Post-quantum cryptography

David Jao

August 14, 2023

UNIVERSITY OF
 WATERLOO

Motivation: quantum computers

Quantum computers represent a huge potential threat to existing public-key cryptosystems: RSA, ECC, etc.

- Transitioning cryptographic algorithms takes time. If you wait until the threat arrives, it's too late.
- NIST is currently finalizing its first suite of post-quantum cryptosystems (2024) and evaluating additional candidates for signatures (2024-2027).
- Only public-key cryptography is threatened.

Post-quantum public-key cryptosystems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate polynomials
- Hash-based cryptography
- Isogeny-based cryptography

Lattices

Definition

A lattice is a discrete subgroup of \mathbb{R}^{n}.

- subgroup - closed under addition and subtraction.
- discrete - there exists a minimum distance ε between distinct points
- Typically in cryptography we have $n>500$

Shortest vector problem

Definition

Given $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$, find a nonzero $\mathbf{v} \in \mathcal{L}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ of smallest norm.

Variants include:

- Approximate SVP: Find $\mathbf{v} \neq \mathbf{0}$ within a factor of γ of smallest norm.
- Decision SVP: Given $\mathbf{v} \in \mathcal{L} \backslash\{\mathbf{0}\}$, determine whether \mathbf{v} has smallest possible norm.
- Approximate Decision SVP, etc.

Closest vector problem

Definition

Given \mathbf{v} and $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$, find $\mathbf{w} \in \mathcal{L}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$ minimizing $|\mathbf{w}-\mathbf{v}|$.

Variants include:

- Approximate CVP: Find $\mathbf{w} \in \mathcal{L}$ such that $|\mathbf{w}-\mathbf{v}|$ is within a factor of γ of smallest possible.
- Decision CVP: Given $\boldsymbol{w} \in \mathcal{L}$, determine if $|\mathbf{w}-\mathbf{v}|$ is as small as possible.
- Approximate Decision CVP, etc.

Codes

Repetition code

Source message	Codeword	\# errors/codeword that can be detected	\#errors/codeword that can be corrected	Information rate
0	0	0	0	1
1	1			
0	00	1	0	$\frac{1}{2}$
1	11			
0	000	2	1	$\frac{1}{3}$
1	111			
0	0000	3	1	$\frac{1}{4}$
1	1111			
0	00000	4	2	$\frac{1}{5}$
1	11111			
		\vdots		
0	0^{n}	$n-1$	$\left\lfloor\frac{n-1}{2}\right\rfloor$	$\frac{1}{n}$
1	1^{n}			

Terminology

- An alphabet is a finite set of $q \geq 2$ symbols. (e.g. $A=\{0,1\}$)
- A word is a finite sequence of symbols from A. (also: vector, tuple)
- The length of a word is the number of symbols in it.
- A code over A is a set of words (of size ≥ 2).
- A codeword is a word in the code.
- A block code is a code in which all codewords have the same length.
- A block code of length n containing M codewords over A is called an [n, M]-code over A. (Hence such a code is a subset $C \subset A^{n}$, with $|C|=M$.)

Hamming distance

Definition

The Hamming distance between two words of length n is

$$
d(x, y)=\#\left\{i \in\{1, \ldots, n\}: x_{i} \neq y_{i}\right\}
$$

The Hamming distance of a block code is

$$
d(C)=\min \{d(x, y): x, y \in C, x \neq y\}
$$

$d(x, y)$ is actually a metric: For all x, y, z,

- $d(x, y) \geq 0$
- $d(x, y)=0$ if and only if $x=y$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$

Example

$C=\{00000,11100,00111,10101\}$ is a $[5,4]$ code over $A=\{0,1\}$. We might encode messages as follows:

Message		Codeword
00	\longrightarrow	00000
01	\longrightarrow	00111
10	\longrightarrow	11100
11	\longrightarrow	10101

Linear codes

Definition

Let F be a finite field of size q. A linear code is a block code $C \subset F^{n}$ of length n over F such that C is a vector subspace of F^{n}.

- If $C \subset F^{n}$ is a linear code of dimension k (as a vector space over F), we say C is an (n, k)-code.
- An (n, k)-code has q^{k} codewords, so it is an $\left[n, q^{k}\right]$-code over F.
- The information rate of an (n, k)-code is $\frac{k}{n}$.

Hamming weight

Definition

The Hamming weight of a vector $v \in F^{n}$ is

$$
w(v)=d(\mathbf{0}, v)
$$

The Hamming weight of a linear code C is

$$
w(C)=\min \{w(c): c \in C \backslash\{\mathbf{0}\}\} .
$$

Theorem

For a linear code $C, w(C)=d(C)$.

Proof.

$$
d(C)=\min \{d(x, y): x \neq y\}=\min \{w(x-y): x \neq y\}=\min \{w(c): c \neq \mathbf{0}\}=w(C) .
$$

Encoding

Let C be an (n, k)-code. A natural way to encode messages is

$$
\left(m_{1}, m_{2}, \ldots, m_{k}\right) \mapsto m_{1} v_{1}+m_{2} v_{2}+\cdots+m_{k} v_{k}
$$

where $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis for C.

Definition

A generator matrix G for an (n, k)-code C is a $k \times n$ matrix whose rows form a basis for C over F.

Example

A generator matrix G is in standard form if $G=\left[I_{k} \mid A\right]$ for some $k \times(n-k)$ matrix A.

Example

$$
G=\left[\begin{array}{|ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
(000) & \mapsto(00000) \\
(001) & \mapsto(00110) \\
(010) & \mapsto(01001) \\
(011) & \mapsto(01111) \\
(100) & \mapsto(10011) \\
(101) & \mapsto(10101) \\
(110) & \mapsto(11010) \\
\underbrace{(111)}_{\text {source }} & \mapsto \underbrace{(11100)}_{\text {codewords }}
\end{aligned}
$$

Systematic codes

- A linear code C is systematic if there exists a generator matrix for C in standard form.
- Two linear codes are equivalent if there exists a permutation of coordinates which maps one code into the other.
- Theorem: Every linear code is equivalent to a systematic code.

Dual code

Definition

Let C be an (n, k)-code over F. The dual code C^{\perp} of C is

$$
C^{\perp}=\left\{x \in F^{n}: x \cdot y=0 \text { for all } y \in C\right\}
$$

A parity-check matrix for C is a generator matrix H for C^{\perp}.

Properties:

- If C is an (n, k)-code over F, then C^{\perp} is an $(n, n-k)$-code over F.
- $\left(C^{\perp}\right)^{\perp}=C$.
- If C is systematic with generator matrix $G=\left[I_{k} \mid A\right]$, then $H=\left[-A^{T} \mid I_{n-k}\right]$ is a generator matrix for C^{\perp} (and a parity-check matrix for C).
- For all $x \in F^{n}, x \in C$ if and only if $H x^{T}=\mathbf{0}$.

Hamming code

We often define codes by their parity-check matrix. For example

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

defines a $(7,4)$-code over \mathbb{F}_{2}, with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

This particular code is a Hamming code of distance 3.

Decoding example

For the $(7,4)$ Hamming code with parity-check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- Suppose we receive $r=(0111110)$.
- We compute $H r^{T}=(011)^{T}$.
- This is not zero, so $r \notin C$.
- However, if we set $e=(0000100)$, then $\mathrm{He}^{T}=(011)^{T}$.
- Hence $H(r-e)^{T}=(000)^{T}$, so $c=r-e=(0111010)$ is a codeword.
- Since $d(c, r)=1$, it is likely that c was the intended codeword.

Syndrome decoding

Definition

For an (n, k)-code C with parity-check matrix H, the syndrome of a vector $x \in F^{n}$ is the (column) vector

$$
s=H x^{T} \in\left(F^{n-k}\right)^{T} .
$$

Properties:

- The syndrome of a codeword is $\mathbf{0}^{T}$.
- Two vectors in F^{n} are in the same coset of C if and only if they have the same syndrome.
- Syndrome decoding: Make a giant table of every possible syndrome and the corresponding intended codeword. This table has q^{n-k} entries.
- Decoding an arbitrary linear code optimally is known to be NP-hard.

McEliece cryptosystem

- Public parameters: \mathbb{F}, n, k, t with $k<n$
- Key generation:
- Choose an (n, k)-code C such that C can correct t errors and C admits an efficient decoding algorithm A (e.g. a binary Goppa code).
- Let G be the generator matrix for C.
- Choose a random invertible $k \times k$ matrix S and a random $n \times n$ permutation matrix P.
- The public key is the $k \times n$ matrix $\hat{G}=S G P$. The private key is A.
- Encryption: To encrypt $\mathbf{m} \in \mathbb{F}^{k}$:
- Choose a random vector $\mathbf{z} \in \mathbb{F}^{n}$ of weight t.
- The ciphertext is $\mathbf{c}=\mathbf{m} \hat{G}+\mathbf{z}$.
- Decryption: To decrypt c:
- Compute $\hat{\mathbf{c}}=\mathbf{c} P^{-1}$.
- Use the decoding algorithm A to decode $\hat{\mathbf{c}}$ to $\hat{\mathbf{m}}$.
- Output $\mathbf{m}=\hat{\mathbf{m}} S^{-1}$.

Elliptic curves

Definition

An elliptic curve over a field F is a nonsingular curve E of the form

$$
E: y^{2}=x^{3}+a x+b
$$

for fixed constants $a, b \in F$.

The set of projective points on an elliptic curve forms a group.

Isogenies

Definition

An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a group homomorphism.

Concretely:

$$
\begin{aligned}
& \phi: E \rightarrow E^{\prime} \\
& \phi(x, y)=\left(\phi_{x}(x, y), \phi_{y}(x, y)\right) \\
& \phi_{x}(x, y)=\frac{f_{1}(x, y)}{f_{2}(x, y)} \\
& \phi_{y}(x, y)=\frac{g_{1}(x, y)}{g_{2}(x, y)}
\end{aligned}
$$

(f_{1}, f_{2}, g_{1}, and g_{2} are all polynomials)

Degree 2 example

- Let $E: y^{2}=x^{3}+a x+b$.
- Suppose ker $\phi=\{\infty, P\}$. Then $P+P=\infty$, so $P=\left(x_{P}, 0\right)$ with $x_{P}^{3}+a x_{P}+b=0$.
- We have

$$
\begin{aligned}
& E^{\prime}: y^{2}=x^{3}+\left(a-5\left(3 x_{P}^{2}+a\right)\right) x+\left(b-7 x_{P}\left(3 x_{P}^{2}+a\right)\right) \\
& \phi(x, y)=\left(x+\frac{3 x_{P}^{2}+a}{x-x_{P}}, y-\frac{y\left(3 x_{P}^{2}+a\right)}{\left(x-x_{P}\right)^{2}}\right)
\end{aligned}
$$

Degree 3 example

- Let $E: y^{2}=x^{3}+a x+b$.
- Suppose ker $\phi=\{\infty, P,-P\}$. Then $P=\left(x_{P}, y_{P}\right)$ with $3 x_{P}^{4}+6 a x_{P}^{2}-a^{2}+12 b x_{P}=0$ and $y_{P}^{2}=x_{P}^{3}+a x_{P}+b$.
- We have

$$
\begin{aligned}
& E^{\prime}: y^{2}=x^{3}+\left(a-10\left(3 x_{P}^{2}+a\right)\right) x+\left(b-28 y_{P}^{2}-14 x_{P}\left(3 x_{P}^{2}+a\right)\right) \\
& \phi(x, y)=\left(x+\frac{2\left(3 x_{P}^{2}+a\right)}{x-x_{P}}+\frac{4 y_{P}^{2}}{\left(x-x_{P}\right)^{2}}, y-\frac{8 y y_{P}^{2}}{\left(x-x_{P}\right)^{3}}-\frac{2 y\left(3 x_{P}+a\right)}{\left(x-x_{P}\right)^{2}}\right)
\end{aligned}
$$

Supersingular Isogeny Key Encapsulation (NIST Round 4 Candidate)

Based on Supersingular Isogeny Diffie-Hellman (Jao \& De Feo, 2011)
(1) Public parameters: Supersingular elliptic curve E over $\mathbb{F}_{p^{2}}$.
(2) Alice chooses a kernel $A \subset E\left[2^{e}\right] \subset E\left(\mathbb{F}_{p^{2}}\right)$ of size 2^{e} and sends E / A and $\left.\phi_{A}\right|_{E\left[3^{f}\right]}$.

- Bob chooses a kernel $B \subset E\left[3^{f}\right] \subset E\left(\mathbb{F}_{p^{2}}\right)$ of size 3^{f} and sends E / B and $\left.\phi_{B}\right|_{E\left[2^{e}\right]}$.
- The shared secret is

$$
E /\langle A, B\rangle=(E / A) / \phi_{A}(B)=(E / B) / \phi_{B}(A) .
$$

Diffie-Hellman (DH)
SIDH

CSIDH (2018) — Castryck, Lange, Martindale, Panny, Renes

Based on Couveignes (1996), Rostovstev \& Stolbunov (2006), using supersingular curves to obtain smooth order kernels.
(1) Public parameters: Supersingular elliptic curve E / \mathbb{F}_{p} with $G=\mathrm{Cl}\left(\operatorname{End}_{p}(E)\right)$.
(2) Alice chooses $\mathfrak{a} \in G$ and sends $\mathfrak{a} * E=E /\{P \in E: \forall \phi \in \mathfrak{a}, \phi(P)=\infty\}$
(0) Bob chooses $\mathfrak{b} \in G$ and sends $\mathfrak{b} * E$.

- The shared secret is $(\mathfrak{a b}) * E=\mathfrak{a} *(\mathfrak{b} * E)=\mathfrak{b} *(\mathfrak{a} * E)$.

Isogeny-based signature schemes

SIDH signatures (surprisingly, still viable)
(1) Public key: $(E, E / A)$
(2) Commitment: E / B

- Challenge: $c \in\{1,2,3\}$
(-) Response: ϕ_{c}
SIDH

SeaSign / CSI-FiSh signatures
(1) Public key: $E, \mathfrak{a} * E$
(2) Commitment: $\mathfrak{b} * E$
(Challenge: $c \in\{0,1\}$

- Response: $\phi_{\mathfrak{b a}^{-c}}$

Optimizations

- Hashing: Publish $H(\mathfrak{b} * E)$ instead of $\mathfrak{b} * E$
- Multiple challenges: Use n simultaneous commitments $\mathfrak{b}_{1}, \mathfrak{b}_{2}, \ldots, \mathfrak{b}_{n}$
- Twists: Commit to $\mathfrak{b} * E$ and $\mathfrak{b}^{-1} * E$ simultaneously Optimizing for shortest $\mid \mathrm{pk}+$ sig \mid :

\mid sk \mid	$\|\mathrm{pk}\|$	\mid sig \mid	KeyGen	Sign	Verify
16 B	512 B	956 B	400 ms	1.48 s	1.48 s

Note: "CSI-FiSh really isn't polynomial-time" (https://yx7.cc/blah/2023-04-14.html)

SQISign

De Feo, Kohel, Leroux, Petit, Wesolowski
(1) Public key: E, E_{A}, τ
(2) Commitment: E_{1}

- Challenge: ϕ

- Response: σ

\mid sk \mid	\mid pk \mid	\mid sig \mid	KeyGen	Sign	Verify
16 B	64 B	204 B	0.6 s	2.5 s	50 ms

