
caslab.io

Fast and Efficient Hardware Implementation of
HQC

Sanjay Deshpande*, Chuanqi Xu*, Mamuri Nawan+, Kashif Nawaz+, and Jakub Szefer*

*Computer Architecture and Security Lab, Yale University
+Cryptography Research Centre, Technology Innovation Institute

Selected Areas in Cryptography
2023

caslab.io
2

• Motivation

• Introduction

• Goal and Existing work

• Components in HQC and their Hardware Implementation

• Comparison with Related State of the Art

Outline

caslab.io
3

• Quantum Computers with sufficient Qubits will be able to

solve practical problems.

• Two algorithms are of special interest for cryptography

community:
o Shor’s Algorithm
o Grover’s Search Algorithm

• For example, to break a 2048-bit RSA, a perfect quantum

computer with 4099 ideal qubits can do it in 10 seconds.

• Most recently, IBM announced 433-qubits quantum

computer “Osprey”.

• There is a need for Quantum-safe Cryptography!

Source: https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/
Source: https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

Image Source: MIT Technology Review

Motivation

caslab.io
4

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

CAESAR

Post-Quantum

Lightweight

69 Public Key Post Quantum
Cryptography Schemes

56 Lightweight authenticated ciphers
& hash functions

57 authenticated ciphers
➝ multiple winners

Completed
In Progress

2007 2012

2013 2019

XII.2016

2018

Year
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization
Process Using FPGAs, NIST Seminars, Oct 2020.

TBD

Post Quantum Cryptography Competition
51 hash functions
➝ 1 winner

23

2023

caslab.io
5

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

CAESAR

Post-Quantum

Lightweight

69 Public Key Post Quantum
Cryptography Schemes

56 Lightweight authenticated ciphers
& hash functions

57 authenticated ciphers
➝ multiple winners

Completed
In Progress

2007 2012

2013 2019

XII.2016

2018

Year
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization
Process Using FPGAs, NIST Seminars, Oct 2020.

TBD

Post Quantum Cryptography Competition
51 hash functions
➝ 1 winner

23

2023

Round 4 announced
1 candidate selected for standardization

4 candidates will undergo further evaluation

caslab.io
6

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

CAESAR

Post-Quantum

Lightweight

69 Public Key Post Quantum
Cryptography Schemes

56 Lightweight authenticated ciphers
& hash functions

57 authenticated ciphers
➝ multiple winners

Completed
In Progress

2007 2012

2013 2019

XII.2016

2018

Year
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization
Process Using FPGAs, NIST Seminars, Oct 2020.

TBD

Post Quantum Cryptography Competition
51 hash functions
➝ 1 winner

23

2023

Hash based Crypto

Lattice based Crypto

Isogeny based Crypto

Multivariate Crypto

Code based Crypto

caslab.io
7

07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

CAESAR

Post-Quantum

Lightweight

69 Public Key Post Quantum
Cryptography Schemes

56 Lightweight authenticated ciphers
& hash functions

57 authenticated ciphers
➝ multiple winners

Completed
In Progress

2007 2012

2013 2019

XII.2016

2018

Year
Kris Gaj, Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization
Process Using FPGAs, NIST Seminars, Oct 2020.

TBD

Post Quantum Cryptography Competition
51 hash functions
➝ 1 winner

23

2023

Hash based Crypto

Lattice based Crypto

Isogeny based Crypto

Multivariate Crypto

Code based Crypto

HQC
(This Work)

Bike

Classic
McEliece

caslab.io
8

Public
Key

Secret
Key

PK

C

Encapsulated
Key

Ciphertext

Decapsulated
Key

Secure Channel

Symmetric Encryption

Key Encapsulation Mechanism

Source: https://iacr.org/cryptodb/data/paper.php?pubkey=31347

caslab.io
9

Design & Experimental Setup

• HQC KEM parameter sets recommended as per the specification:
o hqc128
o hqc192
o hqc256

• Target device: Xilinx - Artix 7 – xc7a200t-3 and xc7a100t-3

• Tool: Xilinx Vivado 2020.2.2

• Verification: Using the Software Reference implementation by HQC team [AAB+20]

• Goal: Implement a constant-time hardware design which is parameterizable across
o Security level
o Performance parameters

Image Source: Xilinx

caslab.io
10

Primitives

1. Key Generation
o Fixed weight error vector generation

• SHAKE256
o Polynomial Multiplication
o Polynomial Addition

caslab.io
11

Primitives

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Computation

• SHAKE256

caslab.io
12

Primitives

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encrypt
o Hash Computation

• SHAKE256
Encapsulation

caslab.io
13

Primitives – Common Modules

1. Key Generation
o Fixed weight error vector generation

• SHAKE256
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encrypt
o Hash Computation

• SHAKE256

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Computation

• SHAKE256

caslab.io
14

Primitives - Existing Work

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 [CCD+22]
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encapsulation

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 [CCD+22]
o Hash Computation

• SHAKE256 [CCD+22]

caslab.io
15

SHAKE256

• Improved existing design [CCD+22].
o Added state preserving capability.
o Added an extra mode in the

performance parameter (Parallel
Slices).

Time x Area (.10^3)
Time (ms)

Area-LUTs (.10^3)

0

5

10

15

20

25

32 16 8 4 2 1

2.1 2.6 3.7 6.2 11.3 21.2

0.4 0.9 1.9
3.8

7.2

14.7

4.8
2.8 1.9 1.6 1.5 1.4

No. of Parallel Slices in the SHAKE256 permutation function

Time x Area (.10^3) Time (ms) Area-LUTs (.10^3)

caslab.io
16

Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encapsulation

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Computation

• SHAKE256

caslab.io
17

Polynomial Multiplication - Sparse Multiplication with Interleaved
Reduction

• One of the inputs to polynomial multiplier is a

sparse fixed weight vector.

• Indices of non-zero elements are used to shift

non-sparse polynomial to imitate the

multiplication.

• The multiplication and the modular reduction is

interleaved.

Variable
Shifter/
Rotation

n n2n

n

n

n

Non zero bit
position from Sparse
Input

N
on

-S
pa

rs
e

Po
ly

no
m

ia
l I

np
ut O

utput Polynom
ial

n

*Conceptual Block Diagram

caslab.io
18

Sparse
Multiplication

Interleaved
Reduction

*Conceptual Block Diagram

Variable
Shifter/
Rotation

n n2n

n

n

n

Non zero bit
position from Sparse
Input

N
on

-S
pa

rs
e

Po
ly

no
m

ia
l I

np
ut O

utput Polynom
ial

n
• One of the inputs to polynomial multiplier is a

sparse fixed weight vector.

• Indices of non-zero elements are used to shift

non-sparse polynomial to imitate the

multiplication.

• The multiplication and the modular reduction is

interleaved.

Polynomial Multiplication - Sparse Multiplication with Interleaved
Reduction

caslab.io
19

Target Device: Artix 7 – xc7a200t

Polynomial Multiplication - Results

+

+

+

caslab.io
20

Fixed Weight Vector Generation

Input: N, w, seed

Output: w distinct elements in range 0 to N − 1

1: pos = []*w

2. i,j,k,l = 0

3. prng_init(seed)

4: while (i < w) do

5: rand_bits ← prng_draw(outsize = 24)

6: if (rand_bits < THRESHOLD_VALUE) then

7: pos [i] = (rand bits % N)

8: i++

9: end

10: end while

//Value for THRESHOLD is a constant based on the parameter set

11: while (j < w) do
12: while (k < w) do
13: if pos[j] == pos[k] then
14: while (l < 1) do
15: rand_bits ← prng_draw(outsize=24)
16: if (rand_bits < THRESHOLD) then
17: pos [k] = (rand_bits % N)
18: l++
19: end if
20: end while
21: end
22: else then
23: k++
24: end
25: end while
26: j++
27: end while
28: return pos

• Generates a uniform random n-bit fixed-weight (w) vector.
• Algorithm given in [AAB+20].

Threshold Check

Duplicate Detection

RNG

Guo et. al [GHJ+22] demonstrated a tim
ing attack on the software reference implementation

caslab.io
21

Fixed Weight Vector – Constant Weight Word (CWW) Method
Input: N, w, seed

Output: w distinct elements in range 0 to N − 1

1: rand bits ← prng(input = seed, output size = 32 × w)

2: for i ← w − 1 to 0 do

3: pos[i] = i + (rand bits[32 + 32 ∗ i − 1 : 32 ∗ i])%(N − i)

4: end for

5: for j ← w − 1 to 0 do

6: duplicate found ← 0

7: for k ← j + 1 to w − 1 do

8: if pos[j] == pos[k] then

9: duplicate found ← 1

10: end if

11: end for

12: if duplicate found == 1 then

13: pos[j] = j

14: end

15: end for

16: return pos

• Constant time method proposed by Sendrier

[SEN21].

• Recommended by HQC Team as a 4th round

update.

• Barrett Reduction used in Index Generation.

• However, this method has small bias.

Index Generation

Duplicate Detection and Index Replacement

RNG

caslab.io
22

Fixed Weight Vector Generation – Fast and Non-Biased(FNB) Method

Input: N, w, seed, ACC_REJ

Output: w distinct elements in range 0 to N − 1

1: pos = []*(w + ACC_REJ)

2. i,j,k,m = 0

3. prng_init(seed)

4: while (i < (w+ ACC_REJ)) do

5: rand_bits ← prng_draw(outsize = 24)

6: if (rand_bits < THRESHOLD_VALUE) then

7: pos [i] = (rand bits % N)

8: i++

9: end

10: end while

//Value for THRESHOLD is a constant based on the parameter set

// ACC_REJ = ACCEPTABLE_REJECTIONS

// e.g., ACC_REJ = 75

11: while (j < w + ACC_REJ) do
12: while (k < (w+ ACC_REJ)) do
13: if (j < w) then
14: if pos[j] == pos[k] then
15: if (m<ACC_REJ) then
16: pos[k] = pos[m+w]
17: m++
18: end
19: else
20: USE PRNG TO DRAW MORE RAND BITS AND

REDO THRESHOLD CHECK and ASSIGN TO pos[k]

21: end
22: end
23 else
24: DUMMY OPERATIONS
25 end
26: else
27: DUMMY OPERATIONS
28: end
29: k++
30: end while
31: j++
32: end while
33: return pos

• Improvement on the original algorithm proposed given in [AAB+20]

Threshold Check

Duplicate Detection

Small prob non-constant
time behavior

RNG

caslab.io
23

Fixed Weight Vector Generation - Evaluation

caslab.io
24

Key Generation - Algorithm and Hardware Design

Inputs: pk_seed, sk_seed

Outputs: public key(h, s), secret key (x, y)

1. (x,y) = FixedWeight(sk_seed)

2. h = VectorRandom(pk_seed)

3. s = x + h.y

1 2

3

caslab.io
25

Time x Area (.10^2)

Time (ms)

Area-Slices (.10^2)

0

5

10

15

20

25

30

35

40

Our HLS [AAB+20] HLS [MDD+22]

0.72

10.53 10.58

0.09 0.27 0.27

8

39 39

Time x Area (.10^2) Time (ms) Area-Slices (.10^2)

Lo
w

er
 is

 b
et

te
r

Key Generation – Hardware Design Performance Comparison

HQC128

caslab.io
26

Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encapsulation

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Computation

• SHAKE256

caslab.io
27

Encrypt - Algorithm and Hardware Design

Inputs: theta, Public Key (h_in, s_in),

message (m_in)

Outputs: Ciphertext (u_out, v_out)

1. u_out = r1+h.r2

2. v_out = m_in.G + S.r2 + e

Where m_inG = Encoded message

r1, r2, e are fixed weight vectors

1
1 2

1 2

• Encode consists of Reed-Solomon and Reed-Muller

Encoding

caslab.io
28

Encrypt - Algorithm and Hardware Design

Inputs: theta, Public Key (h_in, s_in),

message (m_in)

Outputs: Ciphertext (u_out, v_out)

1. u_out = r1+h.r2

2. v_out = m_in.G + S.r2 + e

Where m_inG = Encoded message

r1, r2, e are fixed weight vectors

• Two polynomial multiplications can be run in

parallel.

1 2

caslab.io
29

Encapsulation - Algorithm and Hardware Design

Inputs: Public Key (h_in, s_in), message (m_in)

Outputs: Ciphertext (u_out, v_out), Shared Secret (K_out),

Hashed message(d_out)

1. (u_out, v_out) = Encrypt(m_in)

2. d = Hash(m_in)

3. SS = Hash(m_in, u_out, v_out)

1

2 3

caslab.io
30

Time x Area (.10^3)

Time (ms)

Area-Slices (.10^3)

0

1

2

3

4

5

6

Our (regular) Our (parallel
multipliers)

HLS [AAB+20] HLS [MDD+22]

0.26 0.24

3.2 3.2

0.19 0.13
0.59 0.59

1.4
1.9

5.5 5.6

Time x Area (.10^3) Time (ms) Area-Slices (.10^3)

Lo
w

er
 is

 b
et

te
r

Encapsulation – Hardware Design Performance Comparison

HQC128

caslab.io
31

Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction
• Polynomial Multiplication

o Encapsulation

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Processing

• SHAKE256

caslab.io
32

Decrypt - Algorithm and Hardware Design

• Decode consists of Reed-Muller and Reed-

Solomon decoding

Inputs: Secret Key (y_in), Ciphertext (u_in,v_in)

Outputs: Decoded Message (dout)

1. v_minus_uy = v_in - u_in.y_in

2. dout = Decode(v_minus_uy)

2

1

caslab.io
33

Decapsulation

• Decapsulation uses a tweaked version of

Encapsulation module where uprime and vprime

could be swapped with u_in and v_in.

Inputs: Public Key(h_in, s_in), Secret Key (y_in), Ciphertext (u_in,

v_in), Hashed message (d_in)

Outputs: Shared Secret (K_out)

1. m' = Decode(v_in - u_in.y_in)

2. d'= Hash(m’)

3. Verify d_in == d'?

4. (u', v') = Encrypt(m’)

5. Verify (u', v') == (u_in, v_in)?

6. K_out = Hash(m', u_in, v_in)
1

2 4

6

5

3

caslab.io
34

Time x Area (.10^3)

Time (ms)

Area-Slices (.10^3)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Our (regular) Our (parallel
multipliers)

HLS [AAB+20] HLS [MDD+22]

0.76 0.77

7.44
7.90

0.25 0.21

1.20 1.27

3.00
3.70

6.20 6.20

Time x Area (.10^3) Time (ms) Area-Slices (.10^3)

Lo
w

er
 is

 b
et

te
r

Decapsulation – Hardware Design Performance Comparison

HQC128

caslab.io
35

Time x Area (.10^3)
Time (ms)

Area-LUTs (.10^3)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Our
(Balanced)

Our
(HighSpeed)

HW/SW
[SFW23]

HLS
[AAB+20]

HLS
[MDD+22]

8.14 6.54

59.68

42.94 42.00

0.59 0.43

7.46
2.13 2.10

13.80 15.21

8.00

20.16 20.00

Time x Area (.10^3) Time (ms) Area-LUTs (.10^3)

Lo
w

er
 is

 b
et

te
r

Joint Design – Comparison with other HQC Designs

HQC128• Joint Design – combines KeyGen, Encap, and

Decap in to one.

• Shared module among different primitives.
o SHAKE256
o Polynomial Multiplication
o Encapsulation
o Polynomial Addition

• Time = KeyGen + Encap + Decap.

caslab.io
36

Time x Area (.10^6)

Time (ms)

Area - LUTs (.10^6)

0.000

2.000

4.000

6.000

8.000

10.000

HQC-B (our) HQC-HS (our) BIKE-HS
[RBCGG21]

McEliece-HS
[CCD+22]

0.013 0.014 0.434

3.442

0.10 0.09

1.70

8.60

0.13 0.15 0.26 0.40

Time x Area (.10^6) Time (ms) Area - LUTs (.10^6)

B - Balanced
HS – HighSpeed

Lo
w

er
 is

 b
et

te
r

Comparison with other Code Based Schemes - Key Generation

128-bit Security Level
Hardware Design

caslab.io
37

Time x Area (.10^6)

Time (ms)

Area - LUTs (.10^6)

0.00

0.10

0.20

0.30

0.40

0.50

HQC-B (our) HQC-HS (our) BIKE-HS
[RBCGG21]

McEliece-HS
[CCD+22]

0.03 0.02 0.03

0.12

0.20
0.13

0.10

0.30

0.13 0.15

0.26

0.40

Time x Area (.10^6) Time (ms) Area - LUTs (.10^6)

B - Balanced
HS – HighSpeed

Lo
w

er
 is

 b
et

te
r

Comparison with other Code Based Schemes - Encapsulation

128-bit Security Level
Hardware Design

caslab.io
38

Time x Area (.10^6)

Time (ms)

Area - LUTs (.10^6)

0.00

0.50

1.00

1.50

2.00

HQC-B (our) HQC-HS (our) BIKE-HS
[RBCGG21]

McEliece-HS
[CCD+22]

0.04 0.03

0.49

0.04

0.29 0.21

1.90

0.10

0.13 0.15 0.26
0.40

Time x Area (.10^6) Time (ms) Area - LUTs (.10^6)

B - Balanced
HS – HighSpeed

Lo
w

er
 is

 b
et

te
r

Comparison with other Code Based Schemes - Decapsulation

128-bit Security Level
Hardware Design

caslab.io
39

Summary

• First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism

parameterizable at compile-time across all parameter sets.

• HQC can be a competitive candidate when optimized hardware is developed.

caslab.io
40

References
[AAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and

Jurjen Bos. HQC. Technical report, National Institute of Standards and Technology, 2020. available at https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf

[MDD+22] Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion, James Howe, Romain Malmain, Vincent Migliore, Mamuri Nawan, and Kashif Nawaz. Towards

automating cryptographic hardware implementations: a case study of hqc. Cryptology ePrint Archive, Paper 2022/1425, 2022. https://eprint.iacr.org/2022/1425.

[CCD+22] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederhagen, Jakub Szefer, and Wen Wang. Complete and improved FPGA implementation of Classic

Mceliece. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(3), 2022.

[RBCGG21] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu. Racing bike: Improved polynomial multiplication and inversion in hardware. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2022(1):557–588, Nov. 2021.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing attacks due to

rejection-sampling in hqc and bike. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022, Issue 3:223–263, 2022.

[HWCW19] Jingwei Hu, Wen Wang, Ray C.C. Cheung, and Huaxiong Wang. Optimized polynomial multiplier over commutative rings on fpgas: A case study on bike. In 2019

International Conference on Field-Programmable Technology (ICFPT), pages 231–234, 2019.

[ZZY+21] Zhong, Han-Sen & Deng, Yu-Hao & Qin, Jian & Wang, Hui & Chen, Ming-cheng & Peng, Li-Chao & Luo, Yi-Han & Wu, Dian & Gong, Si-Qiu & Su, Hao & Hu, Yi & Hu, Peng &

Yang, Xiao-Yan & Zhang, Weijun & Li, Hao & Yuxuan, Li & Jiang, Xiao & Gan, Lin & Yang, Guangwen & Pan, Jian-Wei. (2021). Phase-Programmable Gaussian Boson Sampling Using

Stimulated Squeezed Light

[SEN21] Sendrier, Nicolas, Secure sampling of constant-weight words – application to bike. Cryptology ePrint Archive, Paper 2021/1631 (2021),

https://eprint.iacr.org/2021/1631.pdf

[SFW21] Schöffel, Maximilian, Feldmann, Johannes, Wehn, Norbert. (2023). Code-based Cryptography in IoT: A HW/SW Co-Design of HQC. 10.48550/arXiv.2301.04888.

.

https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2022/1425
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf
https://eprint.iacr.org/2021/1631.pdf

caslab.io
41

Summary

• First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism

parameterizable at compile-time across all parameter sets.

• HQC can be a competitive candidate when optimized hardware is developed.

Thank you!
Questions?

Link to the code base

