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Motivation

Quantum Computers with sufficient Qubits will be able to
solve practical problems.
Two algorithms are of special interest for cryptography

community:

o Shor’s Algorithm
o Grover’s Search Algorithm

For example, to break a 2048-bit RSA, a perfect quantum

computer with 4099 ideal qubits can do it in 10 seconds.
Most recently, IBM announced 433-qubits quantum

computer “Osprey”.

There is a need for Quantum-safe Cryptography!

Image Source: MIT Technology Review
Source: https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/
Source: https://newsroom.ibm.com/2022-11-09-1BM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
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Key Encapsulation Mechanism

Public ‘
Key ‘

\ PK

(PK, SK)éKeyGen(seed) 2 EncapKZtillated
Secret C (K, C)¢&Encap(PK)
Key < —— )
K&Decap(SK, C) \
Ciphertext

Decapsulated
Key

F
F

Secure Channel |
j — i
& Symmetric Encryption &

11111111

'y ﬁ = “ 1100001 .
gj caslab.io

Source: https://iacr.org/cryptodb/data/paper.php?pubkey=31347



Design & Experimental Setup

HQC KEM parameter sets recommended as per the specification:

o hqcl28
o hqgcl92
o hqc256

« Target device: Xilinx - Artix 7 — xc7a200t-3 and xc7a100t-3
+ Tool: Xilinx Vivado 2020.2.2 [/ |
« Verification: Using the Software Reference implementation by HQC team [AAB+20]

* Goal: Implement a constant-time hardware design which is parameterizable across

o Security level
o Performance parameters

Image Source: Xilinx
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Primitives

1. Key Generation
o Fixed weight error vector generation
 SHAKE256
o Polynomial Multiplication
o Polynomial Addition

sk_seed_in -1

\@ caslab.io
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Control L

ogic

RAM [

T T&'T

poly_mult

| 2
v Y 2,

3

. 7 S 2
fixed_ vector_ |e—e— =
weight_ set_ - , =
vector random A%:::;k G

\ 4

location_
based_adder

SHAKE256
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Primitives

. t
2. Encapsulation T
o Encrypt O '
: e
* Encode i ool I S e = gt A
* Polynomial Multiplication = 30 memmt = SR
. - A R I P— I i 8
* Polynomial Addition § | MR e e
* Fixed weight error vector generation 5 ; < i |
1 ~ : [}
o SHAKE256 @] -8 D_ [0
| - o @ | HASH. RAM | ! &
o Hash Computation | = Y | RAM p—
: ¥ :
- SHAKE256 : - ;
e shake_output |
K:gut
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Primitives

h in s_in

3. Decapsulation T T T i
o Decrypt :
g1 u » u_compare f 1
 Decode 57 RAM \ :
* Polynomial Subtraction Encap I :
e Polynomial Multiplication ﬁ» v_ r) b ¢ v_compare | !

o Encrypt " [ RAM : L e
o Hash Computation | pncapsulation | Ly :
ﬁ 'l D_ 1 : d_compare i

*  SHAKE256 o7 RAM [ ¥ v mprine i

| H : g
E Decrypt [~ control i, :

: logic E_i_’.

y start done
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Primitives — Common Modules

1. Key Generation 2. Encapsulation
o Fixed weight error vector generation
« SHAKE256 « Encode
o Polynomial Multiplication * Polynomial Multiplication
o Polynomial Addition « Polynomial Addition

* Fixed weight error vector generation

3. Decapsulation o SHAKE256
o Decrypt o Hash Computation
e Decode  SHAKE256

e Polynomial Subtraction
 Polynomial Multiplication

o Hash Computation
* SHAKE256

@ caslab.io



Primitives - Existing Work

1. Key Generation
o Fixed weight error vector generation
 SHAKE256 [CCD+22]
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation

o Decrypt
e Decode
e Polynomial Subtraction
 Polynomial Multiplication
o Encapsulation

2. Encapsulation

* Encode
e Polynomial Multiplication
* Polynomial Addition
* Fixed weight error vector generation
o SHAKE256 [CCD+22]
o Hash Computation
e« SHAKE256 [CCD+22]

Q caslab.io
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SHAKE256

Improved existing design [CCD+22].

o Added state preserving capability.

o Added an extra mode in the
performance parameter (Parallel
Slices).

25

20

15

10

Area-LUTs (.1073)
Time (ms)
Time x Area (.1073)

32 16 8 4 2 1

No. of Parallel Slices in the SHAKE256 permutation function

i

EmTime x Area (.10*3) m®mTime (ms) mArea-LUTs (.1073)
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Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation
 SHAKE256
o Polynomial Multiplication
o Polynomial Addition
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Polynomial Multiplication - Sparse Multiplication with Interleaved

Reduction

* One of the inputs to polynomial multiplier is a

) n
sparse fixed weight vector. 5 i, 7
C .
. . = Variable Y
+ Indices of non-zero elements are used to shift 38 /| qieers |2 ZI™N\n, /IN\n,
g ET7 e RNV
non-sparse polynomial to imitate the 9 2 Rotation £
P poly IS s ”//
O
mU|t|p|icat|0n. <o Non zero bit

« The multiplication and the modular reduction is

Input

interleaved.
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Polynomial Multiplication - Sparse Multiplication with Interleaved

Reduction

* One of the inputs to polynomial multiplier is a
sparse fixed weight vector.
* Indices of non-zero elements are used to shift

non-sparse polynomial to imitate the

Non-Sparse

multiplication.
« The multiplication and the modular reduction is

interleaved.

@ caslab.io
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Polynomial Input
I

Sparse Interleaved
Multiplication Reduction
n

”// a
Variable y
Shifter/ 20 /\ N/ ~/\ n,, >

/ 7 J 7

Rotation n\/ \

/

Non zero bit
position from Sparse

Input

*Conceptual Block Diagram
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Polynomial Multiplication - Results

Resources

BW Logic Memory F Cycles Time T x A
(bits) (SLICES) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

Our polymult module, Polynomial Length® = 12,323, Wipapep = 71 e
32 11341 396 0O 181 11, 270 27,621 0.101 14
64 :202 : 599 0 205 121 277 13,918 0.05! 10
128 486 | 1,438 0 456 : 4: 238 7,102 I0.03: 14

General Sparse Multiplier, P%)lynofnial Length* = 12,323) Wi, s g = 71 [19] : ,

32 1132 319 0 127 ;2! 234 27,691 10.12 16
64 1197 549 0 190 , 4: 222 13,988 '0.06, 12
128 13781 1,136 0 381 ,8, 185 7,172 :0.04| 15

Sparse Multiplier, Polynbmiali Length* = 10,163, Wipapsp = 71 [15] |
32 1100 1 — — 12 240 158,614 0.661 66
64 :157 ' —  — 131 220 90,880 0.41! 64
128 292 ! — — 151 210 51,688 10.24! 70

=1

- em =l

T= Slices (no info on LUTSs), + Length of the non-sparse arbitrary polynomial, * = Weight of the sparse polynomial
input . .
Target Device: Artix 7 —xc7a200t

\@ caslab.io

J



Fixed Weight Vector Generation

* Generates a uniform random n-bit fixed-weight (w) vector.

* Algorithm given in [AAB+20]. Ho®
e
11:hile G <wdo Qe T T T ]
Input: N, w, seed 12: | while (k < w) ~ Ce'\((\ I
Output: w distinct elements in range Oto N - 1 13: : &e(e“ ~>j] == poslk] then I
1: pos = [J*w 14: : e(e while (I < 1) do I
P 15: ‘\‘\\6( rand_bits < prng_draw(outsize=24) I
2.i,jkl=0 1F- eso" if (rand_bits < THRESHOLD) then |
3. prng_init(seed) (\\,\(\. pos [k] = (rand_bits % N) :
- C\@O 18: | I++ |
4: while (I < W) do 6‘\,’6 19: | end if |
5 :' ~ 7 7 Trand_bits < prng_draw(outsize = 24) -((\\ ?‘? I 20: : end while i
e e e e e e T e e P e e T D ‘—_—_—'; 21 end I
6 if (rand_bits <THRESHOLD_VALU':a cO | 5o 1 cise then :
7:: pos [i] = (rar 'O(\S".q) I 23: : k++ I
. i
8: it de I 24: | end

’L\ I 25: end while '
o (G yx b Threshold Check | ol |
______________________ |

10: end whi!- e\ 27: @nd while _ _
newh ek 28: fieturn pos Duplicate Detection !

6\)0 ____________________________
//Value for THRESHOLD is a constant based on the parameter set o
@, caslab.io
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Fixed Weight Vector — Constant Weight Word (CWW) Method

Input: N, w, seed

« Constant time method proposed by Sendrier

Output: w distinct elementsinrange OtoN -1

| 1:rand bits <& prng(input = seed, output size = 32 x w) RNG _!

ISEN21] et i .

« Recommended by HQC Team as a 4" round | 3: posi] = i + (rand bits[32 + 32 % i - 1:32 + )%(N - ) |
' 4; end for Index Generation 1

update. ST IR ide '

- Barrett Reduction used in Index Generation. ' ® duplicate found <=0 |
I7: fork < j+1tow-1do I

« However, this method has small bias. ! 8 if pos[j] == pos[k] then l
I o: duplicate found ¢ 1 :

: 10: end if :

I 11: end for I

: 12: if duplicate found == 1 then I

1 13: pos[j] =j :

: 14: end |

| 15: end for Duplicate Detection and Index Replacement |

EEEN BN S EEE BEE BEEE BEEE BEEE BEEE NS B BN BN BEEE BEEE BN B B BEEE BEEE BN NS B B S e e e s s s s el

16: return pos

\Q, caslab.io



Fixed Weight Vector Generation — Fast and Non-Biased(FNB) Method

* Improvement on the original algorithm proposed given in [AAB+20] time behavior

Input: N, w, seed, ACC_REJ

Output: w distinct elementsinrange OtoN -1
1: pos = []*(w + ACC_REJ)

2.i,j,kkm=0

3. prng_init(seed)

4: while (i < (w+ ACC_REJ)) do

5

6:1  if(rand_bits < THRESHOLD VALUE)then
7 pos [i] = (rand bits % N)

8
9

i++
10: end while

//Value for THRESHOLD is a constant based on the parameter set
// ACC_REJ = ACCEPTABLE_REJECTIONS
// e.g., ACC_REJ = 75

|21
|22
123
124:
125
126:
127:
128:
129:
130:
131:
32:end while

33: return pos

Small prob non-constant

while (k < (w+ ACC_REJ)) do
if (j <w) then
if posl[j] == pos[k] then
if (m<ACC_REJ) then
pos[k] = pos[m+w]

m++
end . o o e e e e e - = -
else :
I USE PRNG TO DRAW MORE RAND BITS AND I
: REDO THRESHOLD CHECK and ASSIGN TO pos[k] |
[
e&]d |
1
else
DUMMY OPERATIONS
end
else
DUMMY OPERATIONS
end
k++
end while . .
F Duplicate Detection



Fixed Weight Vector Generation - Evaluation

Resources
Design Weight Logic Memory F Cycles Time T x A Failure™
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us) Prob.
Fast and Non-Biased Design (ACCEPTABLE_REJECTIONIS = W) o ___
hqc128 316 0 124 2.0 223 1,479 1 6.63 ) 2.10 ;2.8 x 27 1%
hqc192 295 0 125 2.0 236 2,226 ! 9.43) 2.78 !1.1 x 27°%°
hqc256 314 0 192 2.5 242 3,248 113421 4.21 14.9 X 27359
|
Constant Weight Word (CWW) : !
hqc128 201 4 229 1.0 201 3,062 ,15.231 3.06
hqc192 211 5 245 1.0 200 6,817 !34.09, 7.19
hqc256 216 5 248 1.0 204 11,487 :§§._3_1_: 126 0
+ = Probability of our design failing to behave constant-time.

\@ caslab.io
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Key Generation - Algorithm and Hardware Design

Inputs: pk_seed, sk_seed

Outputs: public key(h, s), secret key (x, y)
1. (x,y) = FixedWeight(sk_seed)

2. h=VectorRandom(pk_seed)

3. s=x+hy

1
out_type —T¥

1

1

1
sk_seed_in i

£ done
____________________________________________________________
Control Logic
. ‘ R
| ‘ =]
A 4 \ é &
. % 3
fixed_ vector_  |eje— 2
1 H
1 | ¢ vector random | T
! % T T '/ [—
I L ¢ —————
1 . 1 A 4
1
1
1
X_
RAM F’ poly_mult
X
A
|| location_
based_adder
| e

\Q, caslab.io

out

1
1
1
1
1
1
i
1

}DH SHAKE256
1
1
1
1

E pk_seed_in
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Key Generation — Hardware Design Performance Comparison

39 39
HQC128
40
35
30
25
8
20
. 15 Area-Slices (.1072)
10 009y 0.27 0.27 Time (ms)
b Time x Area (.1072)

Our HLS [AAB+20] HLS [MDD+22]

Lower is better

w

1\ mTime x Area (.1072) mTime (ms) m Area-Slices (.1072)

Q caslab.io



Hardware Implementation of HQC KEM

2. Encapsulation

o Encrypt
* Encode
* Polynomial Multiplication
* Polynomial Addition
* Fixed weight error vector generation
o SHAKE256
o Hash Computation
 SHAKE256

\@ caslab.io

J
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Encrypt - Algorithm and Hardware Design

hs_addﬂ_out h_in s_in m_in
v
Inputs:  theta, Public Key (h_in, s_in), theta_in T ﬁr—a ;12;»_4 encode
. ©0 fixed_
message (m_in) § veight.
Outputs: Ciphertext (u_out, v_out) = vector J
1. U_Out = r1+h.r2 i poly_ v v
. i | mult
2. vout=m_inG+S.r+e v_addr
v_out < j C
Where m_inG = Encoded message S — — 1 Tocation_ ][ xor.
. ) | B 1 N . based_ based_ | i
ry, ry, € are fixed weight vectors o adder adder
! ! ’ u !

 Encode consists of Reed-Solomon and Reed-Muller | e ) R B——— §

EnCOding start done u_out

@, caslab.io
(| | 27
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Encrypt - Algorithm and Hardware Design

ry, r,, € are fixed weight vectors

adder adder -adder

v v v\l ~
location_ location_ b 4
based_ based_ Xor_base

Control Logic

theta_in h_in m_in s_in
Inputs:  theta, Public Key (h_in, s_in), T e B LT s
. | ri_ r2_ |
message (m_in) © | " RAM RAM Encode ;
g : f ixed_ (Dual Port) :
Outputs: Ciphertext (u_out, v_out) Bl dmm—pss| veight :
= 1 | vector — !
_ = ; T ]
1. u_out=rq+h.r, 5
o poly poly
— 1 = I - -
2. v_out=m_in.G+S.r,+e o mult nult
T
. rc, :
Where m_inG = Encoded message 5

« Two polynomial multiplications can be run in

parallel.

\@ caslab.io
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Encapsulation - Algorithm and Hardware Design

Inputs: Public Key (h_in, s_in), message (m_in)

Outputs: Ciphertext (u_out, v_out), Shared Secret (K_out),

Hashed message(d_out)
1. (u_out, v_out) = Encrypt(m_in)
2. d=Hash(m_in)

3. SS=Hash(m_in, u_out, v_out)

\@ caslab.io

J

uv_out
A

: -
- ) ;

i | Seed .
B See I N — gf R
£ | RAM o Bi

T Encrypt ; = R g
LO : 1 — ! > > 9
N : N J' 777777777 ’ : 8
LQJ - i @' ‘9 :
<X ! ~ | !
as ! s .
v : s § D_ [, Iz'

; 3 ||| B g | HASH RAM |} &

: =S RAM l

. = :

: A :

A shake_output |

v
K_out

29



Encapsulation — Hardware Design Performance Comparison

HQC128

Lower is better

P

Area-Slices (.1073)

1.4'
0.13
iy

0.19'
= o

Our (regular) Our (parallel HLS [AAB+20] HLS [MDD+22]
1\ multipliers)

Time (ms)

Time x Area (.1073)

mTime x Area (.10*3) mTime (ms) m Area-Slices (.1073)

& caslab.io
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Hardware Implementation of HQC KEM

3. Decapsulation

o Decrypt

 Decode

 Polynomial Subtraction

e Polynomial Multiplication
o Encapsulation

\@ caslab.io
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Decrypt - Algorithm and Hardware Design

Inputs: Secret Key (y_in), Ciphertext (u_in,v_in)
Outputs: Decoded Message (dout)

1. v_minus_uy=v_in-u_iny_in

2. dout = Decode(v_minus_uy)

 Decode consists of Reed-Muller and Reed-

Solomon decoding

\@ caslab.io

J

u_in y_in
T

5 ! .
I <
o / L
5 I 1 v
C < xor_based " &
|
o _adder R
| o
c
: poly_mult .
g I v-u.y |
0 ! « 1
P !
Moo | :
"CS4 1 !
5 0\ J | S— :
- f :
(. H _ . !
ﬁ : N E Control E decode :
g 1 Logic i I
L b _Logi 1 !
11)] 1 B/ |
| ' |

32



Decapsulation

Inputs: Public Key(h_in, s_in), Secret Key (y_in), Ciphertext (u_in, h_in s_in
v_in), Hashed message (d_in) . R N A i
Outputs: Shared Secret (K_out) E h @ 1.
g i u u_compare :
" i . . l—:'P - i
1. m'=Decode(v_in-u_in.y_in) # 1| RaM \W ‘
2. d'=Hash(m’) B} E Encap x
3. Verifyd in==d"? ""L:r, V_ r iml| v-compare § i
- > . RAM A LI“
4. (u',v') = Encrypt(m’) : 6, Yi
5. Verify (u', v') == (u_in, v_in)? = E D_ | _[] d_compare !
..-|I_:_, RAM - mprime
6. K out=Hash(m', u_in, v_in) o v
E Decrypt [ control :
. : ! logi L
« Decapsulation uses a tweaked version of | G e
Encapsulation module where uprime and vprime i T
y start done

could be swapped with u_in and v_in.

\@ caslab.io
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Decapsulation — Hardware Design Performance Comparison

HQC128

Lower is better

&

8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

0.25

& &

Our (parallel HLS [AAB+20]

Our (regular)

i

multipliers)

i

B Time x Area (.1073)

m Time (ms)

caslab.io

Area-Slices (.1073)
Time (ms)

Time x Area (.1073)

HLS [MDD+22]

m Area-Slices (.1073)

34



Joint Desigh — Comparison with other HQC Designs

 Joint Design — combines KeyGen, Encap, and HQC128

Decap in to one.

. o ey 59.68

» Shared module among different primitives. £0.00

o SHAKE256 < 50.00

o Polynomial Multiplication E 40.00 I

o Encapsulation ; 30.00

o Polynomial Addition § 20,00
. . _ Area-LUTs (.1073)

Time = KeyGen + Encap + Decap. 10.00 Time (ms)
v 000 Time x Area (.1073)
Our HW/SW HLS HLS
[SFW23]  [AAB+20] [MDD+22]

1\ (BaIanceT) (Hig

mTime x Area (.1073) mTime (ms) m Area-LUTs (.1073)

@ | caslab.io
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Comparison with other Code Based Schemes - Key Generation

128-bit Security Level

Hardware Design

Lower is better

&

10.000

8.000

6.000

4.000

2.000

0.000

Area- LUTs (.1076)

== 4 == 4 Time (ms)
o, I, Time x Area (10%6)
HQC-B (our) HQC-HS (our) BIKE-HS McEliece-HS
[RBCGG21] [CCD+22] B - Balanced
1\ /r HS — HighSpeed
B Time x Area (.10"6) m®mTime (ms) mArea- LUTs (.1076)

caslab.io
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Comparison with other Code Based Schemes - Encapsulation

128-bit Security Level

Hardware Design

Lower is better

0.50

0.40

0.30

0.20

0.10

A

y 0.00

HQC-B (our)

i

HQC-HS (our) BIKE-HS
[RBCGG21]

i

m Time x Area (.1076)

m Time (ms)

caslab.io

McEliece-HS
[CCD+22]

W Area -

Time (ms)

Time x Area (.1076)

LUTs (.1076)

Area - LUTs (.1076)

B - Balanced
HS — HighSpeed

37



Comparison with other Code Based Schemes - Decapsulation

128-bit Security Level

Hardware Design

Lower is better

2.00

1.50

1.00

0.50

A

y 0.00

P

HQC-B (our)

i

Uit

HQC-HS (our) BIKE-HS
[RBCGG21]

i

m Time x Area (.1076)

1.90

m Time (ms)

caslab.io

0.40

0.10

- Time (ms)

L Time x Area (.1076)

McEliece-HS
[CCD+22]

m Area - LUTs (.1076)

- Area - LUTs (.1076)

B - Balanced
HS — HighSpeed

38



Summary

« First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism
parameterizable at compile-time across all parameter sets.

« HQC can be a competitive candidate when optimized hardware is developed.

@ | caslab.io
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Summary

« First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism
parameterizable at compile-time across all parameter sets.

« HQC can be a competitive candidate when optimized hardware is developed.

Thank youl!
Questions?
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