
CLAASP: a Cryptographic Library for the
Automated Analysis of Symmetric Primitives

August 18, 2023

Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE

Contents

1. Introduction

2. Cipher representation

3. Evaluator module

4. Differential and Linear trails search modules

5. Statistical tests module

6. Algebraic module

7. Neural aided cryptanalysis module

8. Conclusion

9. Demo

Introduction

Overview

CLAASP is a library whose goal is to provide an extensive toolbox gathering state-of-the-art
techniques aimed at simplifying the manual tasks of symmetric ciphers’ designers and analysts.

github.com/Crypto-TII/claasp

opensource library built on top of Sagemath.
extendable
easy-to-use
generic
automated

1

github.com/Crypto-TII/claasp

Cipher representation

CLAASP basic idea

How a cipher is represented in CLAASP?
a symmetric cipher is a python class represented as a list of "connected components"
a component is a python class that refers to the building blocks of ciphers (S-Boxes, XOR, etc.).

What can be done from this representation?
1 generate the Python or C code of the encryption function,
2 execute a wide range of statistical and avalanche tests on the primitive,
3 automatically generate SAT, SMT, CP and MILP models to find, for example, differential and linear

trails,
4 measure algebraic properties of the cipher,
5 test neural-based distinguishers.

2

ToySPN1: CLAASP code and diagram

from claasp.cipher import Cipher

class ToySPN(Cipher):
def __init__(self):

super().__init__(family_name="toyspn",
cipher_type="block_cipher",
cipher_inputs=["plaintext", "key"],
cipher_inputs_bit_size=[6, 6],
cipher_output_bit_size=6)

sbox = [0, 5, 3, 2, 6, 1, 4, 7]
self.add_round()
xor = self.add_XOR_component(["plaintext", "key"],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component([xor.id], [[0, 1, 2]], 3, sbox)
sbox2 = self.add_SBOX_component([xor.id], [[3, 4, 5]], 3, sbox)
rotate = self.add_rotate_component([sbox1.id, sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_round_output_component([rotate.id], [[0, 1, 2, 3, 4, 5]], 6)

self.add_round()
xor = self.add_XOR_component([rotate.id, "key"],[[0,1,2,3,4,5],[0,1,2,3,4,5]],6)
sbox1 = self.add_SBOX_component([xor.id], [[0, 1, 2]], 3, sbox)
sbox2 = self.add_SBOX_component([xor.id], [[3, 4, 5]], 3, sbox)
rotate = self.add_rotate_component([sbox1.id, sbox2.id],[[0, 1, 2], [0, 1, 2]], 6, 1)
self.add_cipher_output_component([rotate.id], [[0, 1, 2, 3, 4, 5]], 6)

toyspn = ToySPN()
hex(toyspn.evaluate([0x3F,0x3F]))

p1 p2 p3 p4 p5 p6

S-box S-box

k1 k2 k3 k4 k5 k6

c1 c2 c3 c4 c5 c6

S-box S-box

Ro
un

d
1

Ro
un

d
2

Ke
yS

ch
ed

ul
e

Identity

S-box = [0, 5, 3, 2, 6, 1, 4, 7]

Identity

3

CLAASP pre-defined ciphers so far

Block ciphers Permutations Hash functions

AES ASCON SHA-1
DES ChaCha SHA-2
LEA GIFT-128 MD5
LowMC GIMILI BLAKE
Midori Grain core BLAKE2
PRESENT KECCAK-p
Raiden PHOTON
SIMON SPARKLE
Speck Spongent-π
Sparx TinyJAMBU
SKINNY Xoodoo
TEA
XTEA
Twofish
Threefish
Kasumi

4

Evaluator module

From cipher representation to evaluation code

From a cipher class, we can automatically generate:
Python and C code to evaluate the cipher
a vectorized implementation of the cipher, when the evaluation of millions of inputs are required

Futur works:
1 Evaluation code of the inverse of the cipher
2 A CUDA-based parallel evaluation with GPUs
3 Optimization of the automatically generated code

5

Vectorized evaluation example: AES-128

Example

sage: from claasp.ciphers.block_ciphers.aes_block_cipher import AESBlockCipher
sage: aes = AESBlockCipher()
sage: import numpy as np
sage: from os import urandom

sage: n = 1000
sage: key = np.frombuffer(urandom(n*16), dtype = np.uint8).reshape((-1, n))
sage: plaintext = np.frombuffer(urandom(n*16), dtype = np.uint8).reshape((-1, n))

sage: result = aes.evaluate_vectorized([key, plaintext])

6

Differential and Linear
trails search modules

Constraints solvers

CLAASP can automatically generate models for differential and linear trails search, from a given
cipher object, by using:

MILP: GLPK, Gurobi, CPLEX, GLOP
SAT: Cadical, Cryptominisat, MiniSAT, Kissat, Par-Kissat
SMT: Yices, MathSAT, Z3
CP: Choco, ORTools, MiniZinc

CLAASP implements the generation of models to find:
One optimal trail
All trails for which the weight value is within a fixed range
Single-key, related-key scenarios.

Trails can be found for ARX, SPN and Feistel ciphers

7

New results and future works

New results:
Differential trail: We managed to find an optimal differential trail for 10 rounds of Speck128-128 with a
probability weight of 48
Linear trail: we found a linear trail for 8 rounds of Salsa with a theoretical correlation of 2−31 instead of
2−34 as described in Coutinho et al. (2022)

Future works:
Impossible trails
Differential linear trails
Rotational xor trails

8

Statistical tests module

Multiple tests

We have intergrated in CLAASP the following tests:
NIST STS and Dieharder suites, Rukhin et al. (2001); Bassham et al. (2010)
Avalanche properties, Daemen et al. (2018)
Continues avalanche properties, Coutinho et al. (2020)

Future release: High-order avalanche tests defined in "ACE-HOT: Accelerating an extreme
amount of symmetric Cipher Evaluations for High-Order avalanche Tests" that will be presented
in LatinCrypt 2023

9

Avalanche entropy example

Example

sage: from claasp.ciphers.block_ciphers.speck_block_cipher import SpeckBlockCipher
sage: speck = SpeckBlockCipher(block_bit_size=8, key_bit_size=16, number_of_rounds=5)
sage: d = speck.diffusion_tests(number_of_samples=1000)
sage: d["test_results"]["plaintext"]["round_output"]

["avalanche_entropy_vectors"]["differences"][0]["output_vectors"][2]
[0.99896, 0.96544, 0.83272, 0, 0, 0.99805, 0.7967, 0.99999]

We obtained the entropy vector of all output bits of the round 3 due to a difference injected in
position 0.

10

Heatmap for the avalanche entropy criterion

Each cell of this figure is greener if the entropy based on the probability of flipping of the
underlying bit is close to 1with a 0.01 bias due to a single input bit difference, redder otherwise.

Figure 5.1: Speck: avalanche entropy heatmap - difference injected in position 0

11

Algebraic module

Current state

Generate a multivariate polynomial system corresponding to the cipher
Try to solve this symbolic system by using Gröbner basis

Future works:
Cube attacks: generation of superpolies
Division trails search

12

Algebraic Test by Solving the algebraic System

Example

sage: from claasp.cipher_modules.models.algebraic.algebraic_model import AlgebraicModel
sage: from claasp.cipher_modules.algebraic_tests import algebraic_tests
sage: from claasp.ciphers.toys.toyspn1 import ToySPN1
sage: toyspn1 =ToySPN1()
sage: result = algebraic_tests(toyspn1,120)
sage: result["test_passed"]
[False, False]

If the test fails (returns False), the cipher is not secure against the algebraic attack based on
solving its symbolic system by using Gröbner basis. If it returns True, we cannot claim that it is
secure.

13

Neural aided
cryptanalysis module

Current state

Built from Bellini et al. (2021), CLAASP provides a test that returns the accuracy of distinguishing
a ciphertext coming from an instance of the cipher with a certain key and the output of a random
permutation.
CLAASP implements the neural distinguisher described by Gohr in Gohr (2019). Specifically, the
neural distinguisher is trained to label samples [C0 = EK(P0), C1 = EK(P1)] as 0 (if
P0 ⊕ P1 is random) or 1 ifP0 ⊕ P1 is a given, fixed value δ.
Finding good differences for Gohr’s approach for any cipher: Bellini et al. (2022) conditionally
accepted to FES

14

Gohr with CLAASP

Example

sage: from claasp.ciphers.block_ciphers.speck_block_cipher import SpeckBlockCipher
sage: speck = SpeckBlockCipher()
sage: from claasp.cipher_modules.neural_network_tests import make_resne
sage: from claasp.cipher_modules.neural_network_tests import get_differential_dataset

sage: net = make_resnet(word_size = 16)
sage: X, Y = get_differential_dataset(cipher = speck,

input_differences = [0x400000, 0], nr = 5, samples =10**6)
sage: X_val, Y_val = get_differential_dataset(cipher = speck,

input_differences = [0x400000, 0], nr = 5, samples =10**5)
sage: net.compile(optimizer=’adam’,loss=’mse’,metrics=[’acc’]);
sage: h = net.fit(X, Y, batch_size=5000, validation_data=(X_val, Y_val), epochs = 2)

15

Conclusion

Conclusion

CLAASP gathers a large array of cipher analysis techniques, all in one framework
CLAASP team is strongly committed to include new state-of-the-art techniques
Open-source statut is an invitation to researchers to not only use it, but also collaborate

Contacts:
emanuele.bellini@tii.ae
juan.grados@tii.ae
mohamed.rachidi@tii.ae

16

Demo

References I

Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M.,
Heckert, N., and Banks, D. (2010). Special Publication (NIST SP) - 800-22 Rev 1a: A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Bellini, E., Gerault, D., Hambitzer, A., and Rossi, M. (2022). A cipher-agnostic neural training
pipeline with automated finding of good input differences. Cryptology ePrint Archive, Paper
2022/1467. https://eprint.iacr.org/2022/1467.

Bellini, E., Hambitzer, A., Protopapa, M., and Rossi, M. (2021). Limitations Of The Use Of Neural
Networks In Black Box Cryptanalysis. In Innovative Security Solutions for Information Technology
and Communications: 14th International Conference, SecITC 2021, Virtual Event, November 25–26,
2021, Revised Selected Papers, page 100–124, Berlin, Heidelberg. Springer-Verlag.

Coutinho, M., de Sousa Júnior, R. T., and Borges, F. (2020). Continuous Diffusion Analysis. IEEE
Access, 8:123735–123745.

17

https://eprint.iacr.org/2022/1467

References II

Coutinho, M., Passos, I., Vásquez, J. C. G., de Mendonça, F. L. L., de Sousa, R. T., and Borges, F.
(2022). Latin dances reloaded: Improved cryptanalysis against salsa and chacha, and the
proposal of forró. In Agrawal, S. and Lin, D., editors, Advances in Cryptology - ASIACRYPT 2022 -
28th International Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume 13791 of Lecture Notes in Computer
Science, pages 256–286. Springer.

Daemen, J., Hoffert, S., Assche, G. V., and Keer, R. V. (2018). The design of Xoodoo and Xoofff. IACR
Trans. Symmetric Cryptol., 2018(4):1–38.

Gohr, A. (2019). Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning. In
Boldyreva, A. and Micciancio, D., editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
II, volume 11693 of Lecture Notes in Computer Science, pages 150–179. Springer.

18

References III

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks,
D., Heckert, N., Dray, J., and Vo, S. (2001). Special Publication (NIST SP) - 800-22: A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

19

Comparison of cryptanalysis libraries features with CLAASP
TAGADA CASCADA CryptoSMT lineartrails YAARX Autoguess CLAASP

Cipher types SPN All All SPN ARX All All

Cipher representation DAG Python code Python code C++ code C code Algebraic
representation DAG

Statistical/Avalanche
tests - - - - - - Yes

Continuous diffusion
tests - - - - - - Yes

Components
analysis tests - - - - - - Yes

Constraint
solvers

Differential
trails Truncated Yes Yes - Yes - Yes

Differentials - Yes Yes - Yes - Yes

Impossible
differential - Yes -* - - - Yes

Linear trails - Yes Yes Yes - - Yes

Linear hull - -∗ -∗ - - - Yes

Zero
correlation
approximation

- Yes -∗ - - - Yes

Supported
solvers

CP,
(MiniZinc) SMT SMT - -

SAT, SMT,
MILP, CP,

Groebner
basis

SAT, SMT,
MILP, CP,

Groebner
basis

Supported
Scenarios

single-key
related-key

single-key
related-key

single-key
related-key single-key single-key

single-key
related-key

single-tweak
related-tweak

single-key
related-key

single-tweak
related-tweak

Algebraic tests - - - - - - Yes∗∗

Neural-based tests - - - - - - Yes

State Recovery - - - - - Yes -

Key-bridging - - - - - Yes -

20

tii.ae

	Introduction
	Cipher representation
	Evaluator module
	Differential and Linear trails search modules
	Statistical tests module
	Algebraic module
	Neural aided cryptanalysis module
	Conclusion
	Demo
	References

