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Motivation: quantum computers

Quantum computers represent a huge potential threat to existing public-key cryptosystems:
RSA, ECC, etc.

Transitioning cryptographic algorithms takes time. If you wait until the threat arrives,
it’s too late.

NIST is currently finalizing its first suite of post-quantum cryptosystems (2024) and
evaluating additional candidates for signatures (2024-2027).

Only public-key cryptography is threatened.

Post-quantum public-key cryptosystems:

Lattice-based cryptography

Code-based cryptography

Multivariate polynomials

Hash-based cryptography

Isogeny-based cryptography
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Lattices

Definition

A lattice is a discrete subgroup of Rn.

subgroup — closed under addition and
subtraction.

discrete — there exists a minimum
distance ε between distinct points

Typically in cryptography we have n > 500
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Shortest vector problem

Definition

Given {b1, . . . ,bm}, find a nonzero
v ∈ L(b1, . . . ,bm) of smallest norm.

Variants include:

Approximate SVP: Find v ̸= 0 within
a factor of γ of smallest norm.

Decision SVP: Given v ∈ L \ {0},
determine whether v has smallest
possible norm.

Approximate Decision SVP, etc.
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Closest vector problem

Definition

Given v and {b1, . . . ,bm}, find
w ∈ L(b1, . . . ,bm) minimizing |w − v|.

Variants include:

Approximate CVP: Find w ∈ L such
that |w − v| is within a factor of γ of
smallest possible.

Decision CVP: Given w ∈ L,
determine if |w − v| is as small as
possible.

Approximate Decision CVP, etc.
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Codes

source encoder encoder
channel channel

decoder decoder
sourcesource receiver

noiseencoding
algorithm

decoding
algorithm
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Repetition code

Source Codeword # errors/codeword #errors/codeword Information
message that can be detected that can be corrected rate

0 0
0 0 1

1 1

0 00
1 0 1

21 11

0 000
2 1 1

31 111

0 0000
3 1 1

41 1111

0 00000
4 2 1

51 11111
...

0 0n
n − 1 ⌊n−1

2 ⌋ 1
n1 1n
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Terminology

An alphabet is a finite set of q ≥ 2 symbols. (e.g. A = {0, 1})
A word is a finite sequence of symbols from A. (also: vector, tuple)

The length of a word is the number of symbols in it.

A code over A is a set of words (of size ≥ 2).

A codeword is a word in the code.

A block code is a code in which all codewords have the same length.

A block code of length n containing M codewords over A is called an [n,M]-code over A.
(Hence such a code is a subset C ⊂ An, with |C | = M.)
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Hamming distance

Definition

The Hamming distance between two words of length n is

d(x , y) = #{i ∈ {1, . . . , n} : xi ̸= yi}.

The Hamming distance of a block code is

d(C ) = min{d(x , y) : x , y ∈ C , x ̸= y}.

d(x , y) is actually a metric: For all x , y , z ,

d(x , y) ≥ 0

d(x , y) = 0 if and only if x = y

d(x , y) = d(y , x)

d(x , z) ≤ d(x , y) + d(y , z)
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Example

C = {00000, 11100, 00111, 10101} is a [5, 4] code over A = {0, 1}. We might encode
messages as follows:

Message Codeword

00 −→ 00000
01 −→ 00111
10 −→ 11100
11 −→ 10101

David Jao (UWaterloo) Post-quantum cryptography August 14, 2023



Linear codes

Definition

Let F be a finite field of size q. A linear code is a block code C ⊂ F n of length n over F such
that C is a vector subspace of F n.

If C ⊂ F n is a linear code of dimension k (as a vector space over F ), we say C is an
(n, k)-code.

An (n, k)-code has qk codewords, so it is an [n, qk ]-code over F .

The information rate of an (n, k)-code is k
n .
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Hamming weight

Definition

The Hamming weight of a vector v ∈ F n is

w(v) = d(0, v).

The Hamming weight of a linear code C is

w(C ) = min{w(c) : c ∈ C \ {0}}.

Theorem

For a linear code C, w(C ) = d(C ).

Proof.

d(C ) = min{d(x , y) : x ̸= y} = min{w(x − y) : x ̸= y} = min{w(c) : c ̸= 0} = w(C ).
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Encoding

Let C be an (n, k)-code. A natural way to encode messages is

(m1,m2, . . . ,mk) 7→ m1v1 +m2v2 + · · ·+mkvk

where {v1, v2, . . . , vk} is a basis for C .

Definition

A generator matrix G for an (n, k)-code C is a k × n matrix whose rows form a basis for C
over F .
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Example

A generator matrix G is in standard form if G = [Ik | A]
for some k × (n − k) matrix A.

Example

G =

 1 0 0
0 1 0
0 0 1

1 1
0 1
1 0



(000) 7→ (00000)

(001) 7→ (00110)

(010) 7→ (01001)

(011) 7→ (01111)

(100) 7→ (10011)

(101) 7→ (10101)

(110) 7→ (11010)

(111)︸ ︷︷ ︸
source

messages

7→ (11100)︸ ︷︷ ︸
codewords
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Systematic codes

A linear code C is systematic if there exists a generator matrix for C in standard form.

Two linear codes are equivalent if there exists a permutation of coordinates which maps
one code into the other.

Theorem: Every linear code is equivalent to a systematic code.

David Jao (UWaterloo) Post-quantum cryptography August 14, 2023



Dual code

Definition

Let C be an (n, k)-code over F . The dual code C⊥ of C is

C⊥ = {x ∈ F n : x · y = 0 for all y ∈ C}.

A parity-check matrix for C is a generator matrix H for C⊥.

Properties:

If C is an (n, k)-code over F , then C⊥ is an (n, n − k)-code over F .

(C⊥)⊥ = C .

If C is systematic with generator matrix G = [Ik | A], then H = [−AT | In−k ] is a
generator matrix for C⊥ (and a parity-check matrix for C ).

For all x ∈ F n, x ∈ C if and only if HxT = 0.
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Hamming code

We often define codes by their parity-check matrix. For example

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1


defines a (7, 4)-code over F2, with generator matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1


This particular code is a Hamming code of distance 3.
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Decoding example

For the (7, 4) Hamming code with parity-check matrix

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1


Suppose we receive r = (0111110).

We compute HrT = (011)T .

This is not zero, so r /∈ C .

However, if we set e = (0000100), then HeT = (011)T .

Hence H(r − e)T = (000)T , so c = r − e = (0111010) is a codeword.

Since d(c , r) = 1, it is likely that c was the intended codeword.
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Syndrome decoding

Definition

For an (n, k)-code C with parity-check matrix H, the syndrome of a vector x ∈ F n is the
(column) vector

s = HxT ∈ (F n−k)T .

Properties:

The syndrome of a codeword is 0T .

Two vectors in F n are in the same coset of C if and only if they have the same syndrome.

Syndrome decoding: Make a giant table of every possible syndrome and the
corresponding intended codeword. This table has qn−k entries.

Decoding an arbitrary linear code optimally is known to be NP-hard.
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McEliece cryptosystem

Public parameters: F, n, k , t with k < n

Key generation:

Choose an (n, k)-code C such that C can correct t errors and C admits an efficient decoding
algorithm A (e.g. a binary Goppa code).
Let G be the generator matrix for C .
Choose a random invertible k × k matrix S and a random n × n permutation matrix P.
The public key is the k × n matrix Ĝ = SGP. The private key is A.

Encryption: To encrypt m ∈ Fk :

Choose a random vector z ∈ Fn of weight t.
The ciphertext is c = mĜ + z.

Decryption: To decrypt c:
Compute ĉ = cP−1.
Use the decoding algorithm A to decode ĉ to m̂.
Output m = m̂S−1.
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Elliptic curves

Definition

An elliptic curve over a field F is a
nonsingular curve E of the form

E : y2 = x3 + ax + b,

for fixed constants a, b ∈ F .

The set of projective points on an elliptic
curve forms a group.

x

y

P

Q

-HP+QL

P+Q

E
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Isogenies

Definition

An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a
group homomorphism.

Concretely:

ϕ : E → E ′

ϕ(x , y) = (ϕx(x , y), ϕy (x , y))

ϕx(x , y) =
f1(x , y)

f2(x , y)

ϕy (x , y) =
g1(x , y)

g2(x , y)

(f1, f2, g1, and g2 are all polynomials)
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Degree 2 example

Let E : y2 = x3 + ax + b.

Suppose ker ϕ = {∞,P}. Then P + P = ∞, so P = (xP , 0) with x3P + axP + b = 0.

We have

E ′ : y2 = x3 + (a− 5(3x2P + a))x + (b − 7xP(3x
2
P + a))

ϕ(x , y) =

(
x +

3x2P + a

x − xP
, y −

y(3x2P + a)

(x − xP)2

)
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Degree 3 example

Let E : y2 = x3 + ax + b.

Suppose ker ϕ = {∞,P,−P}. Then P = (xP , yP) with 3x4P + 6ax2P − a2 + 12bxP = 0 and
y2P = x3P + axP + b.

We have

E ′ : y2 = x3 + (a− 10(3x2P + a))x + (b − 28y2P − 14xP(3x
2
P + a))

ϕ(x , y) =

(
x +

2(3x2P + a)

x − xP
+

4y2P
(x − xP)2

, y −
8yy2P

(x − xP)3
− 2y(3xP + a)

(x − xP)2

)
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Supersingular Isogeny Key Encapsulation (NIST Round 4 Candidate)

Based on Supersingular Isogeny Diffie-Hellman (Jao & De Feo, 2011)

1 Public parameters: Supersingular elliptic curve E over Fp2 .

2 Alice chooses a kernel A ⊂ E [2e ] ⊂ E (Fp2) of size 2e and sends E/A and ϕA|E [3f ].

3 Bob chooses a kernel B ⊂ E [3f ] ⊂ E (Fp2) of size 3f and sends E/B and ϕB |E [2e ].

4 The shared secret is

E/⟨A,B⟩ = (E/A)/ϕA(B) = (E/B)/ϕB(A).

Diffie-Hellman (DH)

g g x

g y g xy

SIDH

E E/A

E/B E/⟨A,B⟩

ϕB

ϕA
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CSIDH (2018) — Castryck, Lange, Martindale, Panny, Renes

Based on Couveignes (1996), Rostovstev & Stolbunov (2006), using supersingular curves to
obtain smooth order kernels.

1 Public parameters: Supersingular elliptic curve E/Fp with G = Cl(Endp(E )).

2 Alice chooses a ∈ G and sends a ∗ E = E/{P ∈ E : ∀ ϕ ∈ a, ϕ(P) = ∞}
3 Bob chooses b ∈ G and sends b ∗ E .
4 The shared secret is (ab) ∗ E = a ∗ (b ∗ E ) = b ∗ (a ∗ E ).

E a ∗ E

b ∗ E (ab) ∗ E

ϕb

ϕa
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Isogeny-based signature schemes

SIDH signatures (surprisingly, still viable)

1 Public key: (E ,E/A)

2 Commitment: E/B

3 Challenge: c ∈ {1, 2, 3}
4 Response: ϕc

SeaSign / CSI-FiSh signatures

1 Public key: E , a ∗ E
2 Commitment: b ∗ E
3 Challenge: c ∈ {0, 1}
4 Response: ϕba−c

SIDH

E E/A

E/B E/⟨A,B⟩

ϕ1

ϕA

ϕ2

ϕ3

SeaSign / CSI-FiSh

E a ∗ E

b ∗ E

ϕb

ϕa

ϕba−1
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Optimizations

Hashing: Publish H(b ∗ E ) instead of b ∗ E
Multiple challenges: Use n simultaneous commitments
b1, b2, . . . , bn

Twists: Commit to b ∗ E and b−1 ∗ E simultaneously

Optimizing for shortest | pk+ sig |:

| sk | | pk | | sig | KeyGen Sign Verify

16 B 512 B 956 B 400 ms 1.48 s 1.48 s

Note: “CSI-FiSh really isn’t polynomial-time”
(https://yx7.cc/blah/2023-04-14.html)

E a ∗ E

b1 ∗ E

ϕb1

ϕa

ϕb1a−1

...

...

E a ∗ E

bn ∗ E

ϕbn

ϕa

ϕbna−1
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SQISign

De Feo, Kohel, Leroux, Petit, Wesolowski

1 Public key: E ,EA, τ

2 Commitment: E1

3 Challenge: ϕ

4 Response: σ

| sk | | pk | | sig | KeyGen Sign Verify

16 B 64 B 204 B 0.6 s 2.5 s 50 ms

E EA

E1 E2

ψ

τ

σ

ϕ
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