

SMAUG: Pushing Lattice-based Key Encapsulation Mechanisms to the Limits

Jung Hee Cheon^{1,2}, **Hyeongmin Choe**¹, Dongyeon Hong³, MinJune Yi¹

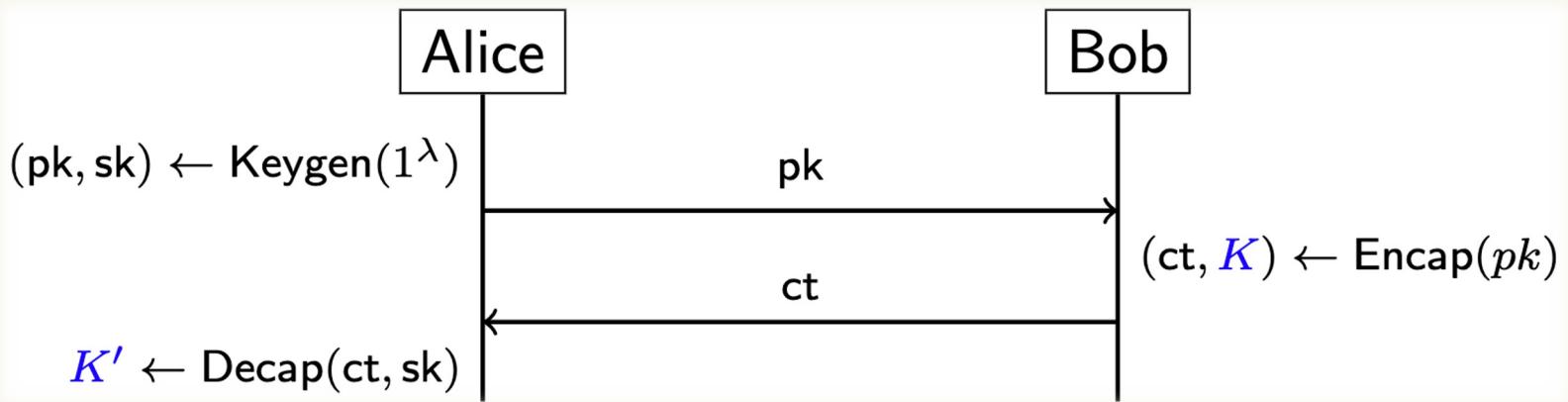
¹ Seoul National University, ² CryptoLab Inc.,
³ National Security Research Institute

August 16, 2023
SAC 2023

Lattice-based KEMs

KEMs in Post-Quantum World

- Key Encapsulation Mechanism (KEM)



KEMs in Post-Quantum World

- Key Encapsulation Mechanism (KEM)

Internet

TLS protocols

IoT devices

KEMs in Post-Quantum World

- Key Encapsulation Mechanism (KEM)

Internet

TLS protocols

IoT devices

- Current KEMs: **vulnerable to quantum attacks**

KEMs in Post-Quantum World

- Key Encapsulation Mechanism (KEM)

Internet

TLS protocols

IoT devices

- Current KEMs: **vulnerable to quantum attacks**

⇒ Since 2017, NIST PQC standardization is ongoing!

KEMs in Post-Quantum World

- Key Encapsulation Mechanism (KEM)

Internet

TLS protocols

IoT devices

- Current KEMs: **vulnerable to quantum attacks**

⇒ Since 2017, NIST PQC standardization is ongoing!

Various lattice-based KEMs:

Kyber, Saber, NTRU, Round5, FrodoKEM, Rlizard,...

Requirements for KEMs

- Efficiency

- Security

Requirements for KEMs

- Efficiency
 - Small sizes
- Security

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- Security

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- Secure against...
 - IND-CCA2 attacks

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- Secure against...
 - Core-SVP hardness

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- Secure against...
 - Core-SVP hardness
 - Decryption failure attacks

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- Secure against...
 - Core-SVP hardness
 - Decryption failure attacks
 - Side-channel attacks

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- How to?
 - Module lattices
 - LWR problem
 - Centered Binomial Distribution (CBD)
- Secure against...
 - Core-SVP hardness
 - Decryption failure attacks
 - Side-channel attacks

Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- How to?
 - Module lattices
 - LWR problem
 - Centered Binomial Distribution (CBD)
- Secure against...
 - Core-SVP hardness
 - Decryption failure attacks
 - Side-channel attacks
- How to?
 - Ring lattices
 - LWE problem
 - Error Correction Codes (ECC)

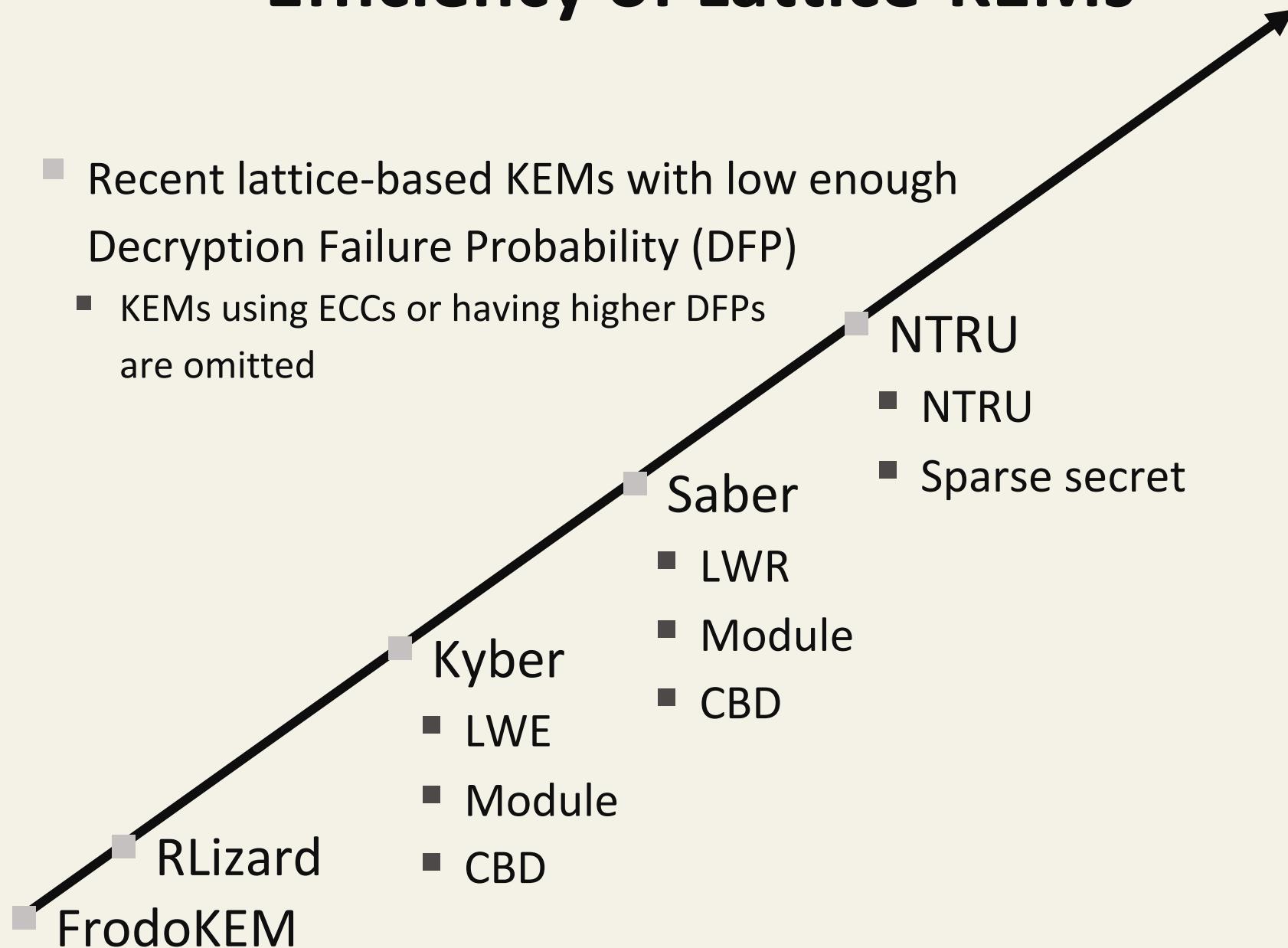
Requirements for KEMs

- Efficiency
 - Small sizes
 - Fast performance
- How to?
 - Module lattices
 - LWR problem
 - Centered Binomial Distribution (CBD)
- Secure against...
 - Core-SVP hardness
 - Decryption failure attacks
 - Side-channel attacks
- How to?
 - Ring lattices
 - LWE problem
 - ~~Error Correction Codes (ECC)~~

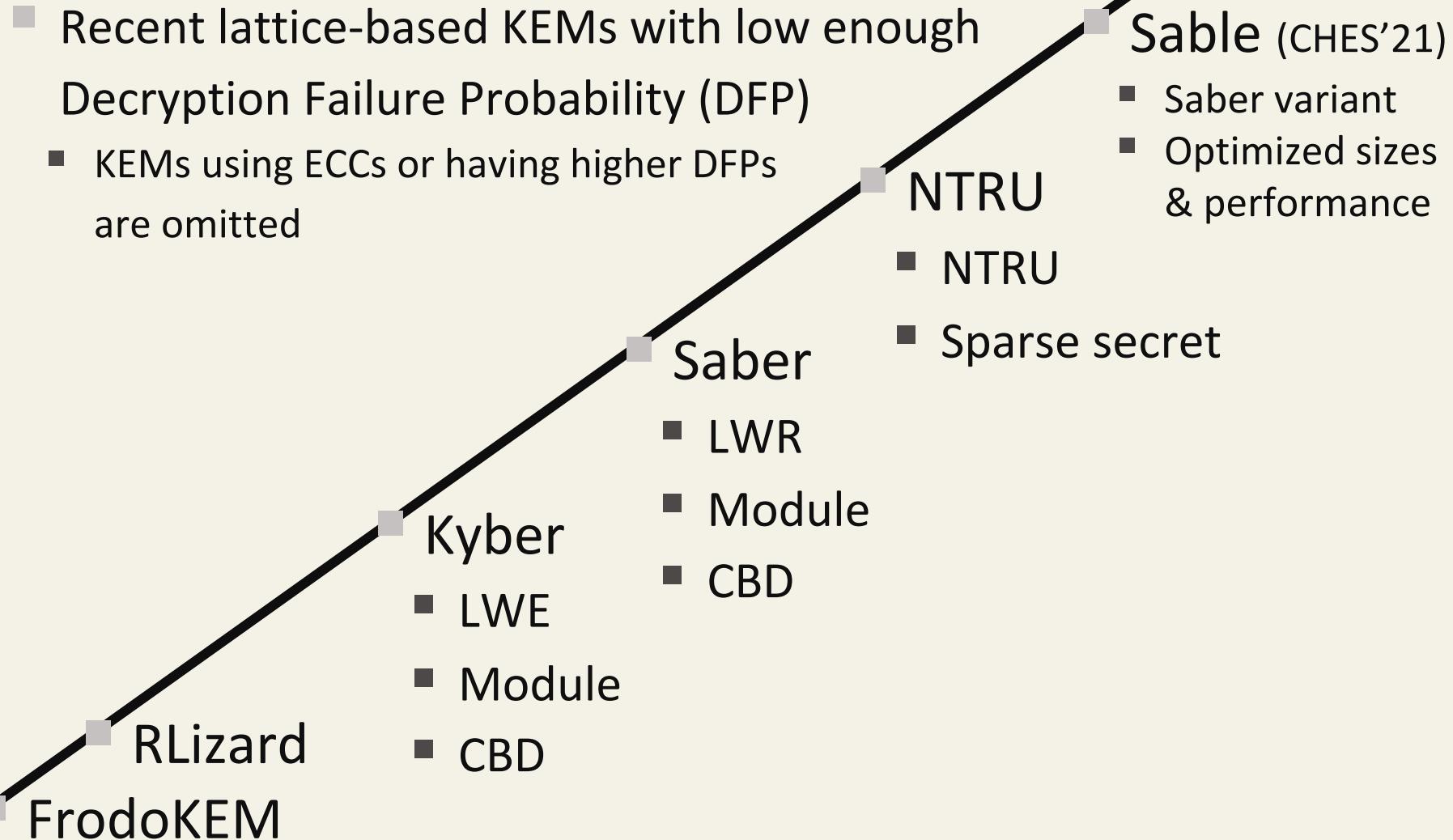
Efficiency of Lattice-KEMs

- Recent lattice-based KEMs with low enough Decryption Failure Probability (DFP)

- KEMs using ECCs or having higher DFPs are omitted



Efficiency of Lattice-KEMs



Efficiency of Lattice-KEMs

- Recent lattice-based KEMs with low enough Decryption Failure Probability (DFP)
 - KEMs using ECCs or having higher DFPs are omitted

Sable (CHES'21)
■ Saber variant
■ Optimized sizes & performance

NTRU
■ NTRU
■ Sparse secret

Saber

LWR

Scheme	sk	pk	ct ↑	DFP	Sec.	K	Assumption
Sable	800	608	672	-139	114	256	MLWR
NTRU	699	935	699	-∞	106	256	NTRU
Saber	832	672	736	-120	118	256	MLWR
Kyber	1632	800	768	-139	118	256	MLWE
RLizard	385	4096	2080	-188	147	256	RLWE+RLWR
FrodoKEM	19888	9616	9752	-139	150	128	LWE

Can we further push **efficiency** of
lattice-KEMs towards the limit?

Can we further push **efficiency** of
lattice-KEMs towards the limit?

⇒ **SMAUG**

Can we further push **efficiency** of
lattice-KEMs towards the limit?

⇒ **SMAUG**

- Module LWE & LWR problem
- Sparse secret
- Approximate discrete Gaussian

Can we further push **efficiency** of lattice-KEMs towards the limit?

Scheme	sk	pk	ct ↑	DFP	Sec.	 K 	Assumption
SMAUG	176	672	672	-120	120	256	MLWE+MLWR
Sable	800	608	672	-139	114	256	MLWR
NTRU	699	935	699	-∞	106	256	NTRU
Saber	832	672	736	-120	118	256	MLWR
Kyber	1632	800	768	-139	118	256	MLWE
RLizard	385	4096	2080	-188	147	256	RLWE+RLWR
FrodoKEM	19888	9616	9752	-139	150	128	LWE

SMAUG

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation
 - **MLWR**: encryption

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation
 - **MLWR**: encryption
- + **Sparse secret**
 - Lower DFP
 - Sparsity-based faster operations

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation
 - **MLWR**: encryption
- + **Sparse secret**
 - Lower DFP
 - Sparsity-based faster operations
- + **Approximate discrete Gaussian**
 - Fast and parallelizable

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation
 - **MLWR**: encryption
- + **Sparse secret**
 - Lower DFP
 - Sparsity-based faster operations
- + **Approximate discrete Gaussian**
 - Fast and parallelizable

FO transform

⇒ IND-CCA2 secure KEM

SMAUG

- IND-CPA secure PKE
 - **MLWE**: key generation
 - **MLWR**: encryption
- + **Sparse secret**
 - Lower DFP
 - Sparsity-based faster operations
- + **Approximate discrete Gaussian**
 - Fast and parallelizable

FO transform

⇒ IND-CCA2 secure KEM

SMAUG
HEAN
CRYPTO LAB

Why MLWE + MLWR?

Why MLWE + MLWR?

- (M)LWE

$$b = (As + e + \Delta\mu \bmod q), \quad e \leftarrow D_\sigma: \text{small}$$

Why MLWE + MLWR?

- (M)LWE

$$b = (As + e + \Delta\mu \bmod q), \quad e \leftarrow D_\sigma: \text{small}$$

- (+) Small noise \Rightarrow **Decryption error \downarrow**

Why MLWE + MLWR?

■ (M)LWE

$$b = (As + e + \Delta\mu \bmod q), \quad e \leftarrow D_\sigma: \text{small}$$

- (+) Small noise \Rightarrow Decryption error \downarrow
- (–) Noise sampling \Rightarrow Performance \downarrow

Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow Decryption error \downarrow
 - (–) Noise sampling \Rightarrow Performance \downarrow

Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error \downarrow**
 - (–) Noise sampling \Rightarrow **Performance \downarrow**

- (M)LWR

$$b = \left\lceil \frac{p}{q} \cdot (As + \Delta\mu \bmod q) \right\rceil$$

Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error ↓**
 - (–) Noise sampling \Rightarrow **Performance ↓**

- (M)LWR

$$\begin{aligned} b &= \left\lceil \frac{p}{q} \cdot (As + \Delta\mu \bmod q) \right\rceil \\ &\approx (\text{M})\text{LWE} \text{ with } e \leftarrow \text{unif}\left(-\frac{p}{2q}, \dots, \frac{p}{2q}\right) \end{aligned}$$

Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error ↓**
 - (–) Noise sampling \Rightarrow **Performance ↓**

- (M)LWR

$$\begin{aligned} b &= \left\lceil \frac{p}{q} \cdot (As + \Delta\mu \bmod q) \right\rceil \\ &\approx (\text{M})\text{LWE} \text{ with } e \leftarrow \text{unif}\left(-\frac{p}{2q}, \dots, \frac{p}{2q}\right) \end{aligned}$$

- (+) Scaling & rounding \Rightarrow **Performance ↑**

Why MLWE + MLWR?

■ (M)LWE

- (+) Small noise \Rightarrow **Decryption error ↓**
- (–) Noise sampling \Rightarrow **Performance ↓**

■ (M)LWR

$$\begin{aligned} b &= \left\lceil \frac{p}{q} \cdot (As + \Delta\mu \bmod q) \right\rceil \\ &\approx (\text{M})\text{LWE} \text{ with } e \leftarrow \text{unif}\left(-\frac{p}{2q}, \dots, \frac{p}{2q}\right) \end{aligned}$$

- (+) Scaling & rounding \Rightarrow **Performance ↑**
- (–) Rounding error \Rightarrow **Decryption error ↑**

Why MLWE + MLWR?

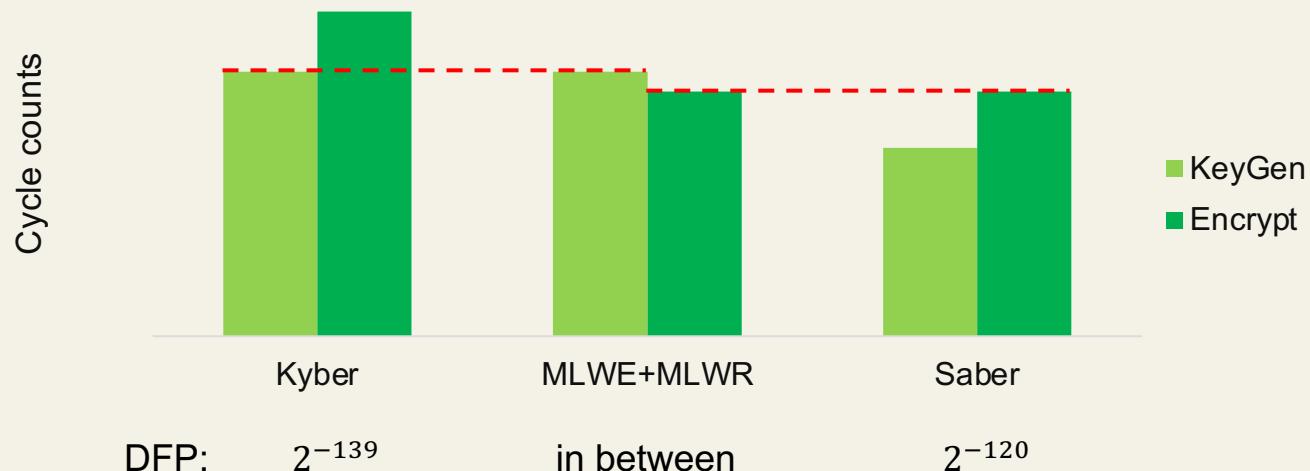
- (M)LWE
 - (+) Small noise \Rightarrow Decryption error \downarrow
 - (–) Noise sampling \Rightarrow Performance \downarrow
- (M)LWR
 - (+) Scaling & rounding \Rightarrow Performance \uparrow
 - (–) Rounding error \Rightarrow Decryption error \uparrow

Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error \downarrow**
 - (–) Noise sampling \Rightarrow **Performance \downarrow**
- (M)LWR
 - (+) Scaling & rounding \Rightarrow **Performance \uparrow**
 - (–) Rounding error \Rightarrow **Decryption error \uparrow**

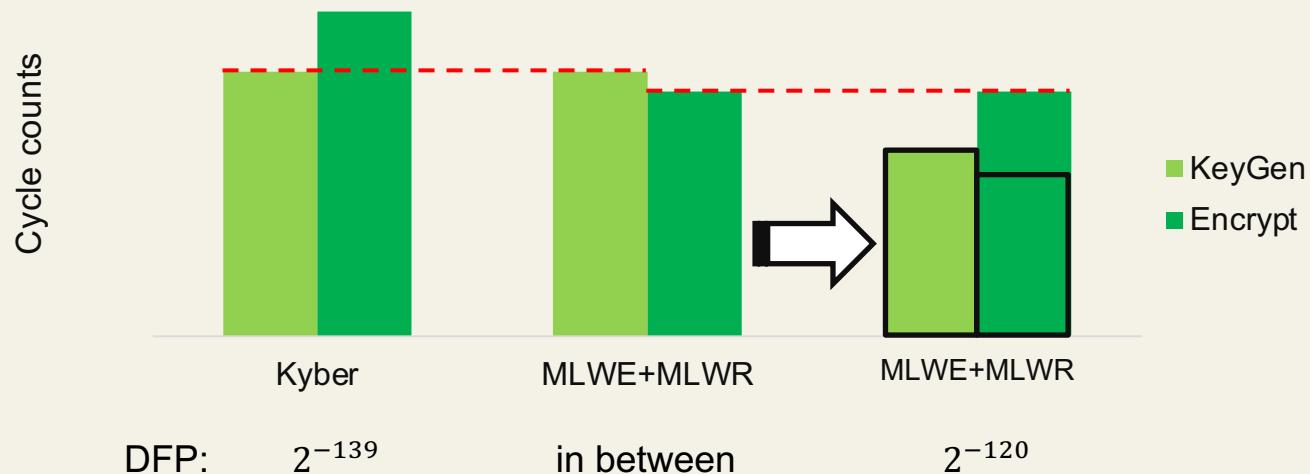
Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error ↓**
 - (–) Noise sampling \Rightarrow **Performance ↓**
- (M)LWR
 - (+) Scaling & rounding \Rightarrow **Performance ↑**
 - (–) Rounding error \Rightarrow **Decryption error ↑**



Why MLWE + MLWR?

- (M)LWE
 - (+) Small noise \Rightarrow **Decryption error ↓**
 - (–) Noise sampling \Rightarrow **Performance ↓**
- (M)LWR
 - (+) Scaling & rounding \Rightarrow **Performance ↑**
 - (–) Rounding error \Rightarrow **Decryption error ↑**



Sparse Secret

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑
- PKE
 - Decryption error ↓

Sparse Secret

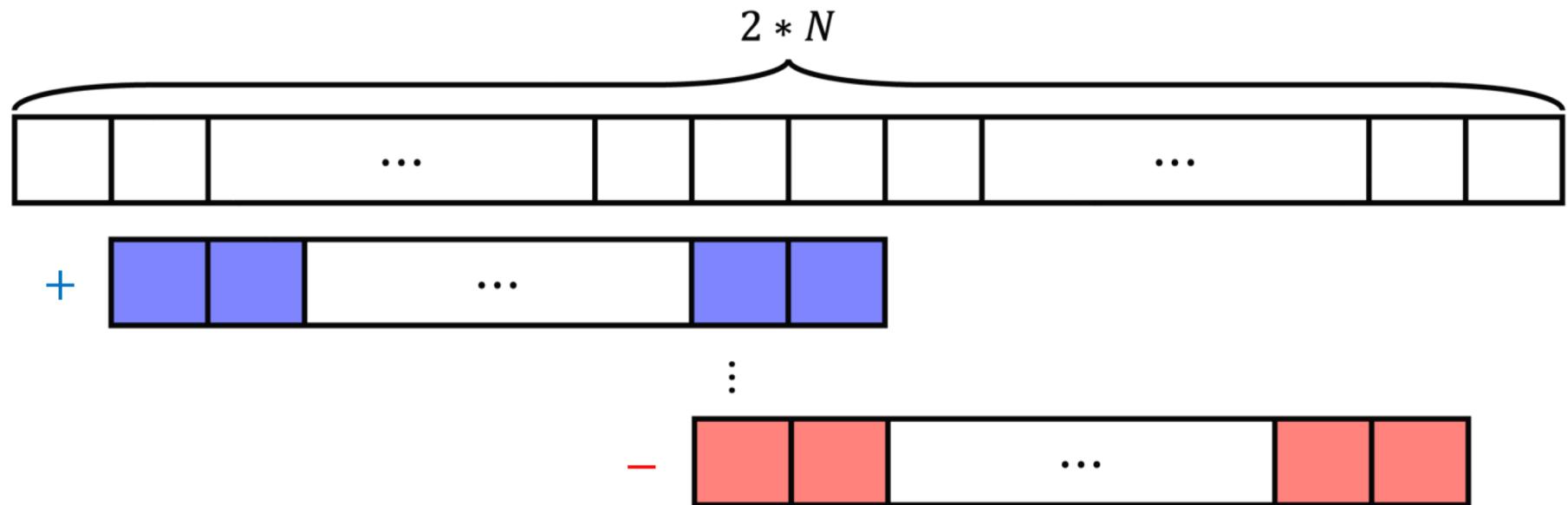
- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑
- PKE
 - Decryption error ↓
 - Performance ↑

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑
- PKE
 - Decryption error ↓
 - Performance ↑
- Polynomial multiplication
 - Schoolbook multiplication using +/–

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓

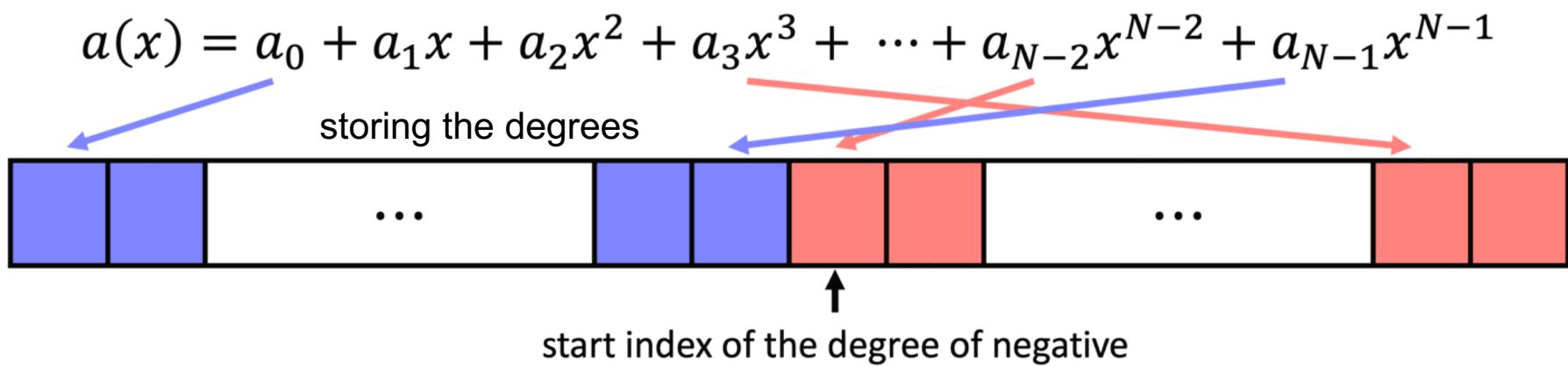


Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑
- PKE
 - Decryption error ↓
 - Performance ↑
- Polynomial multiplication
 - Schoolbook multiplication using +/–
- Small secret key
 - Ready-to-use

Sparse Secret

- Homomorphic encryption
 - Noise propagation ↓
 - Homomorphic operations speed ↑



- Small secret key
 - Ready-to-use

Approximating Discrete Gaussian

Approximating Discrete Gaussian

- Scale dGaussian

Approximating Discrete Gaussian

- Scale dGaussian
- Bound security loss using Rényi divergence

Parameter set	Scale factor	α	R_α	Δ Security
SMAUG-128	2^{10}	200	1.0016	1.8
SMAUG-192	2^{11}	75	1.0022	4.8
SMAUG-256	2^{10}	200	1.0016	5.7

Approximating Discrete Gaussian

- Scale dGaussian
- Bound security loss using Rényi divergence

Parameter set	Scale factor	α	R_α	Δ Security
SMAUG-128	2^{10}	200	1.0016	1.8
SMAUG-192	2^{11}	75	1.0022	4.8
SMAUG-256	2^{10}	200	1.0016	5.7

- Only for KeyGen \Rightarrow efficiently bounded!

Approximating Discrete Gaussian

- Scale dGaussian
 - Bound security loss using Rényi divergence

Parameter set	Scale factor	α	R_α	Δ Security
SMAUG-128	2^{10}	200	1.0016	1.8
SMAUG-192	2^{11}	75	1.0022	4.8
SMAUG-256	2^{10}	200	1.0016	5.7

- Only for KeyGen \Rightarrow efficiently bounded!
- Cumulative Distribution Table (CDT)

Approximating Discrete Gaussian

- Scale dGaussian
 - Bound security loss using Rényi divergence

Parameter set	Scale factor	α	R_α	Δ Security
SMAUG-128	2^{10}	200	1.0016	1.8
SMAUG-192	2^{11}	75	1.0022	4.8
SMAUG-256	2^{10}	200	1.0016	5.7

- Only for KeyGen \Rightarrow efficiently bounded!
- Cumulative Distribution Table (CDT)
- Booleanize CDT
 - Quine-McCluskey's algorithm
 - Logic minimization

Approximating Discrete Gaussian

- Scale dGaussian
 - Bound security loss using Rényi divergence

Parameter set	Scale factor	α	R_α	Δ Security
SMAUG-128	2^{10}	200	1.0016	1.8
SMAUG-192	2^{11}	75	1.0022	4.8
SMAUG-256	2^{10}	200	1.0016	5.7

- Only for KeyGen \Rightarrow efficiently bounded!
- Cumulative Distribution Table (CDT)
- Booleanize CDT
 - Quine-McCluskey's algorithm
 - Logic minimization

\Rightarrow Boolean algorithm for dGaussian

Approximating Discrete Gaussian

- Scale dGaussian
 - Bound security loss using Rényi divergence

dGaussian $_{\sigma}(x)$:

Require: $x = x_0x_1x_2x_3x_4x_5x_6x_7x_8x_9 \in \{0, 1\}^{10}$

- 1: $s = s_1s_0 = 00 \in \{0, 1\}^2$
- 2: $s_0 = x_0x_1x_2x_3x_4x_5x_7\overline{x_8}$
- 3: $s_0 += (x_0x_3x_4x_5x_6x_8) + (x_1x_3x_4x_5x_6x_8) + (x_2x_3x_4x_5x_6x_8)$
- 4: $s_0 += (\overline{x_2x_3x_6}x_8) + (\overline{x_1x_3x_6}x_8)$
- 5: $s_0 += (x_6x_7\overline{x_8}) + (\overline{x_5x_6}x_8) + (\overline{x_4x_6}x_8) + (\overline{x_7}x_8)$
- 6: $s_1 = (x_1x_2x_4x_5x_7x_8) + (x_3x_4x_5x_7x_8) + (x_6x_7x_8)$
- 7: $s = (-1)^{x_9} \cdot s$ ▷ \cdot is the arithmetic multiplication
- 8: **return** s

Bootcamp CDT

- Quine-McCluskey's algorithm
- Logic minimization

⇒ Boolean algorithm for dGaussian

Implementation

Parameter Sets

- Target: NIST's security levels 1, 3, and 5

Parameter Sets

- Target: NIST's security levels 1, 3, and 5
- Security
 - Core-SVP hardness from Lattice-estimator
 - Algebraic/combinatorial attacks

Parameter Sets

- Target: NIST's security levels 1, 3, and 5
- Security
 - Core-SVP hardness from Lattice-estimator
 - Algebraic/combinatorial attacks
 - Especially for LWE problems with sparse secret

Parameter Sets

- Target: NIST's security levels 1, 3, and 5
- Security
 - Core-SVP hardness from Lattice-estimator
 - Algebraic/combinatorial attacks
 - Especially for LWE problems with sparse secret
- Decryption Failure Probability
 - At least as low as Saber

Parameter Sets

- Target: NIST's security levels 1, 3, and 5
- Security
 - Core-SVP hardness from Lattice-estimator
 - Algebraic/combinatorial attacks
 - Especially for LWE problems with sparse secret
- Decryption Failure Probability
 - At least as low as Saber

⇒ Smallest ciphertexts & public keys

Size Comparison

- NIST's security level 1

Schemes	Sizes (ratio)			Security	
	sk	pk	ct	Classic.	DFP
Kyber512	9.4	1.2	1.1	118	-139
LightSaber	4.8	1	1.1	118	-120
LightSable	4.6	0.9	1	114	-139
SMAUG-128	1	1	1	120	-120

- Sizes: proportion to SMAUG
- SMAUG **wins**, **loses**, tie

Full Size & Performance Comparison

- NIST's security levels 1, 3, and 5

Schemes	Sizes (ratio)			Cycles (ratio)			Security	
	sk	pk	ct	KeyGen	Encap	Decap	Classic.	DFP
Kyber512	9.4	1.2	1.1	1.7	2.1	2.03	118	-139
LightSaber	4.8	1	1.1	1.21	1.58	1.44	118	-120
LightSable	4.6	0.9	1	1.1	1.48	1.39	114	-139
SMAUG-128	1	1	1	1	1	1	120	-120
Kyber768	10.4	1.1	1.1	1.38	1.84	1.75	183	-164
Saber	5.4	0.9	1.1	1.21	1.64	1.47	189	-136
Sable	5	0.8	1	1.1	1.55	1.45	185	-143
SMAUG-192	1	1	1	1	1	1	181	-136
Kyber1024	15.2	0.9	1.1	1.25	1.38	1.36	256	-174
FireSaber	8	0.7	1	1.08	1.29	1.25	260	-165
FireSable	7.8	0.7	0.9	1.03	1.25	1.22	223	-208
SMAUG-256	1	1	1	1	1	1	264	-167

- Constant-time, non-vectorized C reference codes
- Sizes & Cycles: proportion to SMAUG
- SMAUG **wins, loses, tie**

Conclusion

Conclusion

- Design of SMAUG:
 - MLWE key + MLWR ciphertext
 - Sparse secret and approximate dGaussian noise
 - Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug

Conclusion

- Design of SMAUG:
 - MLWE key + MLWR ciphertext
 - Sparse secret and approximate dGaussian noise
 - Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug
- Efficiency
 - Smallest¹ ciphertext sizes
 - Performance: 20-110% faster than Kyber, Saber, Sable

1. the smallest among lattice-KEMs with NIST's security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

Conclusion

- Design of SMAUG:
 - MLWE key + MLWR ciphertext
 - Sparse secret and approximate dGaussian noise
 - Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug
- Efficiency
 - Smallest¹ ciphertext sizes
 - Performance: 20-110% faster than Kyber, Saber, Sable
- Answer to **the question**:

1. the smallest among lattice-KEMs with NIST's security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

Conclusion

- Design of SMAUG:
 - MLWE key + MLWR ciphertext
 - Sparse secret and approximate dGaussian noise
 - Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug
- Efficiency
 - Smallest¹ ciphertext sizes
 - Performance: 20-110% faster than Kyber, Saber, Sable
- Answer to **the question**:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

1. the smallest among lattice-KEMs with NIST's security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

Conclusion

- Design of SMAUG:
 - MLWE key + MLWR ciphertext
 - Sparse secret and approximate dGaussian noise
 - Constant-time C reference code: www.kpqc.cryptolab.co.kr/smaug
- Efficiency
 - Smallest¹ ciphertext sizes
 - Performance: 20-110% faster than Kyber, Saber, Sable
- Answer to **the question**:

SMAUG achieves the smallest ciphertext sizes
with extra room for trade-off:

performance & small secret VS. **small public key**

1. the smallest among lattice-KEMs with NIST's security level 1, 3, and 5, having low-enough DFP & maskable against SCAs

*SMAUG, *The Hobbits*, J. R. R. Tolkien.