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Introduction to RSA

RSA has three steps:

Alice Bob
AN Public Key: (N,e) - =3
o > -

Choose two prime p and ¢
Compute N = pq
Calculate d = e~! modulo ¢(N) as private key
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Compute N = pq
Calculate d = e~! modulo ¢(N) as private key

AW Ciphertext C S

A
R

Compute the ciphertext C = M¢ (mod N)
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Introduction to RSA

RSA has three steps:

Alice Bob
/AN Public Key: (N, e) R =3
op > »

Choose two prime p and ¢
Compute N = pq
Calculate d = e~! modulo ¢(N) as private key

® Ciphertext C o

Compute the ciphertext C = M¢ (mod N)

AN
W, 'y

Compute the plaintext message M = C* (mod N)

A
R
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Attack on RSA

m There exist some attack on RSA, such as Side-channel attack,
Winner's attack, Coppersmith's attack and so on.
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Attack on RSA

m There exist some attack on RSA, such as Side-channel attack,
Winner's attack, Coppersmith's attack and so on.

m Coppersmith’s attack is a well-known attack on RSA.

m For example, by using Coppersmith’s method, one can factor a RSA
moduli when half of the most significant bits of p are known.
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Attack on RSA

m There exist some attack on RSA, such as Side-channel attack,
Winner's attack, Coppersmith's attack and so on.

m Coppersmith’s attack is a well-known attack on RSA.

m For example, by using Coppersmith’s method, one can factor a RSA
moduli when half of the most significant bits of p are known.

m We will discuss Coppersmith’'s method later.
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Introduction to the IFP

At PKC 2009, May and Ritzenhofen introduced the Implicit Factorization
Problem (IFP).

Definition (May, Ritzenhofen [1])

Let N1 = p1q1 and Ny = pago be two different n-bit RSA moduli with
an-bit g;. The Implicit Factorization Problem (IFP) is to factor N; and No
with some implicit hints.
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IFP in the LSBs case

They proposed their result of IFP in the LSBs case, i.e., p; and po share yn
bits least significant bits.

shared bits M shared bits M

[ g | ik
P1 P2
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IFP in the other case

In a follow-up work, Sarkar and Maitra [2] generalized the Implicit
Factorization Problem to the case where the most significant bits (MSBs) or
the middle bits.

Then at PKC 2010, Faugere et al. [3] improved the bounds to the case
where the most significant bits (MSBs) or the middle bits.
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IFP in the MSBs case

The IFP in the MSBs case means factoring N1 and Ny with the implicit
hint that p; and ps share most significant bits.

shared bits M shared bits M
%% %% ]
P1 P2
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IFP in the Middle case

IFP in the Middle case means the p;'s are primes that all share yn bits from
position tl to t2 = t1 4 yn.

shared bits M shared bits M

I Emlm =
P1 P2

Faugere et al. [3] show that N7 and N3 can be factored in polynomial time
when p; and ps share at least yn > 4an + 6 bits.
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IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization
Problem by revealing the relations between the Approximate Common
Divisor Problem (ACDP) and the Implicit Factorization Problem

the primes py1, po share an amount of the least significant bits (LSBs);
the primes py1, p2 share an amount of most significant bits (MSBs);

the primes p1, p2 share both an amount of least significant bits and an
amount of most significant bits.
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IFP in the other case

In 2011, Sarkar and Maitra [4] further expanded the Implicit Factorization
Problem by revealing the relations between the Approximate Common
Divisor Problem (ACDP) and the Implicit Factorization Problem

the primes py1, po share an amount of the least significant bits (LSBs);
the primes py1, p2 share an amount of most significant bits (MSBs);

the primes p1, p2 share both an amount of least significant bits and an
amount of most significant bits.

In 2016, Lu et al. [5] presented a novel algorithm and improved the bounds
for all the above three cases of the Implicit Factorization Problem.
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Revisit the Middle case

In 2015, Peng et al. [6] revisited the Implicit Factorization Problem with
shared middle bits and improved the bound.

The bound was further enhanced by Wang et al. [7] in 2018

shared bits M shared bits M

—— —L—

N B B
b1 P2
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Recent work on IFP

LSBs MSBs both LSBs-MSBs  Middle bits General

May, Ritzenhofen [1] 2a - - - -
Faugere, et al. [3] 2a - - 4o -
Sarkar, Maitra [4] 20 —a®  2a-a? 2a — a? - -
Lu, et al. [5] 20 —2a%  2a - 2a? 2a — 2a° - -
Peng, et al.[6] - - - da — 3a® -
Wang, et al.[7] - - - 4a(1 — Va) -

This work - - - - da(1 — a)

Table: Asymptotic lower bound of + in the Implicit Factorization Problem for n-bit
N1 = pi1g2 and N2 = page where the number of shared bits is yn, g1 and g2 are
an-bit.
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It can be seen in Table 1 that the positions for the sharing bits are located
similarly. So we consider a general case that the positions for the sharing
bits are located differently.
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It can be seen in Table 1 that the positions for the sharing bits are located
similarly. So we consider a general case that the positions for the sharing
bits are located differently.

Definition (GIFP(n, o, ))

Given two n-bit RSA moduli Ny = p1q; and Ny = paqo, where ¢ and ¢o are
an-bit, assume that p; and ps share yn consecutive bits, where the shared
bits may be located in different positions of p; and py. The Generalized
Implicit Factorization Problem (GIFP) asks to factor Ny and No.
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GIFP(n,a, ) can be solved in polynomial time when

v>4a(l-+a),

provided that o + v < 1.

E

110-+-001 ‘ X ‘ ‘ Xy ‘ 110-+-001

}» shared bits: M —‘ |— shared bits: M~{
(a) p1 (b) p2

Figure: Shared bits M for p; and p2
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Preliminaries

The proof of this theorem needs some knowledge of Lattice and
Coppersmith's theory.

Let m > 2 be an integer. A lattice is a discrete additive subgroup of R™. A
more explicit definition is presented as follows.
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Preliminaries

The proof of this theorem needs some knowledge of Lattice and
Coppersmith's theory.

Let m > 2 be an integer. A lattice is a discrete additive subgroup of R™. A
more explicit definition is presented as follows.

Definition (Lattice)

Let v1,va,...,vy € R™ be n linearly independent vectors with n < m.
The lattice £ spanned by {vi1,va,...,va} is the set of all integer linear
combinations of {vy1,Vva,...,vn}, i€,

n
L= veRm|v:Zaivi,ai€Z

i=1
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Lattice

The Shortest Vector Problem (SVP) is one of the famous computational

problems in lattices.

Definition (Shortest Vector Problem (SVP))

Given a lattice £, the Shortest Vector Problem (SVP) asks to find a
non-zero lattice vector v € £ of minimum Euclidean norm, i.e., find
v € L\{0} such that ||v|| < ||w]|| for all non-zero w € L.
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LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist
algorithms that can find a relatively short vector, instead of the exactly
shortest vector, in polynomial time, such as the famous LLL algorithm
proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result
is useful for our analysis[10].
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LLL Algorithm

Although SVP is NP-hard under randomized reductions [8], there exist
algorithms that can find a relatively short vector, instead of the exactly
shortest vector, in polynomial time, such as the famous LLL algorithm
proposed by Lenstra, Lenstra, and Lovasz [9] in 1982. The following result
is useful for our analysis[10].

Theorem (LLL Algorithm [9])

Given an n-dimensional lattice L, we can find an LLL-reduced basis
{v1,V2,...,vn} of L in polynomial time, which satisfies

(1)
|[vi]| <270+1=9 det(L) e, for i=1,...,n.
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Coppersmith’s method

Theorem

Let M be a positive integer, and f(x1,...,xy) be a polynomial with integer
coefficients. Coppersmith’'s method give us a way to find a small solution
(y1,.-.,yk) of the modular equation f(x1,...,x;) =0 (mod M) with the
bounds y; < X; forv =1,... k.

Yansong Feng
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Algorithm Overview

The algorithm to find small integer roots using Coppersmith’s Theorem
involves lattice reduction techniques.

Formulate the problem as a lattice problem.

Yansong Feng Academy of Mathematics and Systems Science

Generalized Im) ion Problem



GIFP
[e]ele]e]elelo]eele] lolelelelelele]elslo]o]olelo]o]e]

Algorithm Overview

The algorithm to find small integer roots using Coppersmith’s Theorem
involves lattice reduction techniques.

Formulate the problem as a lattice problem.

Apply lattice reduction algorithms to find short lattice vectors.
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Algorithm Overview

The algorithm to find small integer roots using Coppersmith’s Theorem
involves lattice reduction techniques.

Formulate the problem as a lattice problem.
Apply lattice reduction algorithms to find short lattice vectors.

Recover integer solutions from the lattice basis.
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Coppersmith’s method

More precisely,the steps are as follows:

m Construct a set G of k-variate polynomial equations such that
9i(y1,- .-, yk) =0 (mod M);
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Coppersmith’s method

More precisely,the steps are as follows:
m Construct a set G of k-variate polynomial equations such that
9i(y1,- .-, yk) =0 (mod M);
m use the coefficient vectors of g;(x1X71,...,2,X%), i =1,...,k, to
construct a k-dimensional lattice £;
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Coppersmith’s method

More precisely,the steps are as follows:

m Construct a set G of k-variate polynomial equations such that
9i(y1,- .-, yk) =0 (mod M);

m use the coefficient vectors of g;(x1X71,...,2,X%), i =1,...,k, to
construct a k-dimensional lattice £;

m Applying the LLL algorithm to L, we get a new set H of k polynomial
equations h;(z1,...,x), i = 1,..., k, with integer coefficients such
that 2;(y1,...,yx) =0 (mod M);
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Coppersmith’s method

More precisely,the steps are as follows:
m Construct a set G of k-variate polynomial equations such that
9i(y1,- .-, yk) =0 (mod M);
m use the coefficient vectors of g;(x1X71,...,2,X%), i =1,...,k, to
construct a k-dimensional lattice £;

m Applying the LLL algorithm to L, we get a new set H of k polynomial

equations h;(z1,...,x), i = 1,..., k, with integer coefficients such
that 2;(y1,...,yx) =0 (mod M);

m One can get h;(y1,...,yk) = 0 over the integers in some cases, where
for h(wy,...,ok) =32 4 Qi iy
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Proof of GIFP

Hence, we suppose that p; shares yn-bits from the 5;n-th bit to
(B1 + 7)n-th bit, and p, shares bits from Bon-th bit to (82 + v)n-th bit,
where (31 and (2 are known with 8; < B (see Fig. 1 ). Then we can write

p1 =31 + M2P™ 4 g 2By — g 4 M2P 4 g, 9Bt N

| ":| 110-++001 | X1 ‘ ’ X4 | 110---001 |‘\': |

|v— shared bits: M <| l» shared bits: \I«{
(a) p1 (b) p2

Figure: Shared bits M for p; and p2
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Proof of GIFP

Next, we define the polynomial

f@,y,2) = 32+ 2024y, 4 N,
which shows that (z,2(P2=F1)" — 23 25 — 24, ¢2) is a solutions of

f(@,y,2) =0 (mod 2(F2=Av)np)).
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Proof of GIFP

To apply Coppersmith’s method, we consider a family of polynomials
gij(x,y,2) for 0 <i<mand 0<j<m—i

. . m—i .
9i(3,4,2) = (2) f(m,y, 2)* (2Pa—Pm) " =80,
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Proof of GIFP

These polynomials satisfy

9i,j (1-12(,32—,31)71 — X3,T2 — T4, q2)
= (22— 74)i g} (2<ﬁz—al>nplq2) (2(/32—51>n) o Nmax(t=i0)

=0 (mod (2(52751)”>mpt1).
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To reduce the determinant of the lattice, we introduce a new variable w for
p2, and multiply the polynomials g; ;(x,y, z) by a power w® for some s that
will be optimized later.

Similar to ¢, we also require 0 < s < m
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Note that we can replace zw in g; j(z,y, z)w® by Na.

We then eliminate (zw)® from the original polynomial by multiplying it by
N2_i, while ensuring that the resulting polynomial evaluation is still a
multiple of (Q(ﬁrﬁl)")mpﬁ.

By selecting the appropriate parameter s, we aim to reduce the determinant
of the lattice.
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proof |

For example, suppose m =5 and t = 2, then

g12(2,9,2) =2 f(a,p, 2)F (2P=p0m) " Npei0)

5—1
=(y2)*f(z,y,2) (2(/32 ’31)"> NRex(@-1,0)

=(y2)*f(z,y, 2) (2( 51)”) Ny
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For example, suppose m = 5 and ¢t = 2, then

m—i
91,2(5579; ) (yZ)jf(x Y, Z ( (:32 ﬁl)n> max(t i,0)
=(y2)2f(z,y, 2) (2(/32 ﬂl)n>5 ! max2 1,0)
:(yz)2f(x,y, )(2( Bl)n) Ny

Suppose s = 2, we multiply the polynomials g; 2(x,y, z) by a power
w® = w?, then

4
51,2(1'7% Z,w) = (yz)zf(g';’y’ z) (2(ﬁ2*ﬁ1)n) lez
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See that

4
§1,2 (SU, Y,z, ’LU) :(y,z)Qf(x7 v, Z) (2(52—51)n) leg

4
=(2w)y? f(2,,2) (2527P0") ",y
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See that

4
Gr2(x,y, 2, w) =(y2)* f(x,y, 2) (2(/32—,31)n> Nyw?
4
:(Zw)2y2f($, v, Z) (2(B2—Bl)n) N,

We then eliminate (zw)? from the original polynomial by multiplying it by
N2’2, ie.,

?1,2(:”3 Y, =z, ’U}) :gl,Q(xa Y, z, ’LU) EF N;2

4
=(2w)?y* f(z,y, 2) (2("2*"1)”) Nj * N3 2
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See that

4

g12(z,y,2,w) Z(yz)zf(x,y,z) (2(52761)11) Nyw?
4

—(2w)y* f(2,,2) (257P0") "y

We then eliminate (zw)? from the original polynomial by multiplying it by
N2 e,

?1,2(55’%2’711) :§1,2($7y,27w) & N52

4
=(2w)?y*f (2,9, 2) (2(62*5””) N * Ny 2

For simplicity, the results g; 5(,y, 2, w) are denoted as g1 2(z,y, z, w).
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Proof of GIFP

Consider the lattice £ spanned by the matrix B whose rows are the
coefficients of the polynomials g; ;(x,y, z,w) for 0 <i <m, 0 < j <m —i.
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Proof of GIFP

Then

det(£) < %

2(ﬂ2—51)")wm ptw,
QT\/ZJ ( 1

The inequality implies
2B -7)-31-a)T+0°—3a0+1—-v+a<0.
The left side is optimized for 7o = 1 — /& and oo = \/a, which gives

v>4a(l-+a).
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Proof of GIFP

By Assumption 1, we can get (2¢, %o, 20) = (2127270 — 23, 20 — 24, o),
so we have g2 = zp, and we calculate

N,
p2=—
q2
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Proof of GIFP

Next, we have

2(52*51)”1)1 — p2+(:1712(ﬁ2751)n—2173)-|-(:172—SC4)2(52+7)" — p2+yo+zo2(ﬁ2+7)"-

Therefore, we can calculate p; and ¢; = %. This terminates the proof. [
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Assumption

We used a famous assumption that has been mentioned in all previous work.
In order to make our results more convincing, we also conducted some
experiments
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Assumption

We used a famous assumption that has been mentioned in all previous work.
In order to make our results more convincing, we also conducted some
experiments

Assumption

The k polynomials h;(x1,--- ,x), i =1,--- , k, that are derived from the
reduced basis of the lattice in the Coppersmith method are algebraically
independent. Equivalently, the common root of the polynomials

hi(z1,- -+ ,xx) can be found by computing the resultant or computing the
Grobner basis.

Yansong Feng
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Numerical results

The experiments were run on a computer configured with AMD Ryzen 5
2500U with Radeon Vega Mobile Gfx (2.00 GHz).

n an  fn  Bin Pan An

m  dim(£) Time for LLL (s) Time for Grobner Basis (s)
200 20 40 20 30 140 6 28 1.8620 0.0033
200 20 60 20 30 140 6 28 1.8046 0.0034
500 50 100 50 75 350 6 28 3.1158 0.0043
500 50 150 50 75 300 6 28 4.23898 0.0048
1000 100 200 100 150 700 6 28 8.2277 0.0147

Table: Some experimental results for the GIFP.
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Conclusion
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Summary

In this paper, we considered the Generalized Implicit Factoring Problem
(GIFP), where the shared bits are not necessarily required to be located at

the same positions.

We proposed a lattice-based algorithm for this problem.
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Open problem

Can we improve the bound 4o (1 — \/a) to 2a (1 — a)?
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