
SMAUG: Pushing Lattice-based Key
Encapsulation Mechanisms to the Limits

Jung Hee Cheon!,#, Hyeongmin Choe𝟏, Dongyeon Hong%, MinJune Yi!

! Seoul National University, # CryptoLab Inc.,
% National Security Research Institute

August 16, 2023
SAC 2023

Lattice-based KEMs

KEMs in Post-Quantum World
§ Key Encapsulation Mechanism (KEM)

KEMs in Post-Quantum World
§ Key Encapsulation Mechanism (KEM)

Internet TLS protocols

IoT devices

KEMs in Post-Quantum World
§ Key Encapsulation Mechanism (KEM)

§ Current KEMs: vulnerable to quantum attacks

Internet TLS protocols

IoT devices

KEMs in Post-Quantum World
§ Key Encapsulation Mechanism (KEM)

§ Current KEMs: vulnerable to quantum attacks

➾ Since 2017, NIST PQC standardization is ongoing!

Internet TLS protocols

IoT devices

KEMs in Post-Quantum World
§ Key Encapsulation Mechanism (KEM)

§ Current KEMs: vulnerable to quantum attacks

➾ Since 2017, NIST PQC standardization is ongoing!

Various lattice-based KEMs:
Kyber, Saber, NTRU, Round5, FrodoKEM, Rlizard,…

Internet TLS protocols

IoT devices

§ Efficiency § Security

Requirements for KEMs

§ Efficiency
§ Small sizes

§ Security

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ Security

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ Secure against…
§ IND-CCA2 attacks

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ Secure against…
§ Core-SVP hardness

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ Secure against…
§ Core-SVP hardness
§ Decryption failure attacks

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ Secure against…
§ Core-SVP hardness
§ Decryption failure attacks
§ Side-channel attacks

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ How to?
§ Module lattices
§ LWR problem
§ Centered Binomial

Distribution (CBD)

§ Secure against…
§ Core-SVP hardness
§ Decryption failure attacks
§ Side-channel attacks

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ How to?
§ Module lattices
§ LWR problem
§ Centered Binomial

Distribution (CBD)

§ Secure against…
§ Core-SVP hardness
§ Decryption failure attacks
§ Side-channel attacks

§ How to?
§ Ring lattices
§ LWE problem
§ Error Correction Codes

(ECC)

Requirements for KEMs

§ Efficiency
§ Small sizes
§ Fast performance

§ How to?
§ Module lattices
§ LWR problem
§ Centered Binomial

Distribution (CBD)

§ Secure against…
§ Core-SVP hardness
§ Decryption failure attacks
§ Side-channel attacks

§ How to?
§ Ring lattices
§ LWE problem
§ Error Correction Codes

(ECC)

Requirements for KEMs

Efficiency of Lattice-KEMs

§ NTRU
§ NTRU
§ Sparse secret

§ FrodoKEM

§ Kyber
§ LWE
§ Module
§ CBD

§ Saber
§ LWR
§ Module
§ CBD

§ Recent lattice-based KEMs with low enough
Decryption Failure Probability (DFP)
§ KEMs using ECCs or having higher DFPs

are omitted

§ RLizard

Efficiency of Lattice-KEMs

§ NTRU
§ NTRU
§ Sparse secret

§ Sable (CHES’21)
§ Saber variant
§ Optimized sizes

& performance

§ FrodoKEM

§ Kyber
§ LWE
§ Module
§ CBD

§ Saber
§ LWR
§ Module
§ CBD

§ Recent lattice-based KEMs with low enough
Decryption Failure Probability (DFP)
§ KEMs using ECCs or having higher DFPs

are omitted

§ RLizard

Efficiency of Lattice-KEMs

§ NTRU
§ NTRU
§ Sparse secret

§ Sable (CHES’21)
§ Saber variant
§ Optimized sizes

& performance

§ FrodoKEM

§ Kyber
§ LWE
§ Module
§ CBD

§ Saber
§ LWR
§ Module
§ CBD

§ Recent lattice-based KEMs with low enough
Decryption Failure Probability (DFP)
§ KEMs using ECCs or having higher DFPs

are omitted

§ RLizard

Can we further push efficiency of
lattice-KEMs towards the limit?

Can we further push efficiency of
lattice-KEMs towards the limit?

➾ SMAUG

Can we further push efficiency of
lattice-KEMs towards the limit?

➾ SMAUG
§ Module LWE & LWR problem
§ Sparse secret
§ Approximate discrete Gaussian

Can we further push efficiency of
lattice-KEMs towards the limit?

➾ SMAUG
§ Module LWE + LWR problem
§ Sparse secret
§ Approximate discrete Gaussian

SMAUG

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation
§ MLWR: encryption

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation
§ MLWR: encryption

§ + Sparse secret
§ Lower DFP
§ Sparsity-based faster operations

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation
§ MLWR: encryption

§ + Sparse secret
§ Lower DFP
§ Sparsity-based faster operations

§ + Approximate discrete Gaussian
§ Fast and parallelizable

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation
§ MLWR: encryption

§ + Sparse secret
§ Lower DFP
§ Sparsity-based faster operations

§ + Approximate discrete Gaussian
§ Fast and parallelizable

➾ IND-CCA2 secure KEM
FO transform.

SMAUG
§ IND-CPA secure PKE
§ MLWE: key generation
§ MLWR: encryption

§ + Sparse secret
§ Lower DFP
§ Sparsity-based faster operations

§ + Approximate discrete Gaussian
§ Fast and parallelizable

➾ IND-CCA2 secure KEM
FO transform.

Why MLWE + MLWR?

Why MLWE + MLWR?
§ (M)LWE

𝑏 = 𝐴𝑠 + 𝑒 + Δ𝜇 𝑚𝑜𝑑 𝑞 , 𝑒 ← 𝐷&: small

Why MLWE + MLWR?
§ (M)LWE

𝑏 = 𝐴𝑠 + 𝑒 + Δ𝜇 𝑚𝑜𝑑 𝑞 , 𝑒 ← 𝐷&: small

§ (+) Small noise ➾ Decryption error ⇩

Why MLWE + MLWR?
§ (M)LWE

𝑏 = 𝐴𝑠 + 𝑒 + Δ𝜇 𝑚𝑜𝑑 𝑞 , 𝑒 ← 𝐷&: small

§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
𝑏 =

𝑝
𝑞
⋅ 𝐴𝑠 + Δ𝜇 𝑚𝑜𝑑 𝑞

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
𝑏 =

𝑝
𝑞
⋅ 𝐴𝑠 + Δ𝜇 𝑚𝑜𝑑 𝑞

≈ (M)LWE with 𝑒 ← unif ; <− '
#(, ⋯ , '#(

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
𝑏 =

𝑝
𝑞
⋅ 𝐴𝑠 + Δ𝜇 𝑚𝑜𝑑 𝑞

≈ (M)LWE with 𝑒 ← unif ; <− '
#(, ⋯ , '#(

§ (+) Scaling & rounding ➾ Performance ⇧

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
𝑏 =

𝑝
𝑞
⋅ 𝐴𝑠 + Δ𝜇 𝑚𝑜𝑑 𝑞

≈ (M)LWE with 𝑒 ← unif ; <− '
#(, ⋯ , '#(

§ (+) Scaling & rounding ➾ Performance ⇧
§ (−) Rounding error ➾ Decryption error ⇧

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
§ (+) Scaling & rounding ➾ Performance ⇧
§ (−) Rounding error ➾ Decryption error ⇧

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
§ (+) Scaling & rounding ➾ Performance ⇧
§ (−) Rounding error ➾ Decryption error ⇧

Kyber Saber

C
yc

le
 c

ou
nt

s

KeyGen
Encrypt

DFP: 2!"#$ 2!"%&

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
§ (+) Scaling & rounding ➾ Performance ⇧
§ (−) Rounding error ➾ Decryption error ⇧

Kyber Saber

C
yc

le
 c

ou
nt

s

KeyGen
Encrypt

DFP: 2!"#$ 2!"%&
Kyber MLWE+MLWR Saber

C
yc

le
 c

ou
nt

s

KeyGen
Encrypt

DFP: 2!"#$ in between 2!"%&

Why MLWE + MLWR?
§ (M)LWE
§ (+) Small noise ➾ Decryption error ⇩
§ (−) Noise sampling ➾ Performance ⇩

§ (M)LWR
§ (+) Scaling & rounding ➾ Performance ⇧
§ (−) Rounding error ➾ Decryption error ⇧

Kyber Saber

C
yc

le
 c

ou
nt

s

KeyGen
Encrypt

DFP: 2!"#$ 2!"%&
Kyber MLWE+MLWR Saber

C
yc

le
 c

ou
nt

s

KeyGen
Encrypt

DFP: 2!"#$ in between 2!"%&

MLWE+MLWR

Sparse Secret

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩
§ Performance ⇧

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩
§ Performance ⇧

§ Polynomial multiplication
§ Schoolbook multiplication using +/−

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩
§ Performance ⇧

§ Polynomial multiplication
§ Schoolbook multiplication using +/−

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩
§ Performance ⇧

§ Polynomial multiplication
§ Schoolbook multiplication using +/−

§ Small secret key
§ Ready-to-use

Sparse Secret
§ Homomorphic encryption
§ Noise propagation ⇩
§ Homomorphic operations speed ⇧

§ PKE
§ Decryption error ⇩
§ Performance ⇧

§ Polynomial multiplication
§ Schoolbook multiplication using +/−

§ Small secret key
§ Ready-to-use

storing the degrees

Approximating Discrete Gaussian

Approximating Discrete Gaussian
§ Scale dGaussian

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

§ Only for KeyGen ➾ efficiently bounded!

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

§ Only for KeyGen ➾ efficiently bounded!

§ Cumulative Distribution Table (CDT)

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

§ Only for KeyGen ➾ efficiently bounded!

§ Cumulative Distribution Table (CDT)

§ Booleanize CDT
§ Quine-McCluskey’s algorithm
§ Logic minimization

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

§ Only for KeyGen ➾ efficiently bounded!

§ Cumulative Distribution Table (CDT)

§ Booleanize CDT
§ Quine-McCluskey’s algorithm
§ Logic minimization

➾ Boolean algorithm for dGaussian

Approximating Discrete Gaussian
§ Scale dGaussian
§ Bound security loss using Réyni divergence

§ Only for KeyGen ➾ efficiently bounded!

§ Cumulative Distribution Table (CDT)

§ Booleanize CDT
§ Quine-McCluskey’s algorithm
§ Logic minimization

➾ Boolean algorithm for dGaussian

Implementation

Parameter Sets
§ Target: NIST’s security levels 1, 3, and 5

Parameter Sets
§ Target: NIST’s security levels 1, 3, and 5

§ Security
§ Core-SVP hardness from Lattice-estimator
§ Algebraic/combinatorial attacks

Parameter Sets
§ Target: NIST’s security levels 1, 3, and 5

§ Security
§ Core-SVP hardness from Lattice-estimator
§ Algebraic/combinatorial attacks
§ Especially for LWE problems with sparse secret

Parameter Sets
§ Target: NIST’s security levels 1, 3, and 5

§ Security
§ Core-SVP hardness from Lattice-estimator
§ Algebraic/combinatorial attacks
§ Especially for LWE problems with sparse secret

§ Decryption Failure Probability
§ At least as low as Saber

Parameter Sets
§ Target: NIST’s security levels 1, 3, and 5

§ Security
§ Core-SVP hardness from Lattice-estimator
§ Algebraic/combinatorial attacks
§ Especially for LWE problems with sparse secret

§ Decryption Failure Probability
§ At least as low as Saber

➾ Smallest ciphertexts & public keys

Size Comparison

§ NIST’s security level 1

§ Sizes: proportion to SMAUG
§ SMAUG wins, loses, tie

Full Size & Performance Comparison
§ NIST’s security levels 1, 3, and 5

§ Constant-time, non-vectorized C reference codes
§ Sizes & Cycles: proportion to SMAUG
§ SMAUG wins, loses, tie

Conclusion

Conclusion
§ Design of SMAUG:
§ MLWE key + MLWR ciphertext
§ Sparse secret and approximate dGaussian noise
§ Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

www.kpqc.cryptolab.co.kr/smaug

Conclusion
§ Design of SMAUG:
§ MLWE key + MLWR ciphertext
§ Sparse secret and approximate dGaussian noise
§ Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

§ Efficiency
§ Smallest¹ ciphertext sizes
§ Performance: 20-110% faster than Kyber, Saber, Sable

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion
§ Design of SMAUG:
§ MLWE key + MLWR ciphertext
§ Sparse secret and approximate dGaussian noise
§ Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

§ Efficiency
§ Smallest¹ ciphertext sizes
§ Performance: 20-110% faster than Kyber, Saber, Sable

§ Answer to the question:

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion
§ Design of SMAUG:
§ MLWE key + MLWR ciphertext
§ Sparse secret and approximate dGaussian noise
§ Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

§ Efficiency
§ Smallest¹ ciphertext sizes
§ Performance: 20-110% faster than Kyber, Saber, Sable

§ Answer to the question:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

Conclusion
§ Design of SMAUG:
§ MLWE key + MLWR ciphertext
§ Sparse secret and approximate dGaussian noise
§ Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

§ Efficiency
§ Smallest¹ ciphertext sizes
§ Performance: 20-110% faster than Kyber, Saber, Sable

§ Answer to the question:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

performance & small secret VS. small public key
1. the smallest among lattice-KEMs with NIST’s security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

www.kpqc.cryptolab.co.kr/smaug

*SMAUG, The Hobbits, J. R. R. Tolkien.

