Post-quantum cryptography

David Jao

August 14, 2023

David Jao (UWaterloo)

Post-quantum cryptography

Quantum computers represent a huge potential threat to existing public-key cryptosystems: RSA, ECC, etc.

- Transitioning cryptographic algorithms takes time. If you wait until the threat arrives, **it's too late**.
- NIST is currently finalizing its first suite of post-quantum cryptosystems (2024) and evaluating additional candidates for signatures (2024-2027).
- Only public-key cryptography is threatened.

Post-quantum public-key cryptosystems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate polynomials
- Hash-based cryptography
- Isogeny-based cryptography

A *lattice* is a discrete subgroup of \mathbb{R}^n .

- subgroup closed under addition and subtraction.
- discrete there exists a minimum distance ε between distinct points
- Typically in cryptography we have n > 500

Given $\{\mathbf{b}_1, \ldots, \mathbf{b}_m\}$, find a nonzero $\mathbf{v} \in \mathcal{L}(\mathbf{b}_1, \ldots, \mathbf{b}_m)$ of smallest norm.

Variants include:

- Approximate SVP: Find $\mathbf{v} \neq \mathbf{0}$ within a factor of γ of smallest norm.
- Decision SVP: Given $\mathbf{v} \in \mathcal{L} \setminus \{\mathbf{0}\}$, determine whether \mathbf{v} has smallest possible norm.
- Approximate Decision SVP, etc.

Given \mathbf{v} and $\{\mathbf{b}_1, \dots, \mathbf{b}_m\}$, find $\mathbf{w} \in \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_m)$ minimizing $|\mathbf{w} - \mathbf{v}|$.

Variants include:

- Approximate CVP: Find w ∈ L such that |w − v| is within a factor of γ of smallest possible.
- Decision CVP: Given w ∈ L, determine if |w − v| is as small as possible.
- Approximate Decision CVP, etc.

Repetition code

Source	Codeword	$\# \ errors/codeword$	errors/codeword #errors/codew	
message		that can be detected	that can be corr	ected rate
0	0	0	0	1
1	1	0	0	1
0	00	1	0	1
1	11	1	0	2
0	000	2	1	1
1	111	2	T	3
0	0000	3	1	1
1	1111	5	T	4
0	00000	Λ	2	1
1	11111	4	۷.	5
		:		
0	0 <i>n</i>	n 1	<i>n</i> -1	1
1	1 ⁿ	n = 1		\overline{n}
David Jao (UWaterloo)		Post-quant	Post-quantum cryptography	

- An *alphabet* is a finite set of $q \ge 2$ symbols. (e.g. $A = \{0, 1\}$)
- A word is a finite sequence of symbols from A. (also: vector, tuple)
- The *length* of a word is the number of symbols in it.
- A *code* over A is a set of words (of size ≥ 2).
- A *codeword* is a word in the code.
- A *block code* is a code in which all codewords have the same length.
- A block code of length *n* containing *M* codewords over *A* is called an [n, M]-code over *A*. (Hence such a code is a subset $C \subset A^n$, with |C| = M.)

Hamming distance

Definition

The Hamming distance between two words of length n is

$$d(x,y) = \#\{i \in \{1,\ldots,n\} : x_i \neq y_i\}.$$

The Hamming distance of a block code is

$$d(C) = \min\{d(x, y) : x, y \in C, x \neq y\}.$$

d(x, y) is actually a metric: For all x, y, z,• $d(x, y) \ge 0$ • d(x, y) = 0 if and only if x = y• d(x, y) = d(y, x)• $d(x, z) \le d(x, y) + d(y, z)$ $C = \{00000, 11100, 00111, 10101\}$ is a [5, 4] code over $A = \{0, 1\}$. We might encode messages as follows:

Message		Codeword
00	\longrightarrow	00000
01	\longrightarrow	00111
10	\longrightarrow	11100
11	\longrightarrow	10101

Let F be a finite field of size q. A linear code is a block code $C \subset F^n$ of length n over F such that C is a vector subspace of F^n .

- If $C \subset F^n$ is a linear code of dimension k (as a vector space over F), we say C is an (n, k)-code.
- An (n, k)-code has q^k codewords, so it is an $[n, q^k]$ -code over F.
- The information rate of an (n, k)-code is $\frac{k}{n}$.

Hamming weight

Definition

The Hamming weight of a vector $v \in F^n$ is

$$w(v) = d(\mathbf{0}, v).$$

The Hamming weight of a linear code C is

$$w(C) = \min\{w(c) : c \in C \setminus \{\mathbf{0}\}\}.$$

Theorem

For a linear code C, w(C) = d(C).

Proof.

$$d(C) = \min\{d(x, y) : x \neq y\} = \min\{w(x - y) : x \neq y\} = \min\{w(c) : c \neq 0\} = w(C).$$

David Jao (UWaterloo)

Let C be an (n, k)-code. A natural way to encode messages is

$$(m_1, m_2, \ldots, m_k) \mapsto m_1 v_1 + m_2 v_2 + \cdots + m_k v_k$$

where $\{v_1, v_2, \ldots, v_k\}$ is a basis for *C*.

Definition

A generator matrix G for an (n, k)-code C is a $k \times n$ matrix whose rows form a basis for C over F.

A generator matrix G is in standard form if $G = [I_k \mid A]$ for some $k \times (n-k)$ matrix A.

 $(000) \mapsto (00000)$

- $(001) \mapsto (00110)$
- $(010) \mapsto (01001)$
- $(011) \mapsto (01111)$
- $(100) \mapsto (10011)$
- $(101) \mapsto (10101)$
- $(110) \mapsto (11010)$
- $(111)\mapsto(11100)$

source messages codewords

- A linear code C is systematic if there exists a generator matrix for C in standard form.
- Two linear codes are *equivalent* if there exists a permutation of coordinates which maps one code into the other.
- Theorem: Every linear code is equivalent to a systematic code.

Dual code

Definition

Let C be an (n, k)-code over F. The dual code C^{\perp} of C is

$$C^{\perp} = \{ x \in F^n : x \cdot y = 0 \text{ for all } y \in C \}.$$

A parity-check matrix for C is a generator matrix H for C^{\perp} .

Properties:

- If C is an (n, k)-code over F, then C^{\perp} is an (n, n-k)-code over F.
- $(C^{\perp})^{\perp} = C.$
- If C is systematic with generator matrix $G = [I_k | A]$, then $H = [-A^T | I_{n-k}]$ is a generator matrix for C^{\perp} (and a parity-check matrix for C).
- For all $x \in F^n$, $x \in C$ if and only if $Hx^T = \mathbf{0}$.

We often define codes by their parity-check matrix. For example

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

defines a (7, 4)-code over \mathbb{F}_2 , with generator matrix

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

This particular code is a *Hamming code* of distance 3.

Decoding example

For the (7,4) Hamming code with parity-check matrix

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- Suppose we receive r = (0111110).
- We compute $Hr^{T} = (011)^{T}$.
- This is not zero, so $r \notin C$.
- However, if we set e = (0000100), then $He^{T} = (011)^{T}$.
- Hence $H(r-e)^T = (000)^T$, so c = r e = (0111010) is a codeword.
- Since d(c, r) = 1, it is likely that c was the intended codeword.

For an (n, k)-code C with parity-check matrix H, the syndrome of a vector $x \in F^n$ is the (column) vector

$$\mathbf{s} = H\mathbf{x}^T \in (F^{n-k})^T.$$

Properties:

- The syndrome of a codeword is $\mathbf{0}^{T}$.
- Two vectors in F^n are in the same coset of C if and only if they have the same syndrome.
- Syndrome decoding: Make a giant table of every possible syndrome and the corresponding intended codeword. This table has q^{n-k} entries.
- Decoding an arbitrary linear code optimally is known to be NP-hard.

McEliece cryptosystem

- Public parameters: \mathbb{F} , n, k, t with k < n
- Key generation:
 - Choose an (n, k)-code C such that C can correct t errors and C admits an efficient decoding algorithm A (e.g. a binary Goppa code).
 - Let G be the generator matrix for C.
 - Choose a random invertible $k \times k$ matrix S and a random $n \times n$ permutation matrix P.
 - The public key is the $k \times n$ matrix $\hat{G} = SGP$. The private key is A.
- Encryption: To encrypt $\mathbf{m} \in \mathbb{F}^k$:
 - Choose a random vector $\mathbf{z} \in \mathbb{F}^n$ of weight t.
 - The ciphertext is $\mathbf{c} = \mathbf{m}\hat{G} + \mathbf{z}$.
- Decryption: To decrypt c:
 - Compute $\hat{\mathbf{c}} = \mathbf{c}P^{-1}$.
 - Use the decoding algorithm A to decode \hat{c} to $\hat{m}.$
 - Output $\mathbf{m} = \hat{\mathbf{m}}S^{-1}$.

An elliptic curve over a field F is a nonsingular curve E of the form

$$E: y^2 = x^3 + ax + b,$$

for fixed constants $a, b \in F$.

The set of projective points on an elliptic curve forms a group.

An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a group homomorphism.

Concretely:

$$\phi \colon E \to E'$$

$$\phi(x, y) = (\phi_x(x, y), \phi_y(x, y))$$

$$\phi_x(x, y) = \frac{f_1(x, y)}{f_2(x, y)}$$

$$\phi_y(x, y) = \frac{g_1(x, y)}{g_2(x, y)}$$

 $(f_1, f_2, g_1, and g_2 are all polynomials)$

David Jao (UWaterloo)

• Let $E: y^2 = x^3 + ax + b$.

• Suppose ker $\phi = \{\infty, P\}$. Then $P + P = \infty$, so $P = (x_P, 0)$ with $x_P^3 + ax_P + b = 0$.

We have

$$E': y^2 = x^3 + (a - 5(3x_P^2 + a))x + (b - 7x_P(3x_P^2 + a))$$

$$\phi(x, y) = \left(x + \frac{3x_P^2 + a}{x - x_P}, \ y - \frac{y(3x_P^2 + a)}{(x - x_P)^2}\right)$$

• Let $E: y^2 = x^3 + ax + b$.

• Suppose ker $\phi = \{\infty, P, -P\}$. Then $P = (x_P, y_P)$ with $3x_P^4 + 6ax_P^2 - a^2 + 12bx_P = 0$ and $y_P^2 = x_P^3 + ax_P + b$.

We have

$$E': y^2 = x^3 + (a - 10(3x_P^2 + a))x + (b - 28y_P^2 - 14x_P(3x_P^2 + a))$$

$$\phi(x, y) = \left(x + \frac{2(3x_P^2 + a)}{x - x_P} + \frac{4y_P^2}{(x - x_P)^2}, y - \frac{8y_P^2}{(x - x_P)^3} - \frac{2y(3x_P + a)}{(x - x_P)^2}\right)$$

Supersingular Isogeny Key Encapsulation (NIST Round 4 Candidate)

Based on Supersingular Isogeny Diffie-Hellman (Jao & De Feo, 2011)

- Public parameters: Supersingular elliptic curve E over \mathbb{F}_{p^2} .
- Alice chooses a kernel $A \subset E[2^e] \subset E(\mathbb{F}_{p^2})$ of size 2^e and sends E/A and $\phi_A|_{E[3^f]}$.
- Bob chooses a kernel $B \subset E[3^f] \subset E(\mathbb{F}_{p^2})$ of size 3^f and sends E/B and $\phi_B|_{E[2^e]}$.
- The shared secret is

$$E/\langle A, B \rangle = (E/A)/\phi_A(B) = (E/B)/\phi_B(A).$$

Diffie-Hellman (DH)

SIDH

Post-quantum cryptography

CSIDH (2018) — Castryck, Lange, Martindale, Panny, Renes

Based on Couveignes (1996), Rostovstev & Stolbunov (2006), using supersingular curves to obtain smooth order kernels.

- **O** Public parameters: Supersingular elliptic curve E/\mathbb{F}_p with $G = Cl(End_p(E))$.
- ⓐ Alice chooses $\mathfrak{a} \in G$ and sends $\mathfrak{a} * E = E / \{P \in E : \forall \phi \in \mathfrak{a}, \phi(P) = \infty\}$
- **(a)** Bob chooses $\mathfrak{b} \in G$ and sends $\mathfrak{b} * E$.
- The shared secret is $(\mathfrak{ab}) * E = \mathfrak{a} * (\mathfrak{b} * E) = \mathfrak{b} * (\mathfrak{a} * E).$

Isogeny-based signature schemes

SIDH signatures (surprisingly, still viable)

- Public key: (E, E/A)
- Commitment: E/B
- Challenge: $c \in \{1, 2, 3\}$
- Response: ϕ_c

SeaSign / CSI-FiSh signatures

- Public key: $E, \mathfrak{a} * E$
- Ommitment: b * E
- $\textbf{ O Challenge: } c \in \{0,1\}$
- Response: $\phi_{\mathfrak{ba}^{-c}}$

SeaSign / CSI-FiSh

• Hashing: Publish H(b * E) instead of b * E

Multiple challenges: Use n simultaneous commitments
 b₁, b₂, ..., b_n

• Twists: Commit to b * E and $b^{-1} * E$ simultaneously Optimizing for shortest | pk + sig |:

sk	pk	sig	KeyGen	Sign	Verify
16 B	512 B	956 B	400 ms	1.48 s	1.48 s

Note: "CSI-FiSh really isn't polynomial-time" (https://yx7.cc/blah/2023-04-14.html)

De Feo, Kohel, Leroux, Petit, Wesolowski

- Public key: E, E_A, τ
- **O** Commitment: E_1
- O Challenge: ϕ
- Response: σ

sk	pk	sig	KeyGen	Sign	Verify
16 B	64 B	204 B	0.6 s	2.5 s	50 ms

