Yale

Fast and Efficient Hardware Implementation of
HQC

Sanjay Deshpande”, Chuangi Xu®, Mamuri Nawan*, Kashif Nawaz*, and Jakub Szefer®

"Computer Architecture and Security Lab, Yale University

*Cryptography Research Centre, Technology Innovation Institute

S| |A| { Selected Areas in Cryptography
2023

\Q, caslab.io

Outline

Motivation

Introduction

Goal and Existing work

Components in HQC and their Hardware Implementation

Comparison with Related State of the Art

@ | caslab.io

J

Motivation

Quantum Computers with sufficient Qubits will be able to
solve practical problems.
Two algorithms are of special interest for cryptography

community:

o Shor’s Algorithm
o Grover’s Search Algorithm

For example, to break a 2048-bit RSA, a perfect quantum

computer with 4099 ideal qubits can do it in 10 seconds.
Most recently, IBM announced 433-qubits quantum

computer “Osprey”.

There is a need for Quantum-safe Cryptography!

Image Source: MIT Technology Review
Source: https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/
Source: https://newsroom.ibm.com/2022-11-09-1BM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

@ | caslab.io

J

Post Quantum Cryptography Competition

51 hash functions

-1 winner | | |
2007 ¢ . i 12012 Completed
SHA-3 In Progress
! ! - ! K ! 52015 E E E E 20i9
5? authen.tlcate<.1 aphere CAESAR
. = multiple winners | —
XI.2016 { { i | TBD

569 Public Key Post Quantum
Cryptpgraphy Schemes

Post-Quantum

2018 | i | 2023
Lightweight

56 nghtwelght authentlcated C|phers'
& hash functlons .

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

) .
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization \Q' CaSIab’IO
Process Using FPGAs, NIST Seminars, Oct 2020. J

v

Year

Post Quantum Cryptography Competition

51 hash functions

— 1 winner | |
2007 ; ¢ i 12012 Completed
SHA-3 In Progress
! ! - L ! 52015 . . . E 20i9
5? authen.tlcate<.1 C|pher§ CAESAR
i = multiple winners ! , , ,
I A XI1.2016 | . TBD
69 Public Key Post Quantum Post-Quant i
Cryptpgraphy Schemes§ (.)S] Iuanlum .
b b b b bbb 2018 2023
56 nghtwelght authentlcated C|phers LEnteEhe:

& hash functlons

Round 4 announced
1 candidate selected for standardization
4 candidates will undergo further evaluation

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

) .
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization \g' CaSIab‘IO

Process Using FPGAs, NIST Seminars, Oct 2020.

|

[
»

Year

Post Quantum Cryptography Competition

51 hash functions

— 1 winner
2007 { i i 12012

SHA-3

12013

Completed

In Progress

| 2019

57 authenticated cibher;s

CAESAR

' = multiple winners |

569 Public Key Post Quantum
C(yptqgraphy Sphemes

—>_

——

Code based Crypto

56 nghtwelght authentlcated C|phers'
& hash functlons .

X11.2016 | . TBD
Post-Quantum '

2018 2023
Lightweight |

Y

| eswescn |

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization g CaSIQb‘IO

Process Using FPGAs, NIST Seminars, Oct 2020.

Year

Post Quantum Cryptography Competition

51 hash functions

— 1 winner
2007 { i i 12012

SHA-3

12013

Completed

In Progress

| 2019

57 authenticated cibher§

CAESAR

' = multiple winners |

569 Public Key Post Quantum
Cryptqgraphy Sphemes

XI11.2016 |

. TBD

Post-Quantum

—>_

——

Classic
McEliece

/

Code based Crypto

56 nghtwelght authentlcated C|phers'
& hash functlons .

2018

2023

Lightweight

Y

— Bike

| eswescn |

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization g CaSIQb‘IO

Process Using FPGAs, NIST Seminars, Oct 2020.

Year

HQC
(This Work)

Key Encapsulation Mechanism

Public ‘
Key ‘

\ PK

(PK, SK)éKeyGen(seed) 2 EncapKZtillated
Secret C (K, C)¢&Encap(PK)
Key < ——)
K&Decap(SK, C) \
Ciphertext

Decapsulated
Key

F
F

Secure Channel |
j — i
& Symmetric Encryption &

11111111

'y ﬁ = “ 1100001 .
gj caslab.io

Source: https://iacr.org/cryptodb/data/paper.php?pubkey=31347

Design & Experimental Setup

HQC KEM parameter sets recommended as per the specification:

o hqcl28
o hqgcl92
o hqc256

« Target device: Xilinx - Artix 7 — xc7a200t-3 and xc7a100t-3
+ Tool: Xilinx Vivado 2020.2.2 [/ |
« Verification: Using the Software Reference implementation by HQC team [AAB+20]

* Goal: Implement a constant-time hardware design which is parameterizable across

o Security level
o Performance parameters

Image Source: Xilinx

@ caslab.io

J

Primitives

1. Key Generation
o Fixed weight error vector generation
 SHAKE256
o Polynomial Multiplication
o Polynomial Addition

sk_seed_in -1

\@ caslab.io

J

Control L

ogic

RAM [

T T&'T

poly_mult

| 2
v Y 2,

3

. 7 S 2
fixed_ vector_ |e—e— =
weight_ set_ - , =
vector random A%:::;k G

\ 4

location_
based_adder

SHAKE256

10

Primitives

. t
2. Encapsulation T
o Encrypt O '
: e
* Encode i ool I S e = gt A
* Polynomial Multiplication = 30 memmt = SR
. - A R I P— I i 8
* Polynomial Addition § | MR e e
* Fixed weight error vector generation 5 ; < i |
1 ~ : [}
o SHAKE256 @] -8 D_ [0
| - o @ | HASH. RAM | ! &
o Hash Computation | = Y | RAM p—
: ¥ :
- SHAKE256 : - ;
e shake_output |
K:gut

@ caslab.io

J

11

Primitives

h in s_in

3. Decapsulation T T T i
o Decrypt :
g1 u » u_compare f 1
 Decode 57 RAM \ :
* Polynomial Subtraction Encap I :
e Polynomial Multiplication ﬁ» v_ r) b ¢ v_compare | !

o Encrypt " [RAM : L e
o Hash Computation | pncapsulation | Ly :
ﬁ 'l D_ 1 : d_compare i

* SHAKE256 o7 RAM [¥ v mprine i

| H : g
E Decrypt [~ control i, :

: logic E_i_’.

y start done

\@ caslab.io

J

9GCANVHS

TTeJ ewrI

Primitives — Common Modules

1. Key Generation 2. Encapsulation
o Fixed weight error vector generation
« SHAKE256 « Encode
o Polynomial Multiplication * Polynomial Multiplication
o Polynomial Addition « Polynomial Addition

* Fixed weight error vector generation

3. Decapsulation o SHAKE256
o Decrypt o Hash Computation
e Decode SHAKE256

e Polynomial Subtraction
 Polynomial Multiplication

o Hash Computation
* SHAKE256

@ caslab.io

Primitives - Existing Work

1. Key Generation
o Fixed weight error vector generation
 SHAKE256 [CCD+22]
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation

o Decrypt
e Decode
e Polynomial Subtraction
 Polynomial Multiplication
o Encapsulation

2. Encapsulation

* Encode
e Polynomial Multiplication
* Polynomial Addition
* Fixed weight error vector generation
o SHAKE256 [CCD+22]
o Hash Computation
e« SHAKE256 [CCD+22]

Q caslab.io

14

SHAKE256

Improved existing design [CCD+22].

o Added state preserving capability.

o Added an extra mode in the
performance parameter (Parallel
Slices).

25

20

15

10

Area-LUTs (.1073)
Time (ms)
Time x Area (.1073)

32 16 8 4 2 1

No. of Parallel Slices in the SHAKE256 permutation function

i

EmTime x Area (.10*3) m®mTime (ms) mArea-LUTs (.1073)

Q caslab.io

15

Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation
 SHAKE256
o Polynomial Multiplication
o Polynomial Addition

\@ caslab.io

J

16

Polynomial Multiplication - Sparse Multiplication with Interleaved

Reduction

* One of the inputs to polynomial multiplier is a

) n
sparse fixed weight vector. 5 i, 7
C .
. . = Variable Y
+ Indices of non-zero elements are used to shift 38 /| qieers |2 ZI™N\n, /IN\n,
g ET7 e RNV
non-sparse polynomial to imitate the 9 2 Rotation £
P poly IS s ”//
O
mU|t|p|icat|0n. <o Non zero bit

« The multiplication and the modular reduction is

Input

interleaved.

\@ caslab.io

J

position from Sparse

*Conceptual Block Diagram

|elwouAjod 1ndinQ

17

Polynomial Multiplication - Sparse Multiplication with Interleaved

Reduction

* One of the inputs to polynomial multiplier is a
sparse fixed weight vector.
* Indices of non-zero elements are used to shift

non-sparse polynomial to imitate the

Non-Sparse

multiplication.
« The multiplication and the modular reduction is

interleaved.

@ caslab.io

J

Polynomial Input
I

Sparse Interleaved
Multiplication Reduction
n

”// a
Variable y
Shifter/ 20 /\ N/ ~/\ n,, >

/ 7 J 7

Rotation n\/ \

/

Non zero bit
position from Sparse

Input

*Conceptual Block Diagram

|elwouAjod 1ndinQ

18

Polynomial Multiplication - Results

Resources

BW Logic Memory F Cycles Time T x A
(bits) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

Our polymult module, Polynomial Length® = 12,323, Wipapep = 71 e
32 11341 396 0O 181 11, 270 27,621 0.101 14
64 :202 : 599 0 205 121 277 13,918 0.05! 10
128 486 | 1,438 0 456 : 4: 238 7,102 I0.03: 14

General Sparse Multiplier, P%)lynofnial Length* = 12,323) Wi, s g = 71 [19] : ,

32 1132 319 0 127 ;2! 234 27,691 10.12 16
64 1197 549 0 190 , 4: 222 13,988 '0.06, 12
128 13781 1,136 0 381 ,8, 185 7,172 :0.04| 15

Sparse Multiplier, Polynbmiali Length* = 10,163, Wipapsp = 71 [15] |
32 1100 1 — — 12 240 158,614 0.661 66
64 :157 ' — — 131 220 90,880 0.41! 64
128 292 ! — — 151 210 51,688 10.24! 70

=1

- em =l

T= Slices (no info on LUTSs), + Length of the non-sparse arbitrary polynomial, * = Weight of the sparse polynomial
input . .
Target Device: Artix 7 —xc7a200t

\@ caslab.io

J

Fixed Weight Vector Generation

* Generates a uniform random n-bit fixed-weight (w) vector.

* Algorithm given in [AAB+20]. Ho®
e
11:hile G <wdo Qe T T T]
Input: N, w, seed 12: | while (k < w) ~ Ce'\((\ I
Output: w distinct elements in range Oto N - 1 13: : &e(e“ ~>j] == poslk] then I
1: pos = [J*w 14: : e(e while (I < 1) do I
P 15: ‘\‘\\6(rand_bits < prng_draw(outsize=24) I
2.i,jkl=0 1F- eso" if (rand_bits < THRESHOLD) then |
3. prng_init(seed) (\\,\(\. pos [k] = (rand_bits % N) :
- C\@O 18: | I++ |
4: while (I < W) do 6‘\,’6 19: | end if |
5 :' ~ 7 7 Trand_bits < prng_draw(outsize = 24) -((\\ ?‘? I 20: : end while i
e e e e e e T e e P e e T D ‘—_—_—'; 21 end I
6 if (rand_bits <THRESHOLD_VALU':a cO | 5o 1 cise then :
7:: pos [i] = (rar 'O(\S".q) I 23: : k++ I
. i
8: it de I 24: | end

’L\ I 25: end while '
o (G yx b Threshold Check | ol |
______________________ |

10: end whi!- e\ 27: @nd while _ _
newh ek 28: fieturn pos Duplicate Detection !

6\)0 ____________________________
//Value for THRESHOLD is a constant based on the parameter set o
@, caslab.io
(| | 20

J

Fixed Weight Vector — Constant Weight Word (CWW) Method

Input: N, w, seed

« Constant time method proposed by Sendrier

Output: w distinct elementsinrange OtoN -1

| 1:rand bits <& prng(input = seed, output size = 32 x w) RNG _!

ISEN21] et i .

« Recommended by HQC Team as a 4" round | 3: posi] = i + (rand bits[32 + 32 % i - 1:32 +)%(N -) |
' 4; end for Index Generation 1

update. ST IR ide '

- Barrett Reduction used in Index Generation. ' ® duplicate found <=0 |
I7: fork < j+1tow-1do I

« However, this method has small bias. ! 8 if pos[j] == pos[k] then l
I o: duplicate found ¢ 1 :

: 10: end if :

I 11: end for I

: 12: if duplicate found == 1 then I

1 13: pos[j] =j :

: 14: end |

| 15: end for Duplicate Detection and Index Replacement |

EEEN BN S EEE BEE BEEE BEEE BEEE BEEE NS B BN BN BEEE BEEE BN B B BEEE BEEE BN NS B B S e e e s s s s el

16: return pos

\Q, caslab.io

Fixed Weight Vector Generation — Fast and Non-Biased(FNB) Method

* Improvement on the original algorithm proposed given in [AAB+20] time behavior

Input: N, w, seed, ACC_REJ

Output: w distinct elementsinrange OtoN -1
1: pos = []*(w + ACC_REJ)

2.i,j,kkm=0

3. prng_init(seed)

4: while (i < (w+ ACC_REJ)) do

5

6:1 if(rand_bits < THRESHOLD VALUE)then
7 pos [i] = (rand bits % N)

8
9

i++
10: end while

//Value for THRESHOLD is a constant based on the parameter set
// ACC_REJ = ACCEPTABLE_REJECTIONS
// e.g., ACC_REJ = 75

|21
|22
123
124:
125
126:
127:
128:
129:
130:
131:
32:end while

33: return pos

Small prob non-constant

while (k < (w+ ACC_REJ)) do
if (j <w) then
if posl[j] == pos[k] then
if (m<ACC_REJ) then
pos[k] = pos[m+w]

m++
end . o o e e e e e - = -
else :
I USE PRNG TO DRAW MORE RAND BITS AND I
: REDO THRESHOLD CHECK and ASSIGN TO pos[k] |
[
e&]d |
1
else
DUMMY OPERATIONS
end
else
DUMMY OPERATIONS
end
k++
end while . .
F Duplicate Detection

Fixed Weight Vector Generation - Evaluation

Resources
Design Weight Logic Memory F Cycles Time T x A Failure™
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us) Prob.
Fast and Non-Biased Design (ACCEPTABLE_REJECTIONIS = W) o ___
hqc128 316 0 124 2.0 223 1,479 1 6.63) 2.10 ;2.8 x 27 1%
hqc192 295 0 125 2.0 236 2,226 ! 9.43) 2.78 !1.1 x 27°%°
hqc256 314 0 192 2.5 242 3,248 113421 4.21 14.9 X 27359
|
Constant Weight Word (CWW) : !
hqc128 201 4 229 1.0 201 3,062 ,15.231 3.06
hqc192 211 5 245 1.0 200 6,817 !34.09, 7.19
hqc256 216 5 248 1.0 204 11,487 :§§._3_1_: 126 0
+ = Probability of our design failing to behave constant-time.

\@ caslab.io

J

Key Generation - Algorithm and Hardware Design

Inputs: pk_seed, sk_seed

Outputs: public key(h, s), secret key (x, y)
1. (x,y) = FixedWeight(sk_seed)

2. h=VectorRandom(pk_seed)

3. s=x+hy

1
out_type —T¥

1

1

1
sk_seed_in i

£ done
__
Control Logic
. ‘ R
| ‘ =]
A 4 \ é &
. % 3
fixed_ vector_ |eje— 2
1 H
1 | ¢ vector random | T
! % T T '/ [—
I L ¢ —————
1 . 1 A 4
1
1
1
X_
RAM F’ poly_mult
X
A
|| location_
based_adder
| e

\Q, caslab.io

out

1
1
1
1
1
1
i
1

}DH SHAKE256
1
1
1
1

E pk_seed_in

24

Key Generation — Hardware Design Performance Comparison

39 39
HQC128
40
35
30
25
8
20
. 15 Area-Slices (.1072)
10 009y 0.27 0.27 Time (ms)
b Time x Area (.1072)

Our HLS [AAB+20] HLS [MDD+22]

Lower is better

w

1\ mTime x Area (.1072) mTime (ms) m Area-Slices (.1072)

Q caslab.io

Hardware Implementation of HQC KEM

2. Encapsulation

o Encrypt
* Encode
* Polynomial Multiplication
* Polynomial Addition
* Fixed weight error vector generation
o SHAKE256
o Hash Computation
 SHAKE256

\@ caslab.io

J

26

Encrypt - Algorithm and Hardware Design

hs_addﬂ_out h_in s_in m_in
v
Inputs: theta, Public Key (h_in, s_in), theta_in T ﬁr—a ;12;»_4 encode
. ©0 fixed_
message (m_in) § veight.
Outputs: Ciphertext (u_out, v_out) = vector J
1. U_Out = r1+h.r2 i poly_ v v
. i | mult
2. vout=m_inG+S.r+e v_addr
v_out < j C
Where m_inG = Encoded message S — — 1 Tocation_][xor.
.) | B 1 N . based_ based_ | i
ry, ry, € are fixed weight vectors o adder adder
! ! ’ u !

 Encode consists of Reed-Solomon and Reed-Muller | e) R B——— §

EnCOding start done u_out

@, caslab.io
(| | 27

J

Encrypt - Algorithm and Hardware Design

ry, r,, € are fixed weight vectors

adder adder -adder

v v v\l ~
location_ location_ b 4
based_ based_ Xor_base

Control Logic

theta_in h_in m_in s_in
Inputs: theta, Public Key (h_in, s_in), T e B LT s
. | ri_ r2_ |
message (m_in) © | " RAM RAM Encode ;
g : f ixed_ (Dual Port) :
Outputs: Ciphertext (u_out, v_out) Bl dmm—pss| veight :
= 1 | vector — !
_ = ; T]
1. u_out=rq+h.r, 5
o poly poly
— 1 = I - -
2. v_out=m_in.G+S.r,+e o mult nult
T
. rc, :
Where m_inG = Encoded message 5

« Two polynomial multiplications can be run in

parallel.

\@ caslab.io

J

Ippe A

ano- A

Encapsulation - Algorithm and Hardware Design

Inputs: Public Key (h_in, s_in), message (m_in)

Outputs: Ciphertext (u_out, v_out), Shared Secret (K_out),

Hashed message(d_out)
1. (u_out, v_out) = Encrypt(m_in)
2. d=Hash(m_in)

3. SS=Hash(m_in, u_out, v_out)

\@ caslab.io

J

uv_out
A

: -
-) ;

i | Seed .
B See I N — gf R
£ | RAM o Bi

T Encrypt ; = R g
LO : 1 — ! > > 9
N : N J' 777777777 ’ : 8
LQJ - i @' ‘9 :
<X ! ~ | !
as ! s .
v : s § D_ [, Iz'

; 3 ||| B g | HASH RAM |} &

: =S RAM l

. = :

: A :

A shake_output |

v
K_out

29

Encapsulation — Hardware Design Performance Comparison

HQC128

Lower is better

P

Area-Slices (.1073)

1.4'
0.13
iy

0.19'
= o

Our (regular) Our (parallel HLS [AAB+20] HLS [MDD+22]
1\ multipliers)

Time (ms)

Time x Area (.1073)

mTime x Area (.10*3) mTime (ms) m Area-Slices (.1073)

& caslab.io

30

Hardware Implementation of HQC KEM

3. Decapsulation

o Decrypt

 Decode

 Polynomial Subtraction

e Polynomial Multiplication
o Encapsulation

\@ caslab.io

J

31

Decrypt - Algorithm and Hardware Design

Inputs: Secret Key (y_in), Ciphertext (u_in,v_in)
Outputs: Decoded Message (dout)

1. v_minus_uy=v_in-u_iny_in

2. dout = Decode(v_minus_uy)

 Decode consists of Reed-Muller and Reed-

Solomon decoding

\@ caslab.io

J

u_in y_in
T

5 ! .
I <
o / L
5 I 1 v
C < xor_based " &
|
o _adder R
| o
c
: poly_mult .
g I v-u.y |
0 ! « 1
P !
Moo | :
"CS4 1 !
5 0\ J | S— :
- f :
(. H _ . !
ﬁ : N E Control E decode :
g 1 Logic i I
L b _Logi 1 !
11)] 1 B/ |
| ' |

32

Decapsulation

Inputs: Public Key(h_in, s_in), Secret Key (y_in), Ciphertext (u_in, h_in s_in
v_in), Hashed message (d_in) . R N A i
Outputs: Shared Secret (K_out) E h @ 1.
g i u u_compare :
" i . . l—:'P - i
1. m'=Decode(v_in-u_in.y_in) # 1| RaM \W ‘
2. d'=Hash(m’) B} E Encap x
3. Verifyd in==d"? ""L:r, V_ r iml| v-compare § i
- > . RAM A LI“
4. (u',v') = Encrypt(m’) : 6, Yi
5. Verify (u', v') == (u_in, v_in)? = E D_ | _[] d_compare !
..-|I_:_, RAM - mprime
6. K out=Hash(m', u_in, v_in) o v
E Decrypt [control :
. : ! logi L
« Decapsulation uses a tweaked version of | G e
Encapsulation module where uprime and vprime i T
y start done

could be swapped with u_in and v_in.

\@ caslab.io

J

OGCAMVHS

du

TTeI swWTI

Decapsulation — Hardware Design Performance Comparison

HQC128

Lower is better

&

8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

0.25

& &

Our (parallel HLS [AAB+20]

Our (regular)

i

multipliers)

i

B Time x Area (.1073)

m Time (ms)

caslab.io

Area-Slices (.1073)
Time (ms)

Time x Area (.1073)

HLS [MDD+22]

m Area-Slices (.1073)

34

Joint Desigh — Comparison with other HQC Designs

 Joint Design — combines KeyGen, Encap, and HQC128

Decap in to one.

. o ey 59.68

» Shared module among different primitives. £0.00

o SHAKE256 < 50.00

o Polynomial Multiplication E 40.00 I

o Encapsulation ; 30.00

o Polynomial Addition § 20,00
. . _ Area-LUTs (.1073)

Time = KeyGen + Encap + Decap. 10.00 Time (ms)
v 000 Time x Area (.1073)
Our HW/SW HLS HLS
[SFW23] [AAB+20] [MDD+22]

1\ (BaIanceT) (Hig

mTime x Area (.1073) mTime (ms) m Area-LUTs (.1073)

@ | caslab.io
= 35

Comparison with other Code Based Schemes - Key Generation

128-bit Security Level

Hardware Design

Lower is better

&

10.000

8.000

6.000

4.000

2.000

0.000

Area- LUTs (.1076)

== 4 == 4 Time (ms)
o, I, Time x Area (10%6)
HQC-B (our) HQC-HS (our) BIKE-HS McEliece-HS
[RBCGG21] [CCD+22] B - Balanced
1\ /r HS — HighSpeed
B Time x Area (.10"6) m®mTime (ms) mArea- LUTs (.1076)

caslab.io

36

Comparison with other Code Based Schemes - Encapsulation

128-bit Security Level

Hardware Design

Lower is better

0.50

0.40

0.30

0.20

0.10

A

y 0.00

HQC-B (our)

i

HQC-HS (our) BIKE-HS
[RBCGG21]

i

m Time x Area (.1076)

m Time (ms)

caslab.io

McEliece-HS
[CCD+22]

W Area -

Time (ms)

Time x Area (.1076)

LUTs (.1076)

Area - LUTs (.1076)

B - Balanced
HS — HighSpeed

37

Comparison with other Code Based Schemes - Decapsulation

128-bit Security Level

Hardware Design

Lower is better

2.00

1.50

1.00

0.50

A

y 0.00

P

HQC-B (our)

i

Uit

HQC-HS (our) BIKE-HS
[RBCGG21]

i

m Time x Area (.1076)

1.90

m Time (ms)

caslab.io

0.40

0.10

- Time (ms)

L Time x Area (.1076)

McEliece-HS
[CCD+22]

m Area - LUTs (.1076)

- Area - LUTs (.1076)

B - Balanced
HS — HighSpeed

38

Summary

« First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism
parameterizable at compile-time across all parameter sets.

« HQC can be a competitive candidate when optimized hardware is developed.

@ | caslab.io

J

39

References

[AAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and
Jurjen Bos. HQC. Technical report, National Institute of Standards and Technology, 2020. available at https://pgc-hqgc.org/doc/hqc-specification_2021-06-06.pdf
[MDD+22] Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion, James Howe, Romain Malmain, Vincent Migliore, Mamuri Nawan, and Kashif Nawaz. Towards

automating cryptographic hardware implementations: a case study of hqc. Cryptology ePrint Archive, Paper 2022/1425, 2022. https://eprint.iacr.org/2022/1425.

[CCD+22] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederhagen, Jakub Szefer, and Wen Wang. Complete and improved FPGA implementation of Classic
Mceliece. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(3), 2022.

[RBCGG21] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Gilineysu. Racing bike: Improved polynomial multiplication and inversion in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2022(1):557-588, Nov. 2021.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, and Robin Leander Schréder. Don’t reject this: Key-recovery timing attacks due to
rejection-sampling in hqc and bike. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022, Issue 3:223-263, 2022.

[HWCW19] Jingwei Hu, Wen Wang, Ray C.C. Cheung, and Huaxiong Wang. Optimized polynomial multiplier over commutative rings on fpgas: A case study on bike. In 2019
International Conference on Field-Programmable Technology (ICFPT), pages 231-234, 2019.

[Z2ZY+21] Zhong, Han-Sen & Deng, Yu-Hao & Qin, Jian & Wang, Hui & Chen, Ming-cheng & Peng, Li-Chao & Luo, Yi-Han & Wu, Dian & Gong, Si-Qiu & Su, Hao & Hu, Yi & Hu, Peng &
Yang, Xiao-Yan & Zhang, Weijun & Li, Hao & Yuxuan, Li & Jiang, Xiao & Gan, Lin & Yang, Guangwen & Pan, Jian-Wei. (2021). Phase-Programmable Gaussian Boson Sampling Using
Stimulated Squeezed Light

[SEN21] Sendrier, Nicolas, Secure sampling of constant-weight words — application to bike. Cryptology ePrint Archive, Paper 2021/1631 (2021),
https://eprint.iacr.org/2021/1631.pdf

[SFW21] Schoffel, Maximilian, Feldmann, Johannes, Wehn, Norbert. (2023). Code-based Cryptography in loT: A HW/SW Co-Design of HQC. 10.48550/arXiv.2301.04888.

@ caslab.io

J

40

https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf

Summary

« First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism
parameterizable at compile-time across all parameter sets.

« HQC can be a competitive candidate when optimized hardware is developed.

Thank youl!
Questions?

:33"3,
:-::;..,., 3 3"
r,ra !’ E“"& '! l““

W R .
OF e

L|nk to the code base

\@ caslab.io

J

41

