v &

SMAUG: Pushing Lattice-based Key _
Encapsulation Mechanisms to the Limits .

Jung Hee Cheon'-2, Hyeongmin Choe!, Dongyeon Hong®, Minjune Yil

1 Seoul National University, ¢ CryptoLab Inc.,
3 National Security Research Institute

August 16, 2023
SAC 2023

Lattice-based KEMs

KEMs in Post-Quantum World

Key Encapsulation Mechanism (KEM)

Alice

(pk, sk) < Keygen(1?)

Bob

ct

(ct, K) < Encap(pk)

K’ < Decap(ct, sk)

KEMs in Post-Quantum World

Key Encapsulation Mechanism (KEM)

Internet TLS protocols

loT devices

KEMs in Post-Quantum World

Key Encapsulation Mechanism (KEM)

Internet TLS protocols

loT devices

Current KEMs: vulnerable to quantum attacks

KEMs in Post-Quantum World

Key Encapsulation Mechanism (KEM)

Internet TLS protocols

loT devices

Current KEMs: vulnerable to quantum attacks

= Since 2017, NIST PQC standardization is ongoing!

KEMs in Post-Quantum World

Key Encapsulation Mechanism (KEM)

Internet TLS protocols

loT devices

Current KEMs: vulnerable to quantum attacks
=> Since 2017, NIST PQC standardization is ongoing!

Various lattice-based KEMs:
Kyber, Saber, NTRU, Round5, FrodoKEM, Rlizard,...

Requirements for KEMs

Efficiency Security

Requirements for KEMs

Efficiency Security
" Small sizes

Requirements for KEMs

Efficiency Security
" Small sizes
" Fast performance

Requirements for KEMs

Efficiency Secure against...
" Small sizes " IND-CCA2 attacks
" Fast performance

Requirements for KEMs

Efficiency Secure against...
" Small sizes " Core-SVP hardness
" Fast performance

Requirements for KEMs

Efficiency Secure against...
" Small sizes " Core-SVP hardness
" Fast performance " Decryption failure attacks

Requirements for KEMs

Efficiency Secure against...
" Small sizes " Core-SVP hardness
" Fast performance " Decryption failure attacks

® Side-channel attacks

Requirements for KEMs

Efficiency Secure against...
" Small sizes " Core-SVP hardness
" Fast performance " Decryption failure attacks

® Side-channel attacks

How to?

" Module lattices

" LWR problem

" Centered Binomial
Distribution (CBD)

Requirements for KEMs

Efficiency Secure against...
" Small sizes " Core-SVP hardness
" Fast performance " Decryption failure attacks

® Side-channel attacks

How to? How to?

" Module lattices " Ring lattices

" LWR problem " LWE problem

" Centered Binomial " Error Correction Codes

Distribution (CBD) (ECC)

Requirements for KEMs

Efficiency
" Small sizes
" Fast performance

How to?

" Module lattices

" LWR problem

" Centered Binomial
Distribution (CBD)

Secure against...

" Core-SVP hardness

" Decryption failure attacks
" Side-channel attacks

How to?

" Ring lattices

" LWE problem

®_Error Correction-Codes
tecq)

Efficiency of Lattice-KEMs

Recent lattice-based KEMs with low enough

Decryption Failure Probability (DFP)
" KEMs using ECCs or having higher DFPs

. NTRU
are omitted
" NTRU
Saber " Sparse secret
" LWR
[|
Kyber Module

[|

= |\WE CBD

" Module

/ RLizard = CBD
FrodoKEM

Efficiency of Lattice-KEMs

Recent lattice-based KEMs with low enough Sable (cHEs21)
Decryption Failure Probability (DFP) " Saber variant
= KEMs using ECCs or having higher DFPs " Optimized sizes

- omittegd 5 e NTRU & performance

" NTRU
Saber " Sparse secret

" LWR
H

Kyber Module
H

. [WE CBD

" Module

/ RLizard = CBD
FrodoKEM

Scheme sk pk «ct? DFP Sec. | K| Assumption
Sable 800 608 672 -139 114 256 MLWR
NTRU 699 935 699 -00 106 256 NTRU
Saber 832 672 736 -120 118 256 MLWR
Kyber 1632 800 768 -139 118 256 MLWE
RLizard 385 4096 2080 -188 147 256 RLWE+4RLWR
FrodoKEM | 19888 9616 9752 -139 150 128 LWE

Can we further push efficiency of
lattice-KEMs towards the limit?

Can we further push efficiency of
lattice-KEMs towards the limit?

= SMAUG

Can we further push efficiency of
lattice-KEMs towards the limit?

= SMAUG

" Module LWE & LWR problem
" Sparse secret
" Approximate discrete Gaussian

Scheme sk pk ct? DFP Sec. | K| Assumption
SMAUG 176 672 672 -120 120 256 MLWE+MLWR
Sable 800 608 672 -139 114 256 MLWR
NTRU 699 935 699 -00 106 256 NTRU
Saber 832 672 736 -120 118 256 MLWR
Kyber 1632 800 768 -139 118 256 MLWE
RLizard 385 4096 2080 -188 147 256 RLIWE+RLWR
FrodoKEM | 19888 9616 9752 -139 150 128 LWE

SMAUG

SMAUG

IND-CPA secure PKE
" MLWE: key generation

SMAUG

IND-CPA secure PKE

" MLWE: key generation
" MLWR: encryption

SMAUG

IND-CPA secure PKE

" MLWE: key generation
" MLWR: encryption

+ Sparse secret
" Lower DFP
" Sparsity-based faster operations

SMAUG

IND-CPA secure PKE

" MLWE: key generation
" MLWR: encryption

+ Sparse secret
" Lower DFP
" Sparsity-based faster operations

+ Approximate discrete Gaussian
" Fast and parallelizable

SMAUG

IND-CPA secure PKE

" MLWE: key generation
" MLWR: encryption

+ Sparse secret
" Lower DFP
" Sparsity-based faster operations

+ Approximate discrete Gaussian
" Fast and parallelizable

FO transform

= IND-CCA2 secure KEM

SMAUG

IND-CPA secure PKE

" MLWE: key generation
" MLWR: encryption

+ Sparse secret
" Lower DFP
" Sparsity-based faster operations

+ Approximate discrete Gaussian
" Fast and parallelizable

FO transform

= IND-CCA2 secure KEM

Why MLWE + MLWR?

Why MLWE + MLWR?
(M)LWE

b= (A4s + e+ Au mod q), e « D,: small

Why MLWE + MLWR?
(M)LWE

b= (A4s + e+ Au mod q), e « D,: small

" (+4) Small noise => Decryption error {

Why MLWE + MLWR?
(M)LWE

b= (A4s + e+ Au mod q), e « D,: small

" (+4) Small noise => Decryption error {
" (=) Noise sampling => Performance {

Why MLWE + MLWR?

(M)LWE
" (+4) Small noise => Decryption error {
" (—) Noise sampling => Performance {

Why MLWE + MLWR?

(M)LWE
" (+) Small noise => Decryption error {
" (=) Noise sampling => Performance {
(M)LWR

b = [g (As + Au mod q)‘

Why MLWE + MLWR?

(M)LWE
" (+) Small noise => Decryption error {
" (=) Noise sampling => Performance {
(M)LWR

b = [g (As + Au mod q)‘

~ (M)LWE with e « unif(—ﬁ, o
2q 2q

Why MLWE + MLWR?

(M)LWE
" (+) Small noise => Decryption error {
" (=) Noise sampling => Performance {
(M)LWR

b = [g- (As + Ay mod q)‘

~ (M)LWE with e « unif(—ﬁ, o
2q 2q

" (4) Scaling & rounding = Performance {I

Why MLWE + MLWR?

(M)LWE
" (+) Small noise = Decryption error J
" (—) Noise sampling ~ => Performance
(M)LWR
b = [— (As + Au mod q)‘
~ (M)LWE with e « umf(__ : ﬁ
2q ' 2q

" (4) Scaling & rounding = Performance {I
" (—) Rounding error => Decryption error {f

Why MLWE + MLWR?

(M)LWE
" (4+) Small noise
" (=) Noise sampling

(M)LWR
® (+) Scaling & rounding
= (=) Rounding error

=> Decryption error {
= Performance {

=> Performance {I
=> Decryption error {I

Why MLWE + MLWR?

(M)LWE
" (+) Small noise = Decryption error {
" (=) Noise sampling = Performance
(M)LWR
" (+4) Scaling & rounding => Performance {I
= (—) Rounding error = Decryption error

KeyGen

Cycle counts

m Encrypt

Kyber Saber
DFP: 27139 2120

Why MLWE + MLWR?

(M)LWE
" (+) Small noise = Decryption error {
" () Noise sampling = Performance §

(M)LWR
" (4) Scaling & rounding => Performance 1
= (—) Rounding error = Decryption error

E KeyGen

L% ® Encrypt

Kyber MLWE+MLWR Saber

DFP: 27139 in between 2120

Why MLWE + MLWR?

(M)LWE
" (+) Small noise = Decryption error {
" (—) Noise sampling = Performance {
(M)LWR
" (4) Scaling & rounding => Performance 1
= (—) Rounding error = Decryption error
E KeyGen
% I:> ® Encrypt

Kyber MLWE+MLWR MLWE+MLWR

DFP: 27139 in between 2-120

Sparse Secret

Sparse Secret

Homomorphic encryption
" Noise propagation {

Sparse Secret

Homomorphic encryption
" Noise propagation {
" Homomorphic operations speed f

Sparse Secret

Homomorphic encryption
" Noise propagation {
" Homomorphic operations speed f

PKE

" Decryption error {

Sparse Secret

Homomorphic encryption
" Noise propagation {
" Homomorphic operations speed f

PKE

" Decryption error {
" Performance i

Sparse Secret

Homomorphic encryption
" Noise propagation {
" Homomorphic operations speed f

PKE

" Decryption error {
" Performance i

Polynomial multiplication
" Schoolbook multiplication using +/—

Sparse Secret

Homomorphic encryption
" Noise propagation {
" Homomorphic operations speed f

PKE

" Decryption error {
" Performance i

Polynomial multiplication
" Schoolbook multiplication using +/—

Small secret key
" Ready-to-use

Sparse Secret

Homomorphic encryption

a(x) = ap + arx + azx® + azx® + -+ ay_x"? +ay_x" 7!

/ storing the degrees 4)'(.

t

start index of the degree of negative

Small secret key
Ready-to-use

Approximating Discrete Gaussian

Approximating Discrete Gaussian

Scale dGaussian

Approximating Discrete Gaussian

Scale dGaussian
" Bound security loss using Réyni divergence

Parameter set | Scale factor o' R, ASecurity
SMAUG-128 L0 200 1.0016 1.8
SMAUG-192 2 75 1.0022 4.8
SMAUG-256 210 200 1.0016 5.7

Approximating Discrete Gaussian

Scale dGaussian
" Bound security loss using Réyni divergence

Parameter set | Scale factor o' R, ASecurity
SMAUG-128 L0 200 1.0016 1.8
SMAUG-192 2 75 1.0022 4.8
SMAUG-256 210 200 1.0016 5.7

" Only for KeyGen = efficiently bounded!

Approximating Discrete Gaussian

Scale dGaussian
" Bound security loss using Réyni divergence

Parameter set | Scale factor o' R, ASecurity
SMAUG-128 L0 200 1.0016 1.8
SMAUG-192 2 75 1.0022 4.8
SMAUG-256 210 200 1.0016 5.7

" Only for KeyGen = efficiently bounded!

Cumulative Distribution Table (CDT)

Approximating Discrete Gaussian

Scale dGaussian
" Bound security loss using Réyni divergence

Parameter set | Scale factor o' R, ASecurity
SMAUG-128 L0 200 1.0016 1.8
SMAUG-192 2 75 1.0022 4.8
SMAUG-256 210 200 1.0016 5.7

" Only for KeyGen = efficiently bounded!
Cumulative Distribution Table (CDT)

Booleanize CDT
" Quine-McCluskey’s algorithm
" Logic minimization

Approximating Discrete Gaussian

Scale dGaussian
" Bound security loss using Réyni divergence

Parameter set | Scale factor o' R, ASecurity
SMAUG-128 L0 200 1.0016 1.8
SMAUG-192 2 75 1.0022 4.8
SMAUG-256 210 200 1.0016 5.7

" Only for KeyGen = efficiently bounded!
Cumulative Distribution Table (CDT)

Booleanize CDT
" Quine-McCluskey’s algorithm
" Logic minimization

=> Boolean algorithm for dGaussian

dGaussiang (x):

Requnre T = TOT1T2T3T4T5TT7T8T € {0,1}10

NSO RN

s = s180 = 00 € {0,1}?

S) = ZOL1XL2L3IXLQ4L5LTLY

s0 += (T0Z3T4T5T6T8) + (T1T3T4T5T6x8) + (T2T3T4T5T6T8)

so += (Z2x3T6xs) + (T1Z3T6Ts)

so += (z6x7Z8) + (T5T6xs) + (TaTexs) + (T7T8)

s1 = (z1z2z4x52728) + (x3T4T5T728) + (TeX7X8)

s=(—1)%9 -5 > - is the arithmetic multiplication
return s

YT Ty

Implementation

Parameter Sets

Target: NIST’s security levels 1, 3, and 5

Parameter Sets

Target: NIST’s security levels 1, 3, and 5

Security
® Core-SVP hardness from Lattice-estimator
" Algebraic/combinatorial attacks

Parameter Sets

Target: NIST’s security levels 1, 3, and 5

Security
" Core-SVP hardness from Lattice-estimator
" Algebraic/combinatorial attacks
" Especially for LWE problems with sparse secret

Parameter Sets

Target: NIST’s security levels 1, 3, and 5

Security
" Core-SVP hardness from Lattice-estimator
" Algebraic/combinatorial attacks
" Especially for LWE problems with sparse secret

Decryption Failure Probability
" At least as low as Saber

Parameter Sets

Target: NIST’s security levels 1, 3, and 5

Security
" Core-SVP hardness from Lattice-estimator
" Algebraic/combinatorial attacks
" Especially for LWE problems with sparse secret

Decryption Failure Probability
" At least as low as Saber

=> Smallest ciphertexts & public keys

Size Comparison

NIST’s security level 1

Sizes (ratio) Security
Schemes sk pk ct | Classic. DFP
Kyber512 94 12 1.1 118 -139

LightSaber | 48 1 1.1 118 -120
LightSable 46 09 1 114 -139
SMAUG-128 1 1 1 120 -120

" Sizes: proportion to SMAUG
" SMAUG wins, loses, tie

Full Size & Performance Comparison

NIST’s security levels 1, 3, and 5

Sizes (ratio) Cycles (ratio) Security
Schemes sk pk ct | KeyGen Encap Decap | Classic. DFP
Kyber512 94 12 1.1 874 2.1 2.03 118 -139
LightSaber 4.8 1 1.1 1.21 1.58 1.44 118 -120
LightSable 46 0.9 1 1.1 1.48 1.39 114 -139
SMAUG-128 1 1 1 1 1 1 120 -120
Kyber768 104 1.1 1.1 1.38 1.84 1,75 183 -164
Saber 54 09 1.1 1.21 1.64 1.47 189 -136
Sable 5 0.8 1 1.1 1.55 1.45 185 -143
SMAUG-192 1 1 1 1 1 1 181 -136
Kyber1024 152 09 1.1 1.25 1.38 1.36 256 -174
FireSaber 8 0.7 1 1.08 1.29 1.25 260 -165
FireSable 78 0.7 0.9 1.03 1.25 1.22 223 -208
SMAUG-256 1 1 1 1 1 1 264 -167

" Constant-time, non-vectorized C reference codes
" Sizes & Cycles: proportion to SMAUG
" SMAUG wins, loses, tie

Conclusion

Conclusion

Design of SMAUG:
" MLWE key + MLWR ciphertext
" Sparse secret and approximate dGaussian noise
" Constant-time C reference code: www.kpgc.cryptolab.co.kr/smaug

www.kpqc.cryptolab.co.kr/smaug

Conclusion

Design of SMAUG:
" MLWE key + MLWR ciphertext
" Sparse secret and approximate dGaussian noise
" Constant-time C reference code: www.kpgc.cryptolab.co.kr/smaug

Efficiency

" Smallest’ ciphertext sizes
" Performance: 20-110% faster than Kyber, Saber, Sable

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion

Design of SMAUG:
" MLWE key + MLWR ciphertext
" Sparse secret and approximate dGaussian noise
" Constant-time C reference code: www.kpgc.cryptolab.co.kr/smaug

Efficiency

" Smallest’ ciphertext sizes
" Performance: 20-110% faster than Kyber, Saber, Sable

Answer to the question:

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion

Design of SMAUG:
" MLWE key + MLWR ciphertext
" Sparse secret and approximate dGaussian noise
" Constant-time C reference code: www.kpgc.cryptolab.co.kr/smaug

Efficiency

" Smallest’ ciphertext sizes
" Performance: 20-110% faster than Kyber, Saber, Sable

Answer to the question:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion

Design of SMAUG:
" MLWE key + MLWR ciphertext
" Sparse secret and approximate dGaussian noise
" Constant-time C reference code: www.kpgc.cryptolab.co.kr/smaug

Efficiency

" Smallest’ ciphertext sizes
" Performance: 20-110% faster than Kyber, Saber, Sable

Answer to the question:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:
performance & small secret VS. small public key

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

*SMAUG, The Hobbits, J. R. R. Tolkien.

