient countermeasure

[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

E0 Ker = <P + H1(m)Q> Em1

Ek

Ker = <P + H2(m)Q> Em

Attacker recovers

P’, Q’ on Ek

An efficient countermeasure

[BKW20]

Our

countermeasure

Attacker recovers

P’, Q’ on Ek

E0 Ker = <P + H(m)Q> Em

Ek Emk

Can evaluate the PRF

on any message

E0 Ker = <P + H1(m)Q> Em1

Ek Em1k

Ker = <P + H2(m)Q> Em

Attacker recovers

P’, Q’ on Ek

Can only evaluate

the first half

One more attack to prevent
The SIDH attacks fully break the BKW OPRF

One more attack to prevent

Need to introduce SIDH countermeasures

The SIDH attacks fully break the BKW OPRF

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies

The SIDH attacks fully break the BKW OPRF

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies

The SIDH attacks fully break the BKW OPRF

only works for one party

❌

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

The SIDH attacks fully break the BKW OPRF

only works for one party

❌

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

Masked torsion points

[Fou22,FMP23]

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

Masked torsion points

[Fou22,FMP23]

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌
it works

✅

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

Masked torsion points

[Fou22,FMP23]

needs new PoIK

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌
it works

✅

One more attack to prevent

Need to introduce SIDH countermeasures

Longer isogenies Masked-degree isogenies

[Mor22,FMP23]

Masked torsion points

[Fou22,FMP23]

p ≈ 26000
needs new PoIK

The SIDH attacks fully break the BKW OPRF

only works for one party

❌
hard to build proofs

❌
it works

✅

PoIK with masked torsion

P0, Q0 P1, Q1Φ

PoIK with masked torsion

P0, Q0 Φ [a]P1, [a]Q1

PoIK with masked torsion

P0, Q0 Φ [a]P1, [a]Q1

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

P2, Q2

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

P2, Q2 P3, Q3

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

P2, Q2 P3, Q3

a = a1 x a2 x a3

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

P3, Q3

a = a1 x a2 x a3

[a1]P2, [a1]Q2

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

[a1]

soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

[a1]

[a2]
soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

[a1]

[a2]

[a3]
soundness error = 2/3

⇒ need 1.7λ repetitions

PoIK with masked torsion

challenges from {-1, 0, 1}

P0, Q0 Φ [a]P1, [a]Q1

a = a1 x a2 x a3

[a1]P2, [a1]Q2 [a2]P3, [a2]Q3

[a1]

[a2]

[a3]
soundness error = 2/3

⇒ need 1.7λ repetitions

p ≈ ord P, Q ⤫ deg Φ ⤫ deg →

≈ 29000

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)Run together

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)Run together

Prove “parallelness" when

revealing horizontal isogeny

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)

Non-interactive

Run together

Prove “parallelness" when

revealing horizontal isogeny

Verifiability
[BKW20] uses 3 proofs:

Server’s isogeny Server’s commitment
Isogeny is parallel

to commitment

Interactive (5 rounds)

Non-interactive

Saves computations

Run together

Prove “parallelness" when

revealing horizontal isogeny

Putting it all together

Putting it all together

• One-more unpredictability countermeasure

Putting it all together

more efficient than original
• One-more unpredictability countermeasure new security assumption

Putting it all together

more efficient than original
• One-more unpredictability countermeasure

• Integrated SIDH countermeasures

new security assumption

Putting it all together

more efficient than original
• One-more unpredictability countermeasure

• Integrated SIDH countermeasures

new security assumption

novel proof of isogeny knowledge
prime is still large

Putting it all together

more efficient than original
• One-more unpredictability countermeasure

• Integrated SIDH countermeasures

• New PoPI

new security assumption

novel proof of isogeny knowledge
prime is still large

Putting it all together

more efficient than original
• One-more unpredictability countermeasure

• Integrated SIDH countermeasures

• New PoPI more efficient than original

round optimal

new security assumption

novel proof of isogeny knowledge
prime is still large

Results

