Cryptography
Research
Centre

“

o
7
o
To To ; o
017, %0, 2 CLAASP: a Cryptographic Library for the
%, % » Automated Analysis of Symmetric Primitives
Oo o 2
—r
250
° ;‘ August 18,2023
o ~ o
o O~
° v °~‘ Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
o\°°\ N (S)
o\© vO (o)
o \

Technology
T oot
Institute

Cryptography
Research
Centre

Contents

1. Introduction

2. Cipher representation

3. Evaluator module

4. Differential and Linear trails search modules
5. Statistical tests module

6. Algebraic module

7. Neural aided cryptanalysis module

8. Conclusion

9. Demo

Introduction

o\ 0\0 1 O1°l
A 010
ol o
o \0 \o\ 7
NGRS
o o
i~ ° °
= o0
o -
- - o
o
o
o - ’o(
(o] ‘o
e © V4

Overview

o
S Cryptography
Research
Centre
o

CLAASP is a library whose goal is to provide an extensive toolbox gathering state-of-the-art
techniques aimed at simplifying the manual tasks of symmetric ciphers’ designers and analysts.

github.com/Crypto-TII/claasp

opensource library built on top of Sagemath.
extendable
easy-to-use

generic

automated

github.com/Crypto-TII/claasp

Cipher representation

o‘\ o\o 1 0107
A 01lo
ol o
o a° o' !
NGRS
(o) o
~ . .
- o
o -
- - o
o
o
o - ’o(
(o) ‘o
e ©° <

CLAASP basicidea

o
Cryptography
Research
Centre

i

m How acipheris represented in CLAASP?

m asymmetric cipher is a python class represented as a list of "connected components”
m acomponentis a python class that refers to the building blocks of ciphers (S-Boxes, XOR, etc.).

® What can be done from this representation?

generate the Python or C code of the encryption function,

execute a wide range of statistical and avalanche tests on the primitive,

automatically generate SAT, SMT, CP and MILP models to find, for example, differential and linear
trails,

measure algebraic properties of the cipher,

test neural-based distinguishers.

ENa

[~)~

ToySPN1: CLAASP code and diagram

from claasp.cipher import Cipher

class ToySPN(Cipher):
def __init__(self):
super().__init__(family_name="toyspn",
cipher_type="block_cipher",
cipher_inputs=["plaintext", "key"l,
cipher_inputs_bit_size=[6, 6],
cipher_output_bit_size=6)

sbox = [0, 5, 3, 2, 6, 1, 4, 7]

self.add_round()

xor = self.add_XOR_component(["plaintext", "key"l],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sboxl = self.add_SBOX_component ([xor.id], [[0, 1, 211, 3, sbox)

sbox2 = self.add_SBOX_component ([xor.id], [[3, 4, 511, 3, sbox)

rotate = self.add_rotate_component ([sbox1.id, sbox2.idl,[[0, 1, 2], [0, 1, 211, 6, 1)
self.add_round_output_component ([rotate.id], [[0, 1, 2, 3, 4, 511, 6)

self.add_round()

xor = self.add_XOR_component([rotate.id, "key"l,[[0,1,2,3,4,5],[0,1,2,3,4,5]]1,6)
sboxl = self.add_SBOX_component([xor.id], [[0, 1, 211, 3, sbox)

sbox2 = self.add_SBOX_component([xor.id], [[3, 4, 511, 3, sbox)

rotate = self.add_rotate_component ([sbox1.id, sbox2.idl,[[0, 1, 21, [0, 1, 211, 6, 1)
self.add_cipher_output_component ([rotate.id], [[0, 1, 2, 3, 4, 511, 6)

toyspn = ToySPN()
hex (toyspn.evaluate ([0x3F,0x3F]))

P1p2p3

Cryptography
Research
Centre

S-box=10,5,3,2,6,1,4,7]

P4 P5 Pe

ki ko ks ks ks ke

pESEN

(bl

Identity

Identity

¢ e ey

€4 C5 Co

\

KeySchedule

CLAASP pre-defined ciphers so far

Cryptography
Research
Centre

Block ciphers ‘

Permutations ‘

Hash functions

AES

DES

LEA
LowMC
Midori
PRESENT
Raiden
SIMON
Speck
Sparx
SKINNY
TEA
XTEA
Twofish
Threefish
Kasumi

ASCON
ChaCha
GCIFT-128
GIMILI
Grain core
KECCAK-p
PHOTON
SPARKLE
Spongent-m
TinyJAMBU
Xoodoo

SHA-1
SHA-2
MDs5
BLAKE
BLAKE2

Evaluator module

From cipher representation to evaluation code

y Cryptography
Research
Centre
i

m From a cipher class, we can automatically generate:

m Python and C code to evaluate the cipher
m avectorized implementation of the cipher, when the evaluation of millions of inputs are required

m Futur works:
Evaluation code of the inverse of the cipher
A CUDA-based parallel evaluation with GPUs
Optimization of the automatically generated code

Vectorized evaluation example: AES-128

Example

sage: from claasp.ciphers.block_ciphers.aes_block_cipher import AESBlockCipher
sage: aes = AESBlockCipher ()

sage: import numpy as np

sage: from os import urandom

sage: n = 1000

sage: key = np.frombuffer (urandom(n*16), dtype = np.uint8).reshape((-1, n))

sage: plaintext = np.frombuffer(urandom(n*16), dtype = np.uint8).reshape((-1, n))

sage:

result = aes.evaluate_vectorized([key, plaintext])

)

Cryptography
Research
Centre

Differential and Linear
trails search modules

Constraints solvers

s
y Cryptography
Research
Centre
L

m CLAASP can automatically generate models for differential and linear trails search, from a given
cipher object, by using:
m MILP: GLPK, Gurobi, CPLEX, GLOP
m SAT: Cadical, Cryptominisat, MiniSAT, Kissat, Par-Kissat
B SMT: Yices, MathSAT, Z3
m CP: Choco, ORTools, MiniZinc

m CLAASP implements the generation of models to find:

m One optimal trail
m All trails for which the weight value is within a fixed range
m Single-key, related-key scenarios.

m Trails can be found for ARX, SPN and Feistel ciphers

New results and future works

) J—
Research
Centre

m New results:

m Differential trail: We managed to find an optimal differential trail for 10 rounds of Speck128-128 with a
probability weight of 48

m Linear trail: we found a linear trail for 8 rounds of Salsa with a theoretical correlation of 273! instead of
2734 35 described in Coutinho et al. (2022)

m Future works:
m Impossible trails
m Differential linear trails
m Rotational xor trails

Statistical tests module

Multiple tests

0%
Cryptography
Research

5 Centre

L

We have intergrated in CLAASP the following tests:
m NIST STS and Dieharder suites, Rukhin et al. (2001); Bassham et al. (2010)
m Avalanche properties, Daemen etal. (2018)

m Continues avalanche properties, Coutinho etal. (2020)

m Future release: High-order avalanche tests defined in "ACE-HOT: Accelerating an extreme
amount of symmetric Cipher Evaluations for High-Order avalanche Tests" that will be presented
in LatinCrypt 2023

Avalanche entropy example

Cryptography
Research
Centre

Example

sage:
sage:
sage:
sage:

from claasp.ciphers.block_ciphers.speck_block_cipher import SpeckBlockCipher

speck = SpeckBlockCipher(block_bit_size=8, key_bit_size=16, number_of_rounds=5)

d = speck.diffusion_tests(number_of_samples=1000)

d["test_results"] ["plaintext"] ["round_output"]
["avalanche_entropy_vectors"] ["differences"] [0] ["output_vectors"] [2]

[0.99896, 0.96544, 0.83272, 0, 0, 0.99805, 0.7967, 0.99999]

We obtained the entropy vector of all output bits of the round 3 due to a difference injected in
position 0.

Heatmap for the avalanche entropy criterion

Cryptography
Research
Centre

m Each cell of this figure is greener if the entropy based on the probability of flipping of the
underlying bit is close to 1 with a 0.01 bias due to a single input bit difference, redder otherwise.

state bit position

0

Figure 5.1: Speck: avalanche entropy heatmap - difference injected in position 0

rounds

(o L

Algebraic module

o\ 0\0 1 O1°l
A 010
ol o
o \0 \o\ 7
NGRS
o o
i~ ° °
= o0
o -
- - o
o
o
o - ’o(
(o] ‘o
e © V4

Current state

Cryptography
Research
Centre

m Generate a multivariate polynomial system corresponding to the cipher

m Try to solve this symbolic system by using Grobner basis

m Future works:

m Cube attacks: generation of superpolies
m Division trails search

Algebraic Test by Solving the algebraic System

Cryptography
Research
Centre

Example

sage:
sage:
sage:
sage:
sage:
sage:

from claasp.cipher_modules.models.algebraic.algebraic_model import AlgebraicModel
from claasp.cipher_modules.algebraic_tests import algebraic_tests

from claasp.ciphers.toys.toyspnl import ToySPN1

toyspnl =ToySPN1()

result = algebraic_tests(toyspnl,120)

result["test_passed"]

[False, False]

m Ifthe test fails (returns False), the cipher is not secure against the algebraic attack based on
solving its symbolic system by using Grobner basis. If it returns True, we cannot claim that it is
secure.

13

Neural aided
cryptanalysis module

o‘\ o\o 1 0107
A 01lo
ol o
o a° o' !
NGRS
(o) o
~ . .
- o
o -
- - o
o
o
o - ’o(
(o) ‘o
e ©° <

Current state

o 0,
Cryptography
. Research
: Centre
o

m Built from Bellini et al. (2021), CLAASP provides a test that returns the accuracy of distinguishing
a ciphertext coming from an instance of the cipher with a certain key and the output of a random
permutation.

m CLAASP implements the neural distinguisher described by Gohr in Gohr (2019). Specifically, the
neural distinguisher is trained to label samples [Cy = Ex (Fy), C1 = Ex(P1)]as O (if
Py & Py israndom) or1if Py @ Py isagiven, fixed value d.

m Finding good differences for Gohr’s approach for any cipher: Bellini et al. (2022) conditionally
accepted to FES

Gohr with CLAASP

Cryptography
Research
Centre

Example

sage: from claasp.ciphers.block_ciphers.speck_block_cipher import SpeckBlockCipher
sage: speck = SpeckBlockCipher ()

sage: from claasp.cipher_modules.neural_network_tests import make_resne

sage: from claasp.cipher_modules.neural_network_tests import get_differential_dataset

sage: net = make_resnet(word_size = 16)
sage: X, Y = get_differential_dataset(cipher = speck,
input_differences = [0x400000, O], nr = 5, samples =10%%*6)
sage: X_val, Y_val = get_differential_dataset(cipher = speck,
input_differences = [0x400000, 0], nr = 5, samples =10%%5)
sage: net.compile(optimizer=’adam’,loss=’mse’,metrics=[’acc’]);
sage: h = net.fit(X, Y, batch_size=5000, validation_data=(X_val, Y_val), epochs = 2)

Conclusion

Conclusion

m CLAASP gathers a large array of cipher analysis techniques, all in one framework

m CLAASP team is strongly committed to include new state-of-the-art techniques

m Open-source statut is an invitation to researchers to not only use it, but also collaborate

Contacts:
m emanuele.bellini@tii.ae
m juan.grados@tii.ae

m mohamed.rachidi@tii.ae

Cryptography
Research
Centre

Demo

References |

o 0,
Cryptography
Research
. Centre

Bassham, L., Rukhin, A, Soto, ., Nechvatal,]., Smid, M., Leigh, S., Levenson, M., Vangel, M.,
Heckert, N., and Banks, D. (2010). Special Publication (NIST SP) - 800-22 Rev 1a: A Statistical

Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Bellini, E., Gerault, D., Hambitzer, A., and Rossi, M. (2022). A cipher-agnostic neural training
pipeline with automated finding of good input differences. Cryptology ePrint Archive, Paper
2022/1467. https://eprint.iacr.org/2022/1467.

Bellini, E., Hambitzer, A., Protopapa, M., and Rossi, M. (2021). Limitations Of The Use Of Neural
Networks In Black Box Cryptanalysis. In Innovative Security Solutions for Information Technology
and Communications: 14th International Conference, SecITC 2021, Virtual Event, November 2526,
2021, Revised Selected Papers, page 100124, Berlin, Heidelberg. Springer-Verlag.

Coutinho, M., de Sousa Jtnior, R. T., and Borges, F. (2020). Continuous Diffusion Analysis. IEEE
Access, 8:123735—-123745.

17

https://eprint.iacr.org/2022/1467

References I|

o 0,
Cryptography
Research
. Centre

Coutinho, M., Passos, |, Vasquez,]. C. G., de Mendonga, F. L. L., de Sousa, R. T., and Borges, F.
(2022). Latin dances reloaded: Improved cryptanalysis against salsa and chacha, and the
proposal of forrd. In Agrawal, S. and Lin, D., editors, Advances in Cryptology - ASIACRYPT 2022 -
28th International Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part |, volume 13791 of Lecture Notes in Computer
Science, pages 256—286. Springer.

Daemen,]., Hoffert, S., Assche, G. V., and Keer, R. V. (2018). The design of Xoodoo and Xoofff. IACR
Trans. Symmetric Cryptol., 2018(4):1-38.

Gohr, A. (2019). Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. In
Boldyreva, A. and Micciancio, D., editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
11, volume 11693 of Lecture Notes in Computer Science, pages 150—179. Springer.

References Il

0%
Cryptography
Research

; Centre

Rukhin, A., Soto,]., Nechvatal,]., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks,
D., Heckert, N., Dray,]., and Vo, S. (2001). Special Publication (NIST SP) - 800-22: A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Comparison of cryptanalysis libraries features with CLAASP

TAGADA CASCADA CryptoSMT lineartrails VAARX Autoguess CLAASP
Cipher types SPN All All SPN ARX All All
Algebraic
Cipher representation DAG Pyhoncode Pythoncode Crecode Coode S ETEE DAG
Statistical/Avalanche
- - - - - - Yes
tests
Continuous diffusion
- - - - - - Yes
tests
Components . i i i . i ves
analysis tests
Differential Truncated Yes Yes - Yes - Yes
trails
Differentials - Yes Yes - Yes - Yes
Constraint
Impossible .
sOWers diferential . Yes - : . : ves
Linear trails - Yes Yes Yes - - Yes
Linear hull - - - - - - Yes
Zero
correlation - Yes - - - - Yes
approximation
SAT,SMT, SAT, ST,
Supported cp MILP.CP MILP.CP,
solvers oinizing M7 T Groebner Groebner
asis basis
single-key single-key
Supported single-key single-key single-key related-key related-key
Scenarios related-key related-key relatedkey SMEIEKSY singlekey g weak single-tweak
related-tweak _ related-tweak
Algebraic tests - - - - - - Yes™
Neural-based tests i - - - i - Yes
State Recovery - - - - - Yes -
Key-bridging - - - - - Yes -

Cryptography
Research
Centre

20

Cryptography
Research

Technology
TI I Innovation
Institute Centre

tii.ae

	Introduction
	Cipher representation
	Evaluator module
	Differential and Linear trails search modules
	Statistical tests module
	Algebraic module
	Neural aided cryptanalysis module
	Conclusion
	Demo
	References

