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§ Efficiency
§ Smallest¹ ciphertext sizes
§ Performance: 20-110% faster than Kyber, Saber, Sable

§ Answer to the question: 

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

performance & small secret VS. small public key
1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs
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*SMAUG, The Hobbits, J. R. R. Tolkien. 


