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Road Map

We study robust and non-malleable threshold schemes in two
settings:

1. equiprobable sources (secrets)

2. known sources (secrets)

threshold scheme equiprobable sources known sources

robust
difference set
external difference family
weak AMD code

strong EDF
strong AMD code

non-malleable
circular EDF
weak circular AMD code

strong circular EDF
strong circular AMD
code
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(k, n)-Threshold Schemes

• Let 1 < k ≤ n and let S be the set of possible secrets.

• There are n participants in the scheme, denoted P1, . . . , Pn,
as well as an additional participant called the dealer.

• A secret s ∈ S is chosen by the dealer.

• The dealer then constructs n shares, which we denote by
s1, . . . , sn.

• The share si is given to participant Pi, for 1 ≤ i ≤ n.

• The following two properties should be satisfied.

Correctness: Any set of k participants can recover the secret
from the shares that they hold collectively.

Perfect privacy: No set of k − 1 or fewer participants can
obtain any information about the secret from
the shares that they hold collectively.
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Shamir’s Threshold Scheme

• Suppose Fq is a finite field, where q is a prime power.

• The (k, n)-threshold scheme will share a secret s ∈ Fq, where
q ≥ n+ 1.

Share: The dealer selects a random polynomial f(x) ∈ Fq[x]
of degree k − 1 such that f(0) = s. Each share si is
an ordered pair, i.e., si = (xi, yi), where the xi’s are
distinct and non-zero and yi = f(i). The xi’s are
public and the yi’s are secret.

Recover: Given k shares, the participants use Lagrange
interpolation to reconstruct f(x) and then they
evaluate the polynomial f(x) at x = 0 to recover the
secret s.
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Lagrange Interpolation Formula
• Let y1, . . . , yk ∈ Fq and let x1, . . . , xk ∈ Fq be distinct.
• Then there is a unique polynomial f(x) ∈ Fq[x] with degree
at most k − 1 such that f(xi) = yi for 1 ≤ i ≤ k.

• The Lagrange interpolation formula (LIF) states that

f(x) =

k∑
j=1

yj
∏

1≤h≤k,h̸=j

x− xh
xj − xh

.

• Since s = f(0), it is sufficient to compute

s =

k∑
j=1

yj
∏

1≤h≤k,h̸=j

xh
xh − xj

.

• If we define
bj =

∏
1≤h≤k,h̸=j

xh
xh − xj

,

for 1 ≤ j ≤ k, then we can write s =
∑k

j=1 bjyj .
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Robust Threshold Schemes

We review the model introduced by Tompa and Woll (1988).
Assume a (k, n)-threshold scheme, where the secret s is chosen
equiprobably from the set S. Fix t such that 1 ≤ t < k. We
consider the following Robustness Game.

1. t of the n shares are given to the adversary. The adversary
modifies the t shares to create new “bad shares”.

2. A secret s′ is reconstructed using the t “bad shares” and k− t
of the original “good shares”. The adversary may choose
which of the “good shares” are used in reconstruction. The
adversary wins the robustness game if the reconstructed secret
s′ is a valid secret and s′ ̸= s.

Typically, we let t = k − 1. For 0 < ϵ < 1, if the adversary can
only win this game with probability at most ϵ, then we say that the
threshold scheme is ϵ-robust (here ϵ is the cheating probability).
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The Basic Shamir Scheme is Not Robust

• It is possible for a single adversary to win the Robustness
Game with probability ϵ = 1.

• Suppose that the first share is modified: y′1 = y1 + δ, where
δ ̸= 0.

• Suppose that the first k shares are used to reconstruct the
secret.

• Recalling the LIF, the reconstructed secret will be

s′ = b1y
′
1 +

k∑
j=2

bjyj = b1(y1 + δ) +

k∑
j=2

bjyj = s+ b1δ ̸= s.

• Observe also that the adversary knows the relation between s
and s′, even though they do not know s.
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How to Make the Shamir Scheme Robust

• Tompa and Woll’s solution requires that both co-ordinates of
shares (xi, yi) are secret.

• More recent solutions follow the standard convention where
only the y-co-ordinate of a share is secret.

• We discuss the approach due to Ogata and Kurosawa (1996).

• The basic idea is that only some secrets are considered to be
“valid.”

• A secret is first encoded, using a public encoding function, and
the resulting encoded secret is shared using Shamir’s scheme.

• The encoding function suggested by Ogata and Kurosawa uses
a classic combinatorial structure known as a difference set.
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Difference Sets

• Suppose that (G,+) is an abelian group of order v.
• D ⊆ G is a (v,m, λ)-difference set if

1. |D| = m and
2. for every g ∈ G \ {0}, there are exactly λ pairs di, dj ∈ D such

that di − dj = g.

• If a (v,m, λ)-difference set exists, then λ(v − 1) = m(m− 1).

• If λ = 1, then v = m2 −m+ 1; this is called a planar
difference set.

• The development of a planar difference set D, which consists
of D and all of its translates, is a finite projective plane of
order m− 1.
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Singer Difference Sets

• {0, 1, 3} is a (7, 3, 1)-difference set in Z7.

• Its development consists of the seven 3-sets

{0, 1, 3} {1, 2, 4} {2, 3, 5} {3, 4, 6}
{4, 5, 0} {5, 6, 1} {6, 0, 2},

which is the famous Fano plane.

• {0, 1, 3, 9} is a (13, 4, 1)-difference set.

• {3, 6, 12, 7, 14} is a (21, 5, 1)-difference set.

• In general, if q is a prime or prime power, then there is a
Singer difference set, which is a
(q2 + q + 1, q + 1, 1)-difference set in Zq2+q+1.
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The Ogata-Kurosawa Scheme
• Suppose we have a (v,m, λ) difference set D in the abelian

group Fv, where v is prime.
• We can use D to robustly share one of m equiprobable
secrets, denoted as s1, . . . , sm.

• Let D = {g1, . . . , gm}.
• We require that v ≥ n+ 1 in order to implement a Shamir

scheme in Fv.

The Ogata-Kurosawa Scheme works as follows:

1. Given a secret si (where 1 ≤ i ≤ m), encode si as g = gi.

2. Compute shares for the encoded secret g using a
(k, n)-Shamir scheme in Fv.

3. To reconstruct a secret from k shares, first use the LIP to
reconstruct g′ ∈ Fv.

4. If g′ ̸∈ D, then g′ is invalid; if g′ = gj , then the reconstructed
(i.e., decoded) secret is sj .
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Analysis of the Ogata-Kurosawa Scheme

• The effect of modifying one or more shares (up to k − 1
shares) is to replace g by g +∆, where ∆ is a quantity that is
known to the k − 1 adversaries.

• The adversaries win the Robustness Game if g +∆ ∈ D.

• For any nonzero ∆, there are exactly λ choices of g ∈ D such
that g +∆ ∈ D.

• Since |D| = m and the secrets are equiprobable, it follows
that the adversaries win the Robustness Game with probability
λ/m.
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Example

• Suppose we start with D = {0, 1, 3, 9} which is a
(13, 4, 1)-difference set.

• We have four secrets and the possible encoded secrets are
0, 1, 3 and 9.

• We share an encoded secret g using a (k, n)-Shamir scheme
implemented over F13 (this requires n ≤ 12).

• Each possible modification g 7→ g +∆, where ∆ ∈ F13 \ {0},
succeeds with probability 1/4.

• ∆ = 1 succeeds iff g = 0;
∆ = 2 succeeds iff g = 1;
∆ = 3 succeeds iff g = 0;
∆ = 4 succeeds iff g = 9;
etc.
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External Difference Families

• Ogata, Kurosawa, Stinson and Saido (2004) observed that
external difference families (EDFs) could also be used to
construct robust threshold schemes.

• A (19, 3, 3, 3)-EDF is given by the three sets {1, 7, 11},
{4, 9, 6} and {16, 17, 5} in Z19.

• Every nonzero element of Z19 occurs three times as a
difference between two elements in two different sets.

• For the purposes of a robust threshold scheme, there would be
three secrets, say s1, s2, s3.

• The secret si would be encoded by choosing a random
element in the ith set.

• Then the encoded secret is shared, as before.
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AMD Codes

• Cramer, Dodis, Fehr, Padró and Wichs (2008) defined
algebraic manipulation detection codes (AMD codes).

• They also described applications of these structures to robust
secret sharing schemes, robust fuzzy extractors, secure
multiparty computation, and non-malleable codes.

• S is the source space, where |S| = m.

• An additive abelian group G is the message space.

• For every source s ∈ S, let A(s) ⊆ G denote the set of valid
encodings of s. We require that A(s) ∩A(s′) = ∅ if s ̸= s′.
Denote A = {A(s) : s ∈ S}.

• E : S → G is a (randomized) encoding function that maps a
source s ∈ S to g ∈ A(s) that is chosen uniformly at random.
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Security of an AMD Code
• We define a weak AMD code (S,G,A, E) by considering a

certain game incorporating an adversary.
• The adversary has complete information about the AMD code.
• Based on this information, the adversary will choose a value
∆ ̸= 0 from G.

• Suppose (S,G,A, E) is an AMD code.

1. The value ∆ ∈ G \ {0} is chosen by the adversary.
2. The source s ∈ S is chosen uniformly at random.
3. s is encoded into g ∈ A(s) using the encoding function E.
4. The adversary wins if and only if g +∆ ∈ A(s′) for some

s′ ̸= s.

• The success probability, denoted ϵ∆, is the probability that
the adversary wins this game.

• The code (S,G,A, E) is an (v,m, ϵ̂)-AMD code, where ϵ̂
denotes the success probability of the adversary’s optimal
strategy (i.e., ϵ̂ = max∆{ϵ∆}.)
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R-optimal Weak AMD Codes

• Paterson and Stinson (2016) introduced R-optimal weak
AMD codes.

• Recall that m is the number of sources, and the encoded
sources are in an abelian group of cardinality v.

• We denote the total number of valid encodings by a.

Theorem 1 (PS16)

In any (v,m, ϵ̂)-weak AMD code, it holds that

ϵ̂ ≥ a(m− 1)

m(v − 1)
.

• If we have equality in Theorem 1, then the code is defined to
be R-optimal.

• In an R-optimal weak AMD code, any choice of ∆ is optimal!
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Examples of R-optimal Weak AMD Codes

• We summarize a few results from [PS16].

• An AMD code is ℓ-regular if every every source has exactly ℓ
possible encodings.

• In an ℓ-regular AMD code, we have a = ℓm and hence

ϵ̂ ≥ a(m− 1)

m(v − 1)
=

ℓ(m− 1)

v − 1
. (1)

• An R-optimal ℓ-regular weak AMD code is equivalent to an
(v,m, ℓ, λ)-EDF, where λ = ℓ2m(m− 1)/(v − 1).

• Note that the lower bound for ϵ̂ is minimized when ℓ = 1.

• In this case, the optimal R-optimal weak AMD codes are
(v,m, λ)-difference sets.
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Near-optimal Weak AMD Codes

• Since optimal AMD codes exist only for certain parameters, it
is useful for applications to consider “near-optimal” codes.

• Instead of using a difference set, we can employ a cyclic
difference packing.

• A (v,m)-cyclic difference packing is an m-subset of Zv such
that, for every g ∈ Zv \ {0}, there is at most one pair
di, dj ∈ D such that di − dj = g.

• Difference packings are equivalent to other well-studied
combinatorial objects, including modular Golomb rulers and
optical orthogonal codes.

• The corresponding 1-regular (weak) AMD code has ϵ̂ = 1/m
(an optimal strategy is to choose any ∆ that occurs as a
difference of two elements of D).
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Near-optimal Weak AMD Codes (cont.)

Buratti and Stinson (2021) proved the following result.

Theorem 2 (BS21)

For any m ≥ 3 and any v ≥ 3m2 − 1, there is a (v,m)-cyclic
difference packing.

• Theorem 2 is proven using Singer difference sets, some
computational results for small m, and known results on the
distribution of primes.

• In Theorem 2, we have v ≈ 3m2.

• ϵ̂ = 1/m is a factor of three greater than the lower bound
from (1), namely,

ϵ̂ ≥ m− 1

v − 1
≈ 1

3m
.
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Nonuniform Source Distributions
• So far, the AMD codes and robust threshold schemes we have
discussed assume uniformly distributed secrets (or sources).

• It would be nice be able to construct robust threshold schemes
that are secure even if the secrets are not equally likely.

• In an extreme case, the secret would be known to the
adversary.

• The associated AMD codes are termed strong AMD codes:
1. The source s ∈ S is given to the adversary.
2. Then the value ∆ ∈ G \ {0} is chosen by the adversary.
3. s is encoded into g ∈ A(s) using the encoding function E.
4. The adversary wins if and only if g +∆ ∈ A(s′) for some

s′ ̸= s.

• The adversary chooses a value ∆ = σ(s) for every source s.

• The code (S,G,A, E) is an (v,m, ϵ̂)-strong AMD code,
where ϵ̂ denotes the success probability of the adversary’s
optimal strategy (i.e., ϵ̂ = maxσ{ϵσ}.)
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R-optimal Strong AMD Codes
• Suppose we have an ℓ-regular (v,m, ϵ̂)-strong AMD code.
• Then

ϵ̂ ≥ ℓ(m− 1)

v − 1
. (2)

• This is the same bound as in the case of weak AMD codes.
• R-optimal strong AMD codes can be constructed from strong
external difference families, which were defined in [PS16].

• A (v,m, ℓ, λ)-strong external difference family (SEDF) is a set
of m disjoint ℓ-subsets of an abelian group G of order v, say
A1, . . . , Am, such that the following multiset equation holds
for all i: ⋃

{j : i ̸=j}

D(Ai, Aj) = λ(G \ {0}).

where D(A1, A2) = {x− y : x ∈ A1, y ∈ A2}.
• If an (v,m, ℓ, λ)-SEDF exists, then v ≥ mℓ and

λ(v − 1) = ℓ2(m− 1).
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SEDF with λ = 1

Example 3

Let G = (Zℓ2+1,+), A1 = {0, 1, . . . , ℓ− 1} and
A2 = {ℓ, 2ℓ, . . . , ℓ2}. This is an (ℓ2 + 1, 2, ℓ, 1)-SEDF.

When ℓ = 4, we have G = (Z17,+), A1 = {0, 1, 2, 3} and
A2 = {4, 8, 12, 16}.

Example 4

Let G = (Zv,+) and Ai = {i} for 0 ≤ i ≤ v − 1. This is an
(v, v, 1, 1)-SEDF.

The above two examples are quite special:

Theorem 5 (PS16)

There exists an (v,m, ℓ, 1)-SEDF if and only if m = 2 and
v = ℓ2 + 1, or ℓ = 1 and v = m.
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SEDF with λ > 1

• There are numerous examples of SEDF with m = 2 and λ > 1.

• On the other hand, Martin and Stinson (2017) used the group
algebra and character theory to prove nonexistence of
nontrivial SEDF with m = 3, 4 or with v prime.

• Many other nonexistence results were subsequently proven by
a variety of authors using the character theory approach.

• At the present time, there is only one known example of an
SEDF with m > 2 and ℓ > 1. It was found independently by
two sets of authors: Wen, Yang and Feng (2018) and Jedwab
and Li (2019).

• In the finite field F35 , let C0 be the subgroup of F∗
35 of order

22 and let C1, . . . , C10 be its cosets.

• It turns out that {C0, . . . , C10} is a (243, 11, 22, 20)-SEDF.
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Near-optimal Strong AMD Codes

• Fortunately, it is possible to find good constructions for
near-optimal strong AMD codes.

• Cramer, Fehr and Padro (2013) proved the following result.

Theorem 6 (CFP13)

For all prime powers q, there exists a q-regular (q3, q, 1/q)-strong
AMD code.

Proof.
For every s ∈ Fq, let As = {(s, 0, 0) + α(0, 1, s) : α ∈ Fq}.

• The lower bound from (2) is

ϵ̂ ≥ ℓ(m− 1)

v − 1
=

q(q − 1)

q3 − 1
=

q

q2 + q + 1
,

which is quite close to 1/q.

25 / 36



Non-malleable Threshold Schemes
• Non-malleable threshold schemes have been considered by
various authors, and several different definitions can be found
in the literature. Here I discuss the approach of Veitch and
Stinson (2023).

• We use the term “non-malleable” to denote a scheme that
protects against certain pre-specified adversarial attacks.

• Suppose ∼ is an irreflexive binary relation on the set S of
possible secrets.

• The adversary’s goal in the Malleability Game is to modify
one or more shares in such a way that s′ ∼ s, where s is the
true secret and s′ ̸= s is the reconstructed secret.

• If we define s′ ∼ s if and only if s ̸= s′, then the requirement
for the adversary to win the Malleability Game is that s′ ̸= s.
This is the same a a robust scheme.

• We consider an additive relation, e.g., s′ ∼1 s iff s′ = s+ 1.
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Optimal Non-malleable Threshold Schemes

• Optimal non-malleable threshold schemes for the additive
relation ∼1 can be obtained from circular external difference
families and strong circular external difference families.

Definition 7
Let G be an additive abelian group of order v and suppose m ≥ 2.
An (v,m, ℓ;λ)-circular external difference family (or
(v,m, ℓ;λ)-CEDF) is a set of m disjoint ℓ-subsets of G, say
A = (A0, . . . , Am−1), such that the following multiset equation
holds:

m−1⋃
j=0

D(Aj+1 mod m, Aj , ) = λ(G \ {0}).

We observe that mℓ2 = λ(v − 1) if a (v,m, ℓ;λ)-CEDF exists.
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An Example of a CEDF

There are a number of different constructions for CEDF. Here is a
small example.

Example 8

The following four sets of size 2 form a (17, 4, 2, 1)-CEDF in Z17:

A = ({1, 16}, {9, 8}, {13, 4}, {15, 2)}).

To verify, we compute:

9− 1 = 8 8− 1 = 7 9− 16 = 10 8− 16 = 9
13− 9 = 4 4− 9 = 12 13− 8 = 5 4− 8 = 13
15− 13 = 2 2− 13 = 6 15− 4 = 11 2− 4 = 15
1− 15 = 3 16− 15 = 1 1− 2 = 16 16− 2 = 14
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Strong CEDF

Definition 9
Let G be an additive abelian group of order v and suppose m ≥ 2.
An (v,m, ℓ;λ)-strong circular external difference family (or
(v,m, ℓ;λ)-SCEDF) is a set of m disjoint ℓ-subsets of G, say
A = (A0, . . . , Am−1), such that the following multiset equation
holds for every j, 0 ≤ j ≤ m− 1:

D(Aj+1 mod m, Aj) = λ(G \ {0}).

We observe that ℓ2 = λ(v − 1) if an (v,m, ℓ;λ)-SCEDF exists.

• Each pair of adjacent sets in an SCEDF form an SEDF.
• In general, SCEDF seem to be difficult to construct.
• There are examples with m = 2: any (v, 2, ℓ;λ)-SEDF is

automatically strong.
• At present, we are unable to construct any (v,m, ℓ;λ)-SCEDF

with m ≥ 3.
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Near-optimal Strong Circular AMD Codes
• Since strong CEDF (i.e., optimal strong circular AMD codes)
are apparently very difficult to find, we instead explore
constructions for near-optimal strong circular AMD codes.

• One possibility is to use cyclotomic classes in a finite field.

• The security of a resulting AMD code depends on the relevant
cyclotomic numbers.

• Let q = ef + 1 be a prime power and let α ∈ Fq be a
primitive element.

• Define C0 = {αje : 0 ≤ j ≤ f − 1} and define Ci = αiC0 for
1 ≤ i ≤ e− 1.

• C0, . . . , Ce−1 are the cyclotomic classes of index e.

• The cyclotomic numbers of order e are the integers denoted
(i, j)e (0 ≤ i, j ≤ e− 1) that are defined as follows:

(i, j)e = |(Ci + 1) ∩ Cj |.
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Near-optimal Strong Circular AMD Codes (cont.)

Theorem 10
Let q = ef + 1 be a prime power. Denote

λ = max{(i, i+ 1 mod e)e : 0 ≤ i ≤ e− 1}.

Then A = {C0, . . . , Ce−1} is an f -regular strong circular
(q, e, ϵ̂)-AMD code, where ϵ̂ = λ/f .
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Strong Circular (q, 4, ϵ̂)-AMD Codes
• Suppose q ≡ 1 mod 8 and we take e = 4 in Theorem 10.
• The security of the resulting AMD code depends on the
cyclotomic numbers (0, 1)4, (1, 2)4, (2, 3)4 and (3, 0)4.

• To compute them, express q in the form q = µ2 + 4ν2, where
µ ≡ 1 mod 4; the sign of ν is undetermined.

• Then we have

(0, 1)4 =
q − 3 + 2µ+ 8ν

16

(1, 2)4 =
q + 1− 2µ

16

(2, 3)4 =
q + 1− 2µ

16

(3, 0)4 =
q − 3 + 2µ− 8ν

16
.

• Switching the sign of ν interchanges the values of (0, 1)4 and
(3, 0)4, but the resulting value of λ is not affected.
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Example

• Suppose q = 97 = 4× 24 + 1.

• We have 97 = 92 + 4× 22, so µ = 9 and ν = ±2.

• The largest of the four cyclotomic numbers is

97− 3 + 18 + 16

16
= 8.

• We obtain a 24-regular strong circular (97, 4, 1/3)-AMD code.
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An Asymptotic Result
• To analyse the asymptotic behaviour of this approach, we
maximize the function

q − 3 + 2µ+ 8ν

16q/4
=

q − 3 + 2µ+ 8ν

4q

subject to the constraint q = µ2 + 4ν2.

• Using elementary calculus, we see that

2µ+ 8ν ≤ 2
√
5
√
q.

• The following result is obtained.

Theorem 11
Suppose q ≡ 1 mod 8 is a prime power. Then there is a
(q − 1)/4-regular strong circular (q, 4, ϵ̂)-AMD code with

ϵ̂ < 1
4 +

√
5
2 q−1/2.
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