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Overview

Agenda

Methodology to extend the functionality of additively homomorphic
encryption schemes by modifying secret key generation
Steps for modified key generation
Potential applications and results

Four Questions: What? Why? How? So what?
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Introduction The Problem

Secure Computation

Increase in the availability of personal information
Challenge: Make the best possible use of available data without giving
away access to it
Data Encryption- popular and secure
Can we perform computations on this encrypted data, without
decrypting it?
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Introduction Secure Computations

Secure Function Evaluation

In a two party setting:
Alice and Bob with inputs x , y respectively
They want to jointly evaluate a function f (x , y), without sharing their
inputs
Upon SFE, Alice will learn f (x , y) and nothing else. Bob learns
nothing

Applications: Privacy-preserving machine learning, private information
retrieval, similarity search in private databases such as genotype and other
medical data, online voting, auctions and private credit checking.
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Background Homomorphic Encryption

Homomorphic Encryption

Homomorphic encryption between two messages m1,m2:

Enc(m1 ⋆m2) = Enc(m1) ⋄ Enc(m2)

Decryption results match with operations on a plain-text message

Figure: Additive Homomorphism Wood et al. [2020]
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Background Homomorphic Encryption

Categories

Homomorphic
Encryption

Partially HE Somewhat HE Levelled HE Fully HE

One type of
gate
Add or
Multiply

Two types
of gates
Subset of
circuits

Arbitrary
circuits
Multiple
gates
Bounded
depth

Arbitrary
circuits
Multiple
gates
Unbounded
depth
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Background Partially Homomorphic Encryption

Why PHE?

Additive HE plays an important role in secure computations
Examples: Medical applications, Internet-voting (Switzerland)
Reasons:

Clear-cut parameterizations
More mature(well understood) hardness assumptions
Faster execution
Reduced communication overhead compared to Garbled circuits

Can we do more than just addition?
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Background Notations

Quadratic Residue Function: QR(x , p)

Legendre symbol L : Z× Z 7→ {−1, 0, 1}:

(
x

p

)
≡


1 if x is quadratic residue mod p

−1 if x is quadratic non-residue mod p

0 if x ≡ 0 mod p.

Let QR : Z× Z→ {0, 1} be a function testing the quadratic
residuosity of an integer x ∈ Zp, defined as

QR(x , p) =

{
1 if x is a quadratic residue modulo p.

0 otherwise.

QR(x , p) =

(
x
p

)
+ 1

2
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Background Notations

Quadratic Residue Symbol Sequences

For p = 277, the Residue symbols for first 10 positive integers:

x 1 2 3 4 5 6 7 8 9 10
QR277(x) 1 1 0 1 1 0 0 1 0 1

For p = 277 and an offset value of 178, the Legendre symbols of 10
elements from 178 are:

x 1 2 3 4 5 6 7 8 9 10
QR277(178 + x) 0 0 0 0 0 0 1 1 1 1

Observe that the sequence is a consecutive occurrence of symbols- limited
in scope
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Background Notations

Linear Embeddings in Residue Symbol Sequences

Given f (·) and an integer sequence of the form
[αx + β | 0 ≤ x < t, andα, β > 0], our approach involves three
components:

1 An efficient algorithm for finding a prime p for which

QR(αx + β, p) = f (x).

2 An additively homomorphic public-key cryptosystem embedding the
required quadratic residue symbol sequence into the plaintext space,
i.e.,M⊂ Zp.

3 A public homomorphic operation that can blind the encryption of
αx + β while preserving its quadratic residue symbol modulo p (and
hence the output of the function f (x)).
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Background SFE with QR Function

Approach to secure computation

CS = {Gen,Enc,Dec}
Homomorphisms:

Enc(x1) · Enc(x2) = Enc(x1 + x2 mod p)

Enc(x1)
x2 = Enc(x1x2 mod p).

A mapping function h : Z→ Zp, h(x) = (αx + β) mod p

Given Enc(x) for 0 ≤ x < t, and an α, β > 0, compute:

Enc(h(x)) = Enc(x)α · Enc(β) = Enc(αx + β mod (p)).

Using QR Function:

QR(Dec(Enc(α(x) + β)), p) = QR(h(x), p) = f (x).
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Background SFE with QR Function

Theorem (1)

Consider a list of k distinct primes {a1, . . . , ak} and a list of residue
symbols {ℓ1, . . . , ℓk} where ℓi ∈ {−1, 1}. For all 1 ≤ i ≤ k , there exists a
prime p such that (

p

ai

)
= ℓi .

Theorem (2)

For all t ∈ Z+ and all functions f : Zt → {0, 1} ∃ a prime p and two

integers 0 < α, β < p such that for all 0 ≤ x < t

(
αx + β

p

)
+1

2 = f (x)
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Methodology Cryptosystem

Components

CS = {Gen,Enc,Dec,Add, Smul,Eval}
Gen(1ρ, α, β, f ): Secret keys SK = {p, q} and public key PK = {n}
where n = p2q

Enc(PK,m): c = JmK
Dec(SK, c): m

Add(c1, c2): c ′ = J(m1 +m2) mod pK
Smul(s, c): c ′ = J(m1m2) mod pK
Eval(PK, α, β, c):

Choose rc ← [1, 2λ]

Smul(r2
c ,Add(Smul(JmK, α),Enc(β)) = Jr2

c · (αm + β) mod pK
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Methodology Key Generation

Finding p

S = {sm | sm = αm + β, 0 ≤ m < t} - an odd sequence for some
α, β ∈ Z+

Factorize sm ∈ S to s
(em,0)
m,0 , . . . , s

(em,ρm )
m,ρm and form the following set of

equations:

(
sm
p

)
=

s
(em,0)
m,0 · . . . · s(em,ρm )

m,ρm

p

 =

(
sm,0

p

)
·. . .·

(
sm,ρm

p

)
= 1−2·f (m)

Here em,j is an odd power

QR(sm, p) = QR(sm,0, p) + . . .+ QR(sm,ρm , p) ≡ f (m) mod 2.
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Methodology Key Generation

Finding p

A = {a0, . . . , au−1} → set of u unique prime factors from the
complete set of factors of each element

Define a function:

d(aj , sm) =

1 if aj | sm

0 otherwise.

Construct a matrix based on the factor list in each element
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Methodology Key Generation

Finding p

M =

a0 a1 . . . au−1


s0 d(a0, s0) d(a1, s0) . . . d(au−1, s0) f (0)
s1 d(a0, s1) d(a1, s1) . . . d(au−1, s1) f (1)
...

...
...

...
...

st−1 d(a0, st−1) d(a1, st−1) . . . d(au−1, st−1) f (t − 1)

Compute M ′ ← RREF(M)

If the system of equations is consistent and exactly determined, each
aj ∈ A implies a residue value ℓj ∈ {0, 1}
Satisfies QR(sm) = f (m) for 0 ≤ m < t.
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Methodology Key Generation

Finding p

For each aj ∈ A and each residue value ℓj ∈ {0, 1}, select bj ← [0, aj)
such that QR(bj , aj) = ℓj .
For each pair aj , bj :

p′ ≡ b0 mod a0

p′ ≡ b1 mod a1

...
p′ ≡ bu−1 mod au−1.

Compute p ← k
(∏u−1

j=0 aj

)
+ p′ for k R←− [kmin, kmax ] such that

|p| = λ.
If p ≡ 1 mod 4 and p is prime, output p, else find new bj
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Methodology Encryption and Decryption

Okamoto-Uchiyama Cryptosystem

Encryption:
g ∈ Z∗

n | gp−1 ̸≡ 1 (mod p2)

h ≡ gn (mod n)

c ← gmhr (mod n) | n = p2q

Decryption:

a =
(cp−1 (mod p2))− 1

p

b =
(gp−1 (mod p2))− 1

p

m = ab−1 (mod p)
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Methodology Evaluation Function

(Eval) Correctness

c ′ = Eval(PK, α, β, c) = (cα · JβK)r
2
c mod n

= (JmKα · JβK)r
2
c

= J(αm + β) · r2
c K.

Dec(c ′) = αm + β · r2
c

Apply QR-function

QR((αm + β) · r2
c , p) = QR(αm + β, p) · QR(r2

c , p)

= f (m) · 1
= f (m).
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Methodology Evaluation Function

Semantic Security

Two decision problems:
p-th residue decisional problem (PRDP): Given a ∈ Z∗

n and n = p2q
for unknown p, q, deciding if ∃ a b where a ≡ bp mod n

Quadratic residuosity modp decisional problem (QRDP): Given
Enc(m) and an unknown p, computing QR(m, p)

QRDP is reducible to PRDP =⇒ modified CS is semantically secure
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Secure Function Evaluation Protocol

Public: PK, {α, β}, f : Zt 7→ {0, 1}

Alice Bob

X ← {x1, . . . , xa} Y = {y1, . . . , yb}
SK = {p, q}

JX K

JmK← πsub(X ,Y )

c ′ ← Eval(PK, α, β, JmK)

c ′

m′ ← Dec(SK.c ′)
m′ = (α ·m + β) · r2

c

QR(m′, p) = f (m)
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Secure Function Evaluation Protocol

Protocol Security

This protocol is secure under Honest-But-Curious model- proved by taking
the security of Alice and Bob separately

:
Alice’s privacy is dependent on the cryptosystem itself as Alice shares
only encrypted output. Since the CS is semantically secure, Alice’s
data is secure
The privacy of Bob’s output, relies on the hider rc

R←− Zk where k is
the bit-size of the prime p. Bob’s decrypted output has the same
distribution as that of Quadratic Residues and Non-Residues, making
the security hardness equivalent to Quadratic Residuosity Problem
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Implementation and Results Key Generation

Key Generation Implementation

Function size (domain cardinality t) 512 256 128 50

Gaussian Elimination 0.236 0.078 0.015 0.004

Test for consistency 0.016 0.009 0.002 0.001

Finding the right bx 87.30 21.00 3.900 0.560

CRT 25.24 3.6 0.142 0.062

Table: Run time for various steps in the the key generation in seconds
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Implementation and Results Comparison

Results Analysis

Performance
Indicator

Abspoel
et al. [2019]

Yu [2011] Essex [2019] Our Protocol

Domain
cardinality (t)

623 Ω(log(p)) 26 512

Residue
symbol

sequence type

{1}t {1}t [0]t || [1]t {0, 1}t

Secure
function

evaluation type

Specific (sign
functions)

Specific (sign
functions)

Specific
(thresholds)

General
(Boolean)

Table: Comparison between SFE protocols that rely on the runs of quadratic
residues.
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Implementation and Results Potential Applications

Practical use

Private record linkage, information retrieval and machine learning
inference
Display of intermediate computations leads to potential database
reconstruction attacks
Hiding intermediate computations requires increase in communication
rounds or reliance on some trusted third parties
Our approach achieves single round communication while displaying
only the end result
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Conclusion

Summary

Explored the properties of quadratic residue sequences and combined
it with public key cryptography to expand the functionality of existing
additive homomorphic encryption schemes
Implemented a modified key-generation algorithm that produces
primes based on arbitrary residue symbol sequences
Designed protocol for SFE domains which is secure in honest-but
curious setting
Future work could optimize methods to find such α and β to generate
primes with smaller bit-size
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Conclusion

Thank You!
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Conclusion

Questions?

M Pratapa & A Essex (SAC 2023) SFE to Additively HE Cryptosystems August 17, 2023 28 / 29



References

References

M. Abspoel, N. J. Bouman, B. Schoenmakers, and N. de Vreede. Fast
secure comparison for medium-sized integers and its application in
binarized neural networks. In Topics in Cryptology–CT-RSA 2019: The
Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA,
USA, March 4–8, 2019, Proceedings, pages 453–472. Springer, 2019.

A. Essex. Secure approximate string matching for privacy-preserving record
linkage. IEEE Transactions on Information Forensics and Security, 14
(10):2623–2632, 2019.

A. Wood, K. Najarian, and D. Kahrobaei. Homomorphic encryption for
machine learning in medicine and bioinformatics. ACM Computing
Surveys (CSUR), 53(4):1–35, 2020.

C.-H. Yu. Sign modules in secure arithmetic circuits. Cryptology ePrint
Archive, 2011.

M Pratapa & A Essex (SAC 2023) SFE to Additively HE Cryptosystems August 17, 2023 29 / 29


	Overview
	Introduction
	The Problem
	Secure Computations

	Background
	Homomorphic Encryption
	Partially Homomorphic Encryption
	Secure function extension
	Notations
	SFE with QR Function

	Methodology
	Cryptosystem
	Key Generation
	Encryption and Decryption
	Evaluation Function

	Secure Function Evaluation
	 Protocol

	Implementation and Results
	Key Generation
	Comparison
	Potential Applications

	Conclusion
	References
	References

