

Parallel SAT Framework to Find Clustering of Differential Characteristics and Its Applications

Kosei Sakamoto^{1,3} Ryoma Ito² Takanori Isobe^{2,3}

¹Mitsubishi Electric Corporation

²National Institute of Information and Communications Technology

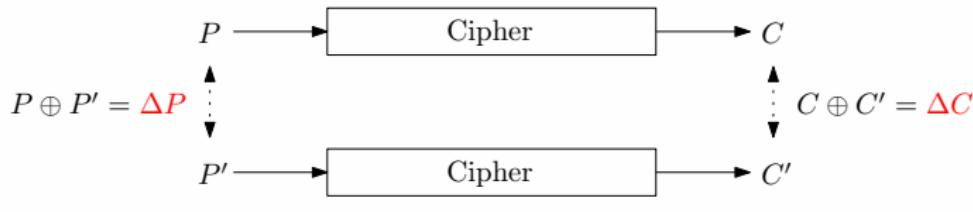
³University of Hyogo

SAC 2023

1. Motivation & Background

2. Our Framework

3. Applications


4. Summary

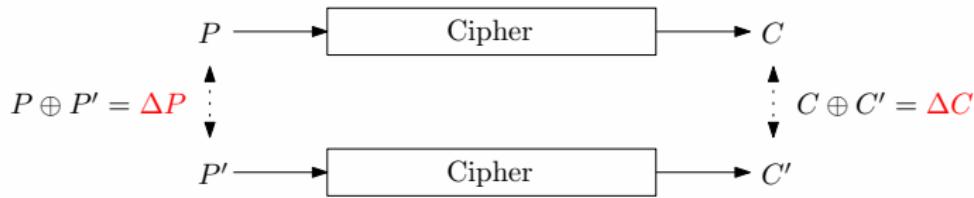
■ Differential Cryptanalysis

- ❑ Most popular attack to symmetric-key primitives
- ❑ Exploiting a pair of input and output differences with a high probability
 - Security: $\text{Prob}(\Delta P \rightarrow \Delta C)$

Ex) $\text{Prob}(\Delta P \rightarrow \Delta C) > 2^{-64}$ on a 64-bit cipher

→ differential distinguisher

$\Delta P \rightarrow \Delta C$ with high Prob.


■ Differential Cryptanalysis

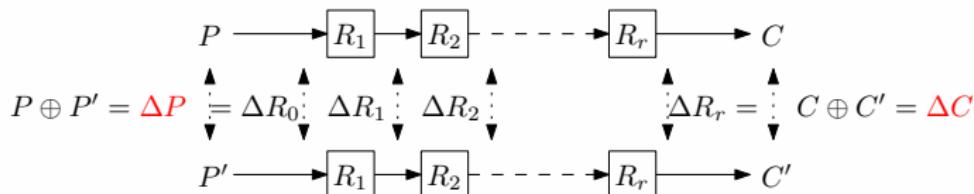
- ❑ Most popular attack to symmetric-key primitives
- ❑ Exploiting a pair of input and output differences with a high probability
 - Security: $\text{Prob}(\Delta P \rightarrow \Delta C)$

Ex) $\text{Prob}(\Delta P \rightarrow \Delta C) > 2^{-64}$ on a 64-bit cipher

→ differential distinguisher

However, such a pair is hard to find...

$\Delta P \rightarrow \Delta C$ with high Prob.

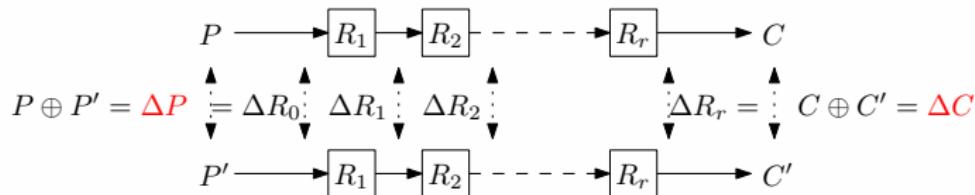

■ Differential characteristic

□ Sequence of differences over a cipher

➤ Prob.(C): Product of probabilities on each round

$$\text{Prob.}(C) = \prod_{i=1}^r \text{Prob.}(\Delta R_{i-1} \rightarrow \Delta R_i)$$

➤ Weight: $-\log_2(\text{Prob.}(C))$



Differential characteristic
 $C = (\Delta P \rightarrow \Delta R_1 \rightarrow \Delta R_2 \rightarrow \dots \rightarrow \Delta C)$

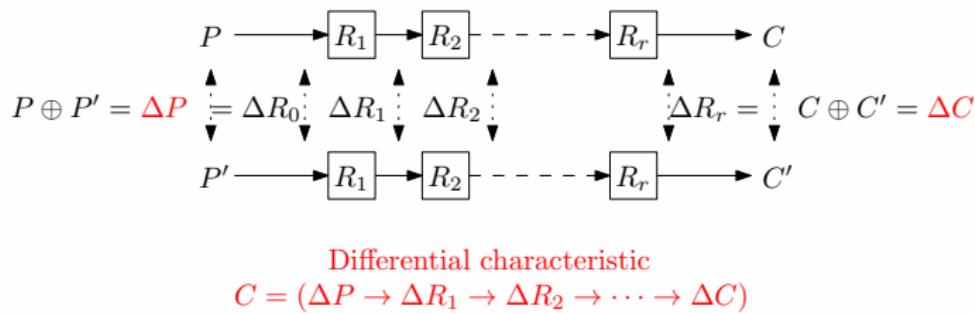
■ Differential characteristic

□ Goal for designers

➤ Bounds Max(Prob.(C)) below 2^{-b} , b : size of block

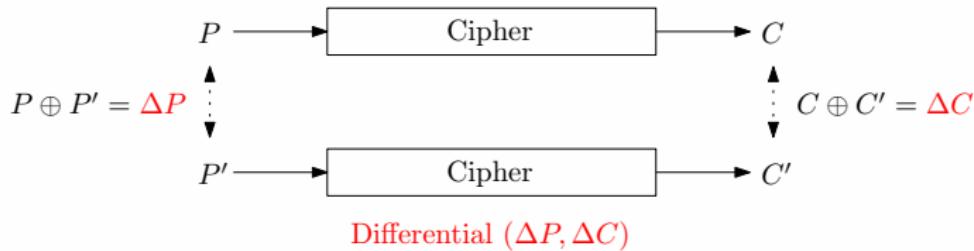
Differential characteristic
 $C = (\Delta P \rightarrow \Delta R_1 \rightarrow \Delta R_2 \rightarrow \dots \rightarrow \Delta C)$

■ Differential characteristic


□ Goal for designers

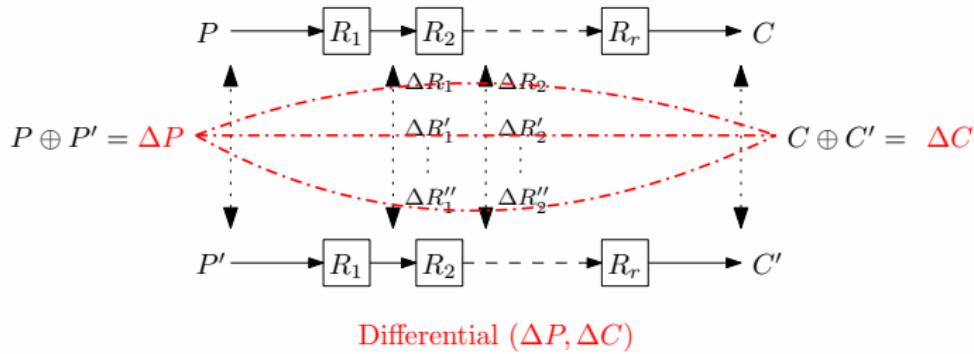
➤ Bounds $\text{Max}(\text{Prob.}(C))$ below 2^{-b} , b : size of block

□ Goal for attackers


➤ Finds a differential characteristic with as high a probability as possible

➤ **No need to consider internal differences $(\Delta R_1, \Delta R_2, \dots, \Delta R_{r-1})$**

■ Differential


- Pair of the input and output differences (No information about the internal differences)

■ Differential

- Pair of the input and output differences (No information about the internal differences)
- **Clustering effect**
 - We can see it as a bunch of differential characteristics
 - $\text{Prob.}((\Delta P, \Delta C))$: Sum of probabilities of all differential characteristics

Prob.(differential) > Prob.(differential characteristic)

■ Automatic search tools for differential characteristics

- MILP/CP/SAT-based tools
- SAT is the problem that checks if a given Boolean formula can turn TRUE or False
 1. Propagation of the differences in a cipher (given as clauses)
 2. Sum of all variables to express weight (given as clauses)

➤ **Check existence of the propagation of differences under $\sum_{i=0}^{r \cdot n - 1} w_i \leq k$**

➤ If there is no such a propagation → increment k and repeat this procedure

$$f_b = (x_0 \vee x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_0 \vee x_2 \vee \overline{x_4}) \wedge \dots \wedge (x_7 \vee x_8 \vee \overline{x_9})$$

Clauses Propagation of differences $\sum_{i=0}^{r \cdot n - 1} w_i \leq k$

CNF

■ Automatic search tools for differential

□ SAT-based tools

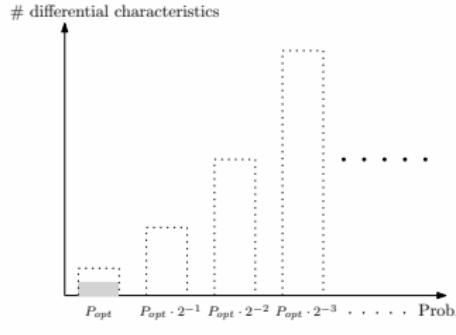
1. Find the optimal differential characteristic
2. Fix the input and output differences
3. Search the differential characteristics under the fixed differences (clustering effect)
4. Calculate the probability

Useful for constructing a differential with a high probability

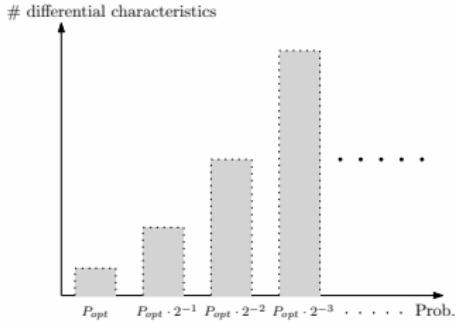
■ Automatic search tools for differential

□ SAT-based tools

1. Find the optimal differential characteristic
2. Fix the input and output differences
3. Search the differential characteristics under the fixed differences (clustering effect)
4. Calculate the probability


Useful for constructing a differential with a high probability

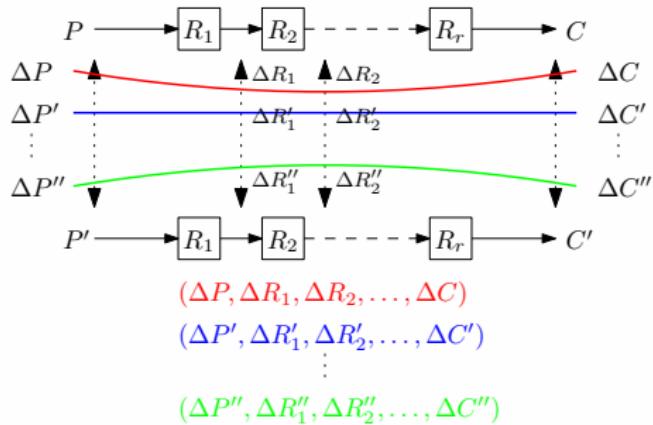
However,


It is just a straightforward extension of tools for differential characteristic
Not optimized for finding a differential with a high probability

We need to optimize these tools for differentials

- We develop Sun et al's SAT-based tool [SWW21] to find a good differential
- We optimize the evaluation of clustering effect for the multi-thread environment
 - This optimization is enable to evaluate the wide range of differential characteristics which are the seed of differentials

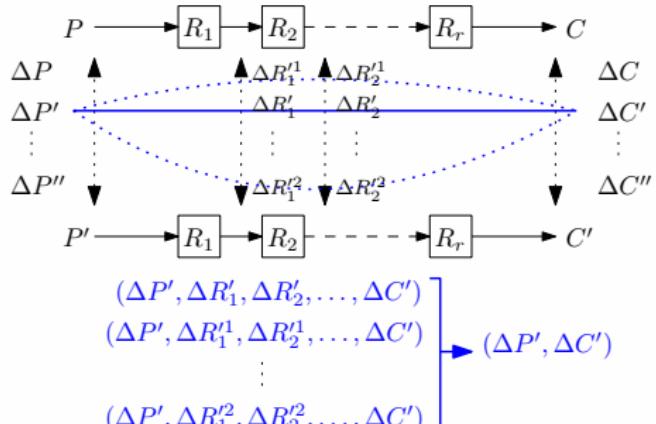
General approach



Our approach

- We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework


1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)

- We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
2. Evaluate clustering effect for the found differential characteristics


- We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
2. Evaluate clustering effect for the found differential characteristics
3. Calculate probabilities for all differentials and find the highest one

$(\Delta P, \Delta C)$ with Prob. 2^{-p}

$(\Delta P', \Delta C')$ with Prob. 2^{-p+2}

$(\Delta P'', \Delta C'')$ with Prob. 2^{-p+1}

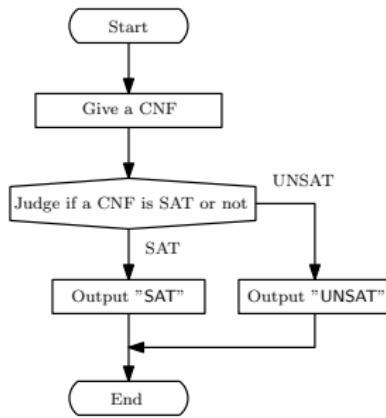
- We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

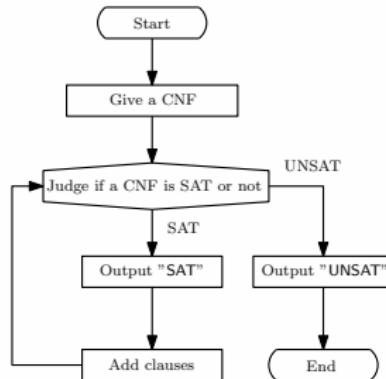
1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
2. Evaluate clustering effect for the found differential characteristics
3. Calculate probabilities for all differentials and find the highest one

$(\Delta P, \Delta C)$ with Prob. 2^{-p}

$(\Delta P', \Delta C')$ with Prob. 2^{-p+2}

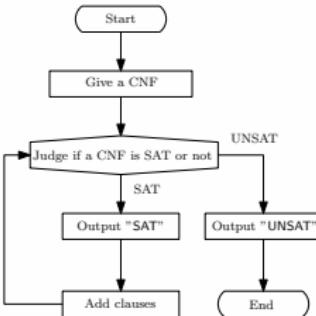


$(\Delta P'', \Delta C'')$ with Prob. 2^{-p+1}

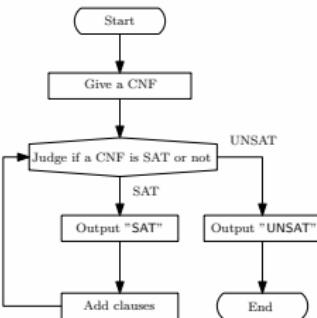

Conducting these evaluation is difficult due to a high computational cost

■ We fully leverage an Incremental SAT

- Solving a general SAT multiple times with a small modification
 - Much more efficient than solving general SAT multiple times
- Used to evaluate clustering effect in many works


General SAT

Incremental SAT


■ We apply an incremental SAT to

- Enumerate all differential characteristics with a certain weight having the different input and output differences
- Adding a new clause to eliminate the same input and output differences whenever finding a differential characteristic

■ We apply an incremental SAT to

- Enumerate all differential characteristics with a certain weight having the different input and output differences
 - Adding a new clause to eliminate the same input and output differences whenever finding a differential characteristic
- Evaluate clustering effect
 - Adding a new clause to fix the input and output differences
 - Adding a new clause to eliminate the same internal propagation whenever finding a differential characteristic

Question

Solving a single incremental SAT on multi threads is really efficient?

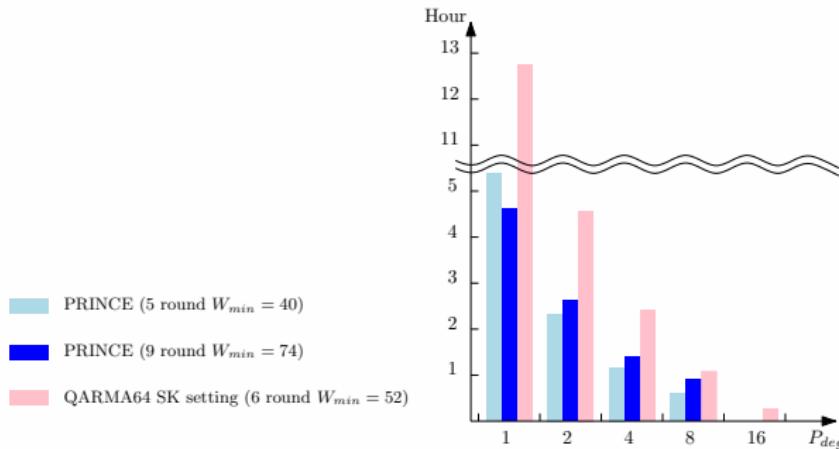
■ In case of a general SAT

- Solving it on multi threads has a positive impact on runtime [EME22]

■ In case of an incremental SAT

- We evaluate runtime of several setting satisfying following equation:

$$P_{deg} = \frac{T_m}{T_s}$$


P_{deg} : Degree of parallelization to solve multiple incremental SAT

T_m : The total number of threads assigned for our evaluations

T_s : The number of threads assigned to solve a single incremental SAT

■ Results on PRINCE and QARMA64

- PRINCE : $T_m = 8$, $(P_{deg}, T_s) = (1, 8), (2, 4), (4, 2), (8, 1)$
- QARMA64: $T_m = 16$, $(P_{deg}, T_s) = (1, 16), (2, 8), (4, 4), (8, 2), (16, 1)$

Solving multiple incremental SAT on each thread

Solving a single incremental SAT on multi threads

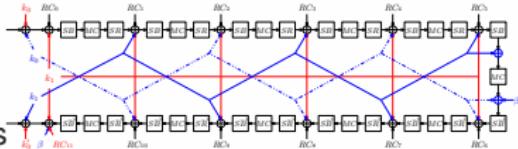
■ Observations

- Increasing the degree of parallelization is greatly useful to improve runtime
- Assigning many threads to solve a single incremental SAT does not improve runtime
- In the same degree of parallelization, Assigning many threads to solve a single incremental SAT is worsen than assigning a single threads in terms of runtime
 - $T_m = 8, P_{deg} = 8, T_s = 1$ on the 6 round QARMA64: **35m15s**
 - $T_m = 16, P_{deg} = 8, T_s = 2$ on the 6 round QARMA64: **1h6m4s**

■ Observations

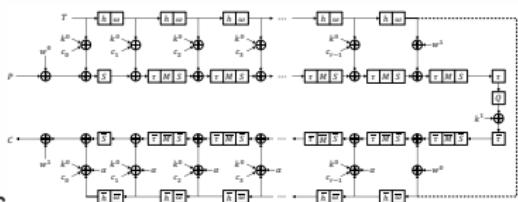
- ❑ Increasing the degree of parallelization is greatly useful to improve runtime
- ❑ Assigning many threads to solve a single incremental SAT does not improve runtime
- ❑ In the same degree of parallelization, Assigning many threads to solve a single incremental SAT is worsen than assigning a single threads in terms of runtime
 - $T_m = 8, P_{deg} = 8, T_s = 1$ on the 6 round QARMA64: **35m15s**
 - $T_m = 16, P_{deg} = 8, T_s = 2$ on the 6 round QARMA64: **1h6m4s**

Conclusion

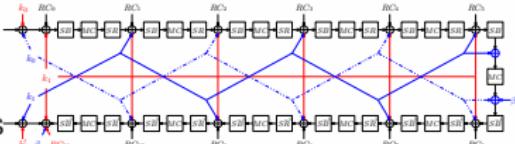

Assigning a single incremental SAT problem to each thread is more advantageous

We decide to assign an independent incremental SAT to each thread

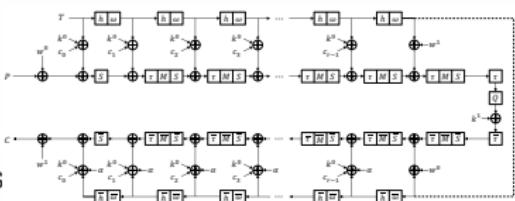
3.1 Application to PRINCE and QARMA


■ PRINCE

- 64-bit block cipher based on SPN
- Reflection construction for low-latency applications


■ QARMA

- There are two variants called QARMA64/128
- 64(128)-bit tweakable block cipher based on SPN
- Reflection construction for low-latency applications


■ PRINCE

- 64-bit block cipher based on SPN
- Reflection construction for low-latency applications

■ QARMA

- There are two variant called QARMA64/128
- 64(128)-bit tweakable block cipher based on SPN
- Reflection construction for low-latency applications

Why PRINCE and QARMA?

- Low-latency primitives tend to be weak at differential cryptanalysis
 - ▶ Mantis and SPEEDY are broken by differential cryptanalysis [BDBN22, DEKM16]
 - ▶ The best attack to PRINCE is differential cryptanalysis [CFG⁺14]
- To investigate the impact of the different design strategy in a linear layer on the behavior of differentials

■ Distinguishing attack on 7 rounds

- The known best one is on 6 rounds [CFG⁺14]

PRINCE

Rounds	4 (1+2+1)					5 (1+2+2/2+2+1)				
W_{min}	32	33	34	35	36	39	40	41	42	43
Prob.	$2^{-30.868}$	$2^{-31.861}$	$2^{-32.587}$	$2^{-33.333}$	$2^{-32.979}$	$2^{-38.810}$	$2^{-39.385}$	$2^{-40.017}$	$2^{-40.607}$	$2^{-40.837}$
# differentials	477452	3792944	4929816	5537848	5547896	576	12512	113840	598592	2231756
Time	6h06m57s	48h48m43s	47h34m17s	47h35m06s	48h01m15s	1m21s	26m09s	4h08m26s	23h14m24s	48h03m32s
Rounds	6 (2+2+2)					7 (2+2+3/3+2+2)				
W_{min}	44	45	46	47	48	56	57	58	59	60
Prob.	$2^{-43.907}$	$2^{-44.907}$	$2^{-45.195}$	$2^{-46.111}$	$2^{-46.374}$	$2^{-55.771}$	$2^{-55.887}$	$2^{-56.810}$	$2^{-57.37}$	$2^{-57.990}$
# differentials	64	512	1984	6592	25968	5632	100976	835456	205272	212280
Time	51s	4m21s	17m57s	1h07m16s	4h46m53s	5h07m16s	90h40m16s	48h00m00s	73h03m01s	71h43m12s
Rounds	8 (3+2+3)					9 (3+2+4/4+2+3)				
W_{min}	66	67	68	69	70	74	75	76	77	78
Prob.	$2^{-64.389}$	$2^{-65.384}$	$2^{-66.303}$	$2^{-66.970}$	$2^{-67.075}$	$2^{-73.888}$	$2^{-74.881}$	$2^{-74.970}$	$2^{-75.970}$	$2^{-76.166}$
# differentials	256	3584	46736	18352	24056	64	544	3400	26592	13968
Time	1h55m50s	24h34m09s	290h41m48s	47h32m37s	48h4m28s	34m49s	5h11m49s	32h10m51s	235h42m42s	48h04m53s

* Environment: Apple M1 MAX with 64 GB of main memory

■ Distinguishing attack on 7 rounds (SK setting)

- The known best one is on 6 rounds [YQC18] (SK setting)

■ Distinguishing attack on 10 rounds (RT setting)

- The known best one is on 9 rounds [ADG⁺19] (RT setting)

QARMA64 under the SK setting

Rounds	6 (2+2+2)			7 (2+2+3/3+2+2)			8 (3+2+3)		
W_{min}	52	53	54	64	65	66	72	73	74
Prob.	$2^{-45.741}$	$2^{-46.019}$	$2^{-46.112}$	$2^{-60.278}$	$2^{-60.111}$	$2^{-58.921}$	$2^{-64.845}$	$2^{-64.503}$	$2^{-64.693}$
# differentials	1024	18048	315360	512	16896	313280	400	21904	333776
Time	35m15s	19h47m31s	109h51m44s	48m19s	39h48m41s	186h21m10s	15h47m58s	53h01m41s	508h11m56s

QARMA64 under the RT setting

Rounds	6 (2+2+2)			7 (2+2+3/3+2+2)			8 (3+2+3)		
W_{min}	14	15	16	28	29	30	36	37	38
Prob.	$2^{-14.000}$	$2^{-14.913}$	$2^{-15.193}$	$2^{-27.541}$	$2^{-28.000}$	$2^{-28.286}$	$2^{-36.000}$	$2^{-36.679}$	$2^{-36.679}$
# differentials	17	202	2571	84	3030	48840	20	840	18509
Time	36s	1m44s	13m33s	5m35s	1h15m24s	15h28m20s	11m16s	30m22s	10h18m25s
Rounds	9 (3+2+4/4+2+3)			10 (4+2+4)			11 (4+2+5/5+2+4)		
W_{min}	52	53	54	62	63	64	77	78	79
Prob.	$2^{-51.415}$	$2^{-51.415}$	$2^{-52.246}$	$2^{-60.831}$	$2^{-60.831}$	$2^{-60.831}$	$2^{-77.000}$	$2^{-77.415}$	$2^{-77.509}$
# differentials	8	688	11290	273	4822	49585	64	7616	18424
Time	6h32m25s	10h27m32s	49h31m02s	96h12m59s	114h45m17s	303h33m25s	596h07m26s [†]	1317h17m08s [†]	1317h16m57s [†]

* Environment: Intel Xeon Gold 6258R CPU (2.70 GHz) with 256 GB of main memory.

■ Distinguishing attack on 10 rounds (SK setting)

- The known best one is on 6 rounds [YQC18] (SK setting)

■ Distinguishing attack on 12 rounds (RT setting)

- The known best one is on 8 rounds [LHW19] (RT setting)

QARMA128 under the SK setting

Rounds	6 (2+2+2)			7 (2+2+3/3+2+2)			8 (2+2+4/4+2+2)			
	W_{\min}	60	61	62	76	77	78	87	88	89
Prob.	$2^{-54.494}$	$2^{-54.521}$	$2^{-54.581}$	$2^{-71.930}$	$2^{-72.321}$	$2^{-72.614}$	$2^{-84.850}$	$2^{-85.093}$	$2^{-85.539}$	
# differentials	1312	98984	391352	516	32880	31960	16	708	14300	
Time	15h27m17s	499h19m12s	1316h25m40s [†]	40h57m50s	530h05m58s	430h44m47s	57h59m37s	92h7m23s	693h25m04s	
Rounds	9 (3+2+4/4+2+3)			10 (3+2+5/5+2+3)						
	W_{\min}	106	107	108	125	126	127			
Prob.	$2^{-104.285}$	$2^{-103.616}$	$2^{-103.255}$	$2^{-121.549}$	$2^{-121.667}$	$2^{-122.304}$				
# differentials	240	561	1172	12	54	31				
Time	249h25m14s [†]	1004h00m44s [†]	1004h00m32s [†]	794h25m35s [†]	794h25m23s [†]	794h25m13s [†]				

QARMA128 under the RT setting

Rounds	7 (2+2+3/3+2+2)			8 (3+2+3)			9 (3+2+4/4+2+3)			
	W_{\min}	28	29	30	42	43	44	64	65	66
Prob.	$2^{-28.000}$	$2^{-27.415}$	$2^{-28.000}$	$2^{-42.000}$	$2^{-42.415}$	$2^{-42.187}$	$2^{-63.679}$	$2^{-64.415}$	$2^{-64.679}$	
# differentials	32	2144	64368	64	5248	203200	1815	6870	26105	
Time	38m43s	4h51m52s	48h32m23s	21h17m20s	52h32m19s	47h05m47s	115h43m26s [†]	115h43m16s [†]	115h43m05s [†]	
Rounds	10 (4+2+4)			11 (4+2+5/5+2+4)			12 (5+2+5)			
	W_{\min}	80	81	82	100	101	102	125	126	127
Prob.	$2^{-78.005}$	$2^{-79.005}$	$2^{-78.408}$	$2^{-96.466}$	$2^{-97.929}$	$2^{-96.521}$	$2^{-120.024}$	$2^{-123.499}$	$2^{-124.084}$	
# differentials	2	72	51	9	6	2	3	3	3	2
Time	978h51m03s [†]	1316h34m33s [†]	1316h33m53s [†]	794h24m09s [†]	794h23m59s [†]	1036h39m39s [†]	794h16m56s [†]	1036h44m17s [†]	1036h44m02s [†]	

* Environment: Intel Xeon Gold 6258R CPU (2.70 GHz) with 256 GB of main memory.

■ Gap of the probability between differential characteristics and differentials

□ PINRCE on 8 rounds

- Optimal differential characteristic: 2^{-66}
- Best found Differential : $2^{-64.389}$
- Gap: $2^{1.611}$

□ QARMA64 on 8 rounds (SK setting)

- Optimal differential characteristic: 2^{-72}
- Best found Differential : $2^{-64.845}$
- Gap: $2^{7.155}$

■ Gap of the probability between differential characteristics and differentials

□ PINRCE on 8 rounds

- Optimal differential characteristic: 2^{-66}
- Best found Differential : $2^{-64.389}$
- Gap: $2^{1.611}$

□ QARMA64 on 8 rounds (SK setting)

- Optimal differential characteristic: 2^{-72}
- Best found Differential : $2^{-64.845}$
- Gap: $2^{7.155}$

Behavior of this gap is different between PRINCE and QARMA

Question

Where does this difference come from?

■ Non-linear layer (S-box)

□ PRINCE

- 4-bit S-box, $MDP/ALB = 2^{-2}$, full diffusion property

□ QARMA64

- 4-bit S-box, $MDP/ALB = 2^{-2}$, full diffusion property

■ Non-linear layer (S-box)

□ PRINCE

- 4-bit S-box, $MDP/ALB = 2^{-2}$, full diffusion property

□ QARMA64

- 4-bit S-box, $MDP/ALB = 2^{-2}$, full diffusion property

■ Linear layer (matrix and permutation)

□ PRINCE

- Designed to ensure 16 active S-boxes in consecutive four rounds

Matrix: Constructed by 2 different 16×16 matrices

□ QARMA64

- Designed based on an almost MDS matrix suitable for hardware implementation

Matrix: Constructed by a single 16×16 matrix

■ Macro perspective

PRINCE

- Round function can be viewed constructed by **2 different super S-boxes**

QARMA64

- Round function can be viewed constructed by **a single super S-box**

■ Micro perspective

PRINCE

- Each output nibble in a matrix comes from **four input nibbles**

QARMA64

- Each output nibble in a matrix comes from **three input nibbles**

We investigate the impact of these different properties

■ We change the matrix in PRINCE to:

$$M_{e1} = \text{diag}(\hat{M}^{(0)}, \hat{M}^{(0)}, \hat{M}^{(0)}, \hat{M}^{(0)})$$

$$M_{e2} = \text{diag}(\text{circ}(0, \rho^1, \rho^2, \rho^1), \text{circ}(0, 1, \rho^2, 1), \text{circ}(0, 1, \rho^2, 1), \text{circ}(0, \rho^1, \rho^2, \rho^1))$$

$$M_{e3} = \text{diag}(\text{circ}(0, \rho^1, \rho^2, \rho^1), \text{circ}(0, \rho^1, \rho^2, \rho^1), \\ \text{circ}(0, \rho^1, \rho^2, \rho^1), \text{circ}(0, \rho^1, \rho^2, \rho^1))$$

□ M_{e1}

➤ Macro: Single super S-box

➤ Micro: Output nibble in a matrix comes from four input nibbles

□ M_{e2}

➤ Macro: Two different super S-boxes

➤ Micro: Output nibble in a matrix comes from three input nibbles

□ M_{e3}

➤ Macro: Single super S-box

➤ Micro: Output nibble in a matrix comes from three input nibbles

■ Results on M_{e1} , M_{e2} , M_{e3}

- Original matrix and M_{e1} has a good resistance against clustering effect
- Macro perspective is different but Macro perspective is same
 - **Output nibble in a matrix comes from four input nibbles**
 - Ankele and Kölbl reported that clustering effect easily happen in MIDORI and SKINNY [AK18]

PRINCE (6 (2+2+2) rounds) $T_w = 1$, $T_c = 10$

Matrix	Original	M_{e1}	M_{e2}	M_{e3}
W_{min}	44	40	44	42
Prob.	$2^{-43.907}$	$2^{-38.526}$	$2^{-38.616}$	$2^{-37.458}$
Gap ($\text{Prob.}/2^{-W_{min}}$)	$2^{0.093}$	$2^{1.474}$	$2^{5.384}$	$2^{4.542}$
# differentials	64	256	8	272

PRINCE (6 (2+2+2) rounds) $T_w = 1$, $T_c = 10$

Weight Matrix \	W_{min}	$W_{min} + 1$	$W_{min} + 2$	$W_{min} + 3$	$W_{min} + 4$	$W_{min} + 5$	$W_{min} + 6$	$W_{min} + 7$	$W_{min} + 8$	$W_{min} + 9$
# DC [†]	Original	1	0	0	0	1	0	0	1	0
	M_{e1}	2	0	0	0	11	0	0	23	0
	M_{e2}	1	2	7	16	55	116	452	848	2152
	M_{e3}	1	0	5	2	56	38	358	210	1719
										1102

■ Key-recovery attacks to QARMA

□ First key-recovery attack to QARMA by differential cryptanalysis

Cipher (Setting [†])	Attacked # Rounds	Type [‡]	Outer whitening	Time	Data	Memory	Validity [§]	Reference
QARMA-64 (SK)	10 (3+2+5)	MITM	No	$2^{70.1}$	2^{53}	2^{116}	✓	[ZD16]
	10 (3+2+5)	ID	Yes	$2^{119.3}$	2^{61}	2^{72}	✗	[YQC18]
	11 (3+2+6)	ID	Yes	$2^{120.4}$	2^{61}	2^{116}	✗	[YQC18]
QARMA-64 (RT)	10 (2+2+6)	ID	Yes	$2^{125.8}$	2^{62}	2^{37}	✗	[ZD19]
	10 (4+2+4)	TD	Yes	$2^{83.53}$	$2^{47.06}$	2^{80}	✗	Our
	10 (3+2+5)	TD	Yes	$2^{75.13}$	$2^{47.12}$	2^{72}	✓	Our
	10 (3+2+5)	SS	Yes	$2^{59.0}$	$2^{59.0}$	$2^{29.6}$	✓	[LHW19]
	11 (4+2-5)	TD	Yes	$2^{111.16}$	$2^{34.26}$	2^{108}	✗	Our
	11 (4+2+5)	ID	No	$2^{64.92}$	$2^{58.38}$	$2^{63.38}$	✓	[LZG+20]
	12 (3+2+7)	ZC/I	Yes	$2^{66.2}$	$2^{48.4}$	$2^{53.7}$	✓	[ADG+19]
	10 (3+2+5)	MITM	No	$2^{141.7}$	2^{105}	2^{232}	✓	[ZD16]
QARMA-128 (SK)	10 (3+2+5)	ID	Yes	$2^{237.3}$	2^{122}	2^{144}	✗	[YQC18]
	11 (3+2+6)	ID	Yes	$2^{241.8}$	2^{122}	2^{232}	✗	[YQC18]
	11 (4+2+5)	TDIB	Yes	$2^{126.1}$	$2^{126.1}$	2^{71}	✓	[LHW19]
QARMA-128 (RT)	11 (4+2+5)	ID	No	$2^{137.0}$	$2^{111.38}$	$2^{120.38}$	✓	[LZG+20]
	11 (7+2+2)	TD	Yes	$2^{104.80}$	$2^{124.05}$	2^{48}	✓	Our
	12 (7+2+3)	TD	Yes	$2^{154.53}$	$2^{108.52}$	2^{144}	✗	Our
	12 (3+2+7)	MITM	Yes	$2^{156.06}$	2^{88}	2^{154}	✓	[LZG+20]
	13 (8+2+3)	TD	Yes	$2^{238.02}$	$2^{106.63}$	2^{240}	✗	Our

[†] TD: Truncated Differential, MITM: Meet-in-the-Middle,

[‡] The designer claims that the multiplication of time and data complexities for QARMA-64 and QARMA-128 should be less than $2^{128-\epsilon}$ and $2^{256-\epsilon}$ for a small ϵ (e.g., $\epsilon = 2$), respectively. The symbol '✓' indicates that the attack is feasible within the designer's security claim and the symbol '✗' indicates otherwise.

- Design an efficient SAT-based tool for constructing good differentials
 - Develop Sun et al's SAT-based tool for constructing differentials optimized for the multi-thread environment
- Improve the distinguishing attack to PRINCE and QARMA
 - Find a new differential distinguishers
- Investigate the differential behavior on PRINCE and QARMA
 - Show the different design concept having the impact on the differential behavior
- Give the key-recovery attack to QARMA
 - Give the key-recovery attack to QARMA by differential cryptanalysis for the first time

References I

- Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor Leander, and Yosuke Todo, *Zero-correlation attacks on tweakable block ciphers with linear tweakey expansion*, IACR Trans. Symmetric Cryptol. **2019** (2019), no. 1, 192–235.
- Ralph Ankele and Stefan Kölbl, *Mind the gap - A closer look at the security of block ciphers against differential cryptanalysis*, SAC, Lecture Notes in Computer Science, vol. 11349, Springer, 2018, pp. 163–190.
- Christina Boura, Nicolas David, Rachelle Heim Boissier, and María Naya-Plasencia, *Better steady than speedy: Full break of SPEEDY-7-192*, IACR Cryptol. ePrint Arch. (2022), 1351.
- Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and Jean-René Reinhard, *Multiple differential cryptanalysis of round-reduced PRINCE*, FSE, Lecture Notes in Computer Science, vol. 8540, Springer, 2014, pp. 591–610.

References II

- Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel, *Practical key-recovery attack on MANTIS5*, IACR Trans. Symmetric Cryptol. **2016** (2016), no. 2, 248–260.
- Johannes Erlacher, Florian Mendel, and Maria Eichlseder, *Bounds for the security of ascon against differential and linear cryptanalysis*, IACR Trans. Symmetric Cryptol. **2022** (2022), no. 1, 64–87.
- Muzhou Li, Kai Hu, and Meiqin Wang, *Related-tweak statistical saturation cryptanalysis and its application on QARMA*, IACR Trans. Symmetric Cryptol. **2019** (2019), no. 1, 236–263.
- Ya Liu, Tiande Zang, Dawu Gu, Fengyu Zhao, Wei Li, and Zhiqiang Liu, *Improved cryptanalysis of reduced-version QARMA-64/128*, IEEE Access **8** (2020), 8361–8370.
- Ling Sun, Wei Wang, and Meiqin Wang, *Accelerating the search of differential and linear characteristics with the SAT method*, IACR Trans. Symmetric Cryptol. **2021** (2021), no. 1, 269–315.

References III

- Dong Yang, Wen-Feng Qi, and Hua-Jin Chen, *Impossible differential attack on QARMA family of block ciphers*, IACR Cryptol. ePrint Arch. (2018), 334.
- Rui Zong and Xiaoyang Dong, *Meet-in-the-middle attack on QARMA block cipher*, IACR Cryptol. ePrint Arch. (2016), 1160.
- _____, *Milp-aided related-tweak/key impossible differential attack and its applications to qarma, joltik-bc*, IEEE Access 7 (2019), 153683–153693.