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• Quantum Computers with sufficient Qubits will be able to 

solve practical problems.

• Two algorithms are of special interest for cryptography 

community:
o Shor’s Algorithm
o Grover’s Search Algorithm

• For example, to break a 2048-bit RSA, a perfect quantum 

computer with 4099 ideal qubits can do it in 10 seconds.

• Most recently, IBM announced 433-qubits quantum 

computer “Osprey”.

• There is a need for Quantum-safe Cryptography!

Source: https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art/
Source: https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

Image Source: MIT Technology Review

Motivation
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Design & Experimental Setup

• HQC KEM parameter sets recommended as per the specification: 
o hqc128
o hqc192
o hqc256

• Target device: Xilinx - Artix 7 – xc7a200t-3 and xc7a100t-3

• Tool: Xilinx Vivado 2020.2.2

• Verification: Using the Software Reference implementation by HQC team [AAB+20] 

• Goal: Implement a constant-time hardware design which is parameterizable across 
o Security level
o Performance parameters

Image Source: Xilinx
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Primitives

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 
o Polynomial Multiplication
o Polynomial Addition
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Primitives

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 
o Hash Computation 

• SHAKE256 
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Primitives

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encrypt
o Hash Computation

• SHAKE256
Encapsulation
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Primitives – Common Modules

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encrypt
o Hash Computation

• SHAKE256

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256
o Hash Computation 

• SHAKE256
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Primitives - Existing Work

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 [CCD+22]
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encapsulation

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 [CCD+22]
o Hash Computation 

• SHAKE256 [CCD+22]
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SHAKE256 

• Improved existing design [CCD+22]. 
o Added state preserving capability.
o Added an extra mode in the 

performance parameter (Parallel 
Slices). 
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Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encapsulation 

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 
o Hash Computation 

• SHAKE256 
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Polynomial Multiplication - Sparse Multiplication with Interleaved 
Reduction

• One of the inputs to polynomial multiplier is a 

sparse fixed weight vector.

• Indices of non-zero elements are used to shift 

non-sparse polynomial  to imitate the 

multiplication.

• The multiplication and the modular reduction is 

interleaved.

Variable
Shifter/ 
Rotation
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*Conceptual Block Diagram
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Sparse 
Multiplication

Interleaved 
Reduction

*Conceptual Block Diagram
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• One of the inputs to polynomial multiplier is a 

sparse fixed weight vector.

• Indices of non-zero elements are used to shift 

non-sparse polynomial  to imitate the 

multiplication.

• The multiplication and the modular reduction is 

interleaved.

Polynomial Multiplication - Sparse Multiplication with Interleaved 
Reduction
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Target Device: Artix 7 – xc7a200t

Polynomial Multiplication - Results

+

+

+
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Fixed Weight Vector Generation

Input: N, w, seed 

Output: w distinct elements in range 0 to N − 1 

1: pos = []*w

2. i,j,k,l = 0

3. prng_init(seed)

4: while (i < w) do

5: rand_bits ← prng_draw(outsize = 24)

6: if (rand_bits < THRESHOLD_VALUE) then

7: pos [i] = (rand bits % N)

8: i++ 

9: end 

10: end while 

//Value for THRESHOLD is a constant based on the parameter set

11: while (j < w) do
12: while (k < w) do
13: if pos[j] == pos[k] then
14: while (l < 1) do
15: rand_bits ← prng_draw(outsize=24)
16: if (rand_bits < THRESHOLD) then
17: pos [k] = (rand_bits % N)
18: l++ 
19: end if 
20: end while
21: end
22: else then
23: k++
24: end
25: end while
26: j++
27: end while
28: return pos

• Generates a uniform random n-bit fixed-weight (w) vector.
• Algorithm given in [AAB+20].

Threshold Check

Duplicate Detection

RNG

Guo et. al [GHJ+22] demonstrated a tim
ing attack on the software reference implementation
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Fixed Weight Vector – Constant Weight Word (CWW) Method
Input: N, w, seed 

Output: w distinct elements in range 0 to N − 1 

1: rand bits ← prng(input = seed, output size = 32 × w) 

2: for i ← w − 1 to 0 do 

3: pos[i] = i + (rand bits[32 + 32 ∗ i − 1 : 32 ∗ i])%(N − i) 

4: end for 

5: for j ← w − 1 to 0 do 

6: duplicate found ← 0 

7: for k ← j + 1 to w − 1 do 

8: if pos[j] == pos[k] then 

9: duplicate found ← 1 

10: end if 

11: end for 

12: if duplicate found == 1 then 

13: pos[j] = j 

14: end 

15: end for 

16: return pos

• Constant time method proposed by Sendrier

[SEN21].

• Recommended by HQC Team as a 4th round 

update. 

• Barrett Reduction used in Index Generation.

• However, this method has small bias.

Index Generation

Duplicate Detection and Index Replacement 

RNG
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Fixed Weight Vector Generation – Fast and Non-Biased(FNB) Method

Input: N, w, seed, ACC_REJ 

Output: w distinct elements in range 0 to N − 1 

1: pos = []*(w + ACC_REJ)

2. i,j,k,m = 0

3. prng_init(seed)

4: while (i < (w+ ACC_REJ)) do

5: rand_bits ← prng_draw(outsize = 24)

6: if (rand_bits < THRESHOLD_VALUE) then

7: pos [i] = (rand bits % N)

8: i++ 

9: end 

10: end while 

//Value for THRESHOLD is a constant based on the parameter set

// ACC_REJ  = ACCEPTABLE_REJECTIONS

// e.g., ACC_REJ = 75

11: while (j < w + ACC_REJ) do
12: while (k < (w+ ACC_REJ)) do
13: if (j < w) then
14: if pos[j] == pos[k] then
15: if (m<ACC_REJ) then
16: pos[k] = pos[m+w]
17: m++
18: end
19: else
20: USE PRNG TO DRAW MORE RAND BITS AND

REDO THRESHOLD CHECK and ASSIGN TO pos[k]

21: end
22: end 
23 else 
24: DUMMY OPERATIONS
25 end
26: else 
27: DUMMY OPERATIONS
28: end
29: k++
30: end while
31: j++
32: end while
33: return pos

• Improvement on the original algorithm proposed given in [AAB+20]

Threshold Check

Duplicate Detection

Small prob non-constant 
time behavior

RNG
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Fixed Weight Vector Generation - Evaluation
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Key Generation - Algorithm and Hardware Design

Inputs: pk_seed, sk_seed

Outputs: public key(h, s), secret key (x, y)

1. (x,y) = FixedWeight(sk_seed) 

2. h = VectorRandom(pk_seed)

3. s = x + h.y

1 2

3
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Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encapsulation 

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 
o Hash Computation 

• SHAKE256 
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Encrypt - Algorithm and Hardware Design 

Inputs: theta, Public Key (h_in, s_in), 

message (m_in)

Outputs: Ciphertext (u_out, v_out) 

1. u_out = r1+h.r2

2. v_out = m_in.G + S.r2 + e

Where m_inG = Encoded message

r1, r2, e are fixed weight vectors

1
1 2

1 2

• Encode consists of Reed-Solomon and Reed-Muller 

Encoding
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Encrypt - Algorithm and Hardware Design 

Inputs: theta, Public Key (h_in, s_in), 

message (m_in)

Outputs: Ciphertext (u_out, v_out) 

1. u_out = r1+h.r2

2. v_out = m_in.G + S.r2 + e

Where m_inG = Encoded message

r1, r2, e are fixed weight vectors

• Two polynomial multiplications can be run in 

parallel.

1 2
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Encapsulation - Algorithm and Hardware Design

Inputs: Public Key (h_in, s_in), message (m_in)

Outputs: Ciphertext (u_out, v_out), Shared Secret (K_out), 

Hashed message(d_out)

1. (u_out, v_out) = Encrypt(m_in)

2. d = Hash(m_in)

3. SS = Hash(m_in, u_out, v_out)

1

2 3
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Hardware Implementation of HQC KEM

1. Key Generation
o Fixed weight error vector generation

• SHAKE256 
o Polynomial Multiplication
o Polynomial Addition

3. Decapsulation
o Decrypt

• Decode
• Polynomial Subtraction 
• Polynomial Multiplication

o Encapsulation 

2. Encapsulation
o Encrypt

• Encode
• Polynomial Multiplication
• Polynomial Addition
• Fixed weight error vector generation

o SHAKE256 
o Hash Processing 

• SHAKE256 
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Decrypt - Algorithm and Hardware Design

• Decode consists of Reed-Muller and Reed-

Solomon decoding

Inputs: Secret Key (y_in), Ciphertext (u_in,v_in)

Outputs: Decoded Message (dout) 

1. v_minus_uy = v_in - u_in.y_in

2. dout = Decode(v_minus_uy)

2

1
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Decapsulation

• Decapsulation uses a tweaked version of 

Encapsulation module where uprime and vprime

could be swapped with u_in and v_in. 

Inputs: Public Key(h_in, s_in), Secret Key (y_in), Ciphertext (u_in, 

v_in), Hashed message (d_in)

Outputs: Shared Secret (K_out) 

1. m' = Decode(v_in - u_in.y_in)

2. d'= Hash(m’) 

3. Verify d_in == d'?

4. (u', v') = Encrypt(m’) 

5. Verify (u', v') == (u_in, v_in)? 

6. K_out = Hash(m', u_in, v_in)
1

2 4

6

5

3
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Joint Design – Comparison with other HQC Designs 

HQC128• Joint Design – combines KeyGen, Encap, and 

Decap in to one.

• Shared module among different primitives.
o SHAKE256
o Polynomial Multiplication
o Encapsulation
o Polynomial Addition

• Time = KeyGen + Encap + Decap.
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Summary

• First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism 

parameterizable at compile-time across all parameter sets.

• HQC can be a competitive candidate when optimized hardware is developed. 
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Summary

• First (hand-tailored) hardware implementations of HQC Key Encapsulation Mechanism 

parameterizable at compile-time across all parameter sets.

• HQC can be a competitive candidate when optimized hardware is developed. 

Thank you!
Questions?

Link to the code base


