

Robust and Non-malleable Threshold Schemes, AMD codes and External Difference Families

Douglas R. Stinson

University of Waterloo and Carleton University

SAC 2023
August 16–18, 2023

Road Map

We study **robust** and **non-malleable** threshold schemes in two settings:

1. equiprobable sources (secrets)
2. known sources (secrets)

threshold scheme	equiprobable sources	known sources
robust	difference set external difference family weak AMD code	strong EDF strong AMD code
non-malleable	circular EDF weak circular AMD code	strong circular EDF strong circular AMD code

(k, n) -Threshold Schemes

- Let $1 < k \leq n$ and let \mathcal{S} be the set of possible **secrets**.
- There are n participants in the scheme, denoted P_1, \dots, P_n , as well as an additional participant called the **dealer**.
- A secret $s \in \mathcal{S}$ is chosen by the dealer.
- The dealer then constructs n **shares**, which we denote by s_1, \dots, s_n .
- The share s_i is given to participant P_i , for $1 \leq i \leq n$.
- The following two properties should be satisfied.

Correctness: Any set of k participants can recover the secret from the shares that they hold collectively.

Perfect privacy: No set of $k - 1$ or fewer participants can obtain any information about the secret from the shares that they hold collectively.

Shamir's Threshold Scheme

- Suppose \mathbb{F}_q is a finite field, where q is a prime power.
- The (k, n) -threshold scheme will share a secret $s \in \mathbb{F}_q$, where $q \geq n + 1$.

Share: The dealer selects a random polynomial $f(x) \in \mathbb{F}_q[x]$ of degree $k - 1$ such that $f(0) = s$. Each share s_i is an ordered pair, i.e., $s_i = (x_i, y_i)$, where the x_i 's are distinct and non-zero and $y_i = f(i)$. The x_i 's are **public** and the y_i 's are **secret**.

Recover: Given k shares, the participants use **Lagrange interpolation** to reconstruct $f(x)$ and then they evaluate the polynomial $f(x)$ at $x = 0$ to recover the secret s .

Lagrange Interpolation Formula

- Let $y_1, \dots, y_k \in \mathbb{F}_q$ and let $x_1, \dots, x_k \in \mathbb{F}_q$ be distinct.
- Then there is a unique polynomial $f(x) \in \mathbb{F}_q[x]$ with degree at most $k - 1$ such that $f(x_i) = y_i$ for $1 \leq i \leq k$.
- The **Lagrange interpolation formula** (LIF) states that

$$f(x) = \sum_{j=1}^k y_j \prod_{1 \leq h \leq k, h \neq j} \frac{x - x_h}{x_j - x_h}.$$

- Since $s = f(0)$, it is sufficient to compute

$$s = \sum_{j=1}^k y_j \prod_{1 \leq h \leq k, h \neq j} \frac{x_h}{x_h - x_j}.$$

- If we define

$$b_j = \prod_{1 \leq h \leq k, h \neq j} \frac{x_h}{x_h - x_j},$$

for $1 \leq j \leq k$, then we can write $s = \sum_{j=1}^k b_j y_j$.

Robust Threshold Schemes

We review the model introduced by Tompa and Woll (1988). Assume a (k, n) -threshold scheme, where the secret s is chosen equiprobably from the set \mathcal{S} . Fix t such that $1 \leq t < k$. We consider the following **Robustness Game**.

1. t of the n shares are given to the adversary. The adversary modifies the t shares to create new “bad shares”.
2. A secret s' is reconstructed using the t “bad shares” and $k - t$ of the original “good shares”. The adversary may choose which of the “good shares” are used in reconstruction. The adversary wins the robustness game if the reconstructed secret s' is a valid secret and $s' \neq s$.

Typically, we let $t = k - 1$. For $0 < \epsilon < 1$, if the adversary can only win this game with probability at most ϵ , then we say that the threshold scheme is **ϵ -robust** (here ϵ is the **cheating probability**).

The Basic Shamir Scheme is Not Robust

- It is possible for a **single adversary** to win the **Robustness Game** with probability $\epsilon = 1$.
- Suppose that the first share is modified: $y'_1 = y_1 + \delta$, where $\delta \neq 0$.
- Suppose that the first k shares are used to reconstruct the secret.
- Recalling the LIF, the reconstructed secret will be

$$s' = b_1 y'_1 + \sum_{j=2}^k b_j y_j = b_1(y_1 + \delta) + \sum_{j=2}^k b_j y_j = s + b_1 \delta \neq s.$$

- Observe also that the adversary knows the relation between s and s' , even though they do not know s .

How to Make the Shamir Scheme Robust

- Tompa and Woll's solution requires that both co-ordinates of shares (x_i, y_i) are secret.
- More recent solutions follow the standard convention where only the y -co-ordinate of a share is secret.
- We discuss the approach due to Ogata and Kurosawa (1996).
- The basic idea is that **only some secrets are considered to be "valid."**
- A secret is first encoded, using a **public encoding function**, and the resulting **encoded secret** is shared using Shamir's scheme.
- The encoding function suggested by Ogata and Kurosawa uses a classic combinatorial structure known as a **difference set**.

Difference Sets

- Suppose that $(G, +)$ is an abelian group of order v .
- $D \subseteq G$ is a (v, m, λ) -difference set if
 1. $|D| = m$ and
 2. for every $g \in G \setminus \{0\}$, there are exactly λ pairs $d_i, d_j \in D$ such that $d_i - d_j = g$.
- If a (v, m, λ) -difference set exists, then $\lambda(v - 1) = m(m - 1)$.
- If $\lambda = 1$, then $v = m^2 - m + 1$; this is called a **planar difference set**.
- The **development** of a planar difference set D , which consists of D and all of its translates, is a **finite projective plane of order $m - 1$** .

Singer Difference Sets

- $\{0, 1, 3\}$ is a $(7, 3, 1)$ -difference set in \mathbb{Z}_7 .
- Its development consists of the seven 3-sets

$$\begin{array}{cccc} \{0, 1, 3\} & \{1, 2, 4\} & \{2, 3, 5\} & \{3, 4, 6\} \\ \{4, 5, 0\} & \{5, 6, 1\} & \{6, 0, 2\}, \end{array}$$

which is the famous **Fano plane**.

- $\{0, 1, 3, 9\}$ is a $(13, 4, 1)$ -difference set.
- $\{3, 6, 12, 7, 14\}$ is a $(21, 5, 1)$ -difference set.
- In general, if q is a prime or prime power, then there is a **Singer difference set**, which is a $(q^2 + q + 1, q + 1, 1)$ -difference set in \mathbb{Z}_{q^2+q+1} .

The Ogata-Kurosawa Scheme

- Suppose we have a (v, m, λ) difference set D in the abelian group \mathbb{F}_v , where v is prime.
- We can use D to robustly share one of m equiprobable secrets, denoted as s_1, \dots, s_m .
- Let $D = \{g_1, \dots, g_m\}$.
- We require that $v \geq n + 1$ in order to implement a Shamir scheme in \mathbb{F}_v .

The Ogata-Kurosawa Scheme works as follows:

1. Given a secret s_i (where $1 \leq i \leq m$), encode s_i as $g = g_i$.
2. Compute shares for the encoded secret g using a (k, n) -Shamir scheme in \mathbb{F}_v .
3. To reconstruct a secret from k shares, first use the LIP to reconstruct $g' \in \mathbb{F}_v$.
4. If $g' \notin D$, then g' is invalid; if $g' = g_j$, then the reconstructed (i.e., decoded) secret is s_j .

Analysis of the Ogata-Kurosawa Scheme

- The effect of modifying one or more shares (up to $k - 1$ shares) is to replace g by $g + \Delta$, where Δ is a quantity that is known to the $k - 1$ adversaries.
- The adversaries win the **Robustness Game** if $g + \Delta \in D$.
- For any nonzero Δ , there are exactly λ choices of $g \in D$ such that $g + \Delta \in D$.
- Since $|D| = m$ and the secrets are equiprobable, it follows that the adversaries win the **Robustness Game** with probability λ/m .

Example

- Suppose we start with $D = \{0, 1, 3, 9\}$ which is a $(13, 4, 1)$ -difference set.
- We have four secrets and the possible encoded secrets are 0, 1, 3 and 9.
- We share an encoded secret g using a (k, n) -Shamir scheme implemented over \mathbb{F}_{13} (this requires $n \leq 12$).
- Each possible modification $g \mapsto g + \Delta$, where $\Delta \in \mathbb{F}_{13} \setminus \{0\}$, succeeds with probability $1/4$.
- $\Delta = 1$ succeeds iff $g = 0$;
 $\Delta = 2$ succeeds iff $g = 1$;
 $\Delta = 3$ succeeds iff $g = 0$;
 $\Delta = 4$ succeeds iff $g = 9$;
etc.

External Difference Families

- Ogata, Kurosawa, Stinson and Saido (2004) observed that **external difference families (EDFs)** could also be used to construct robust threshold schemes.
- A $(19, 3, 3, 3)$ -EDF is given by the three sets $\{1, 7, 11\}$, $\{4, 9, 6\}$ and $\{16, 17, 5\}$ in \mathbb{Z}_{19} .
- Every nonzero element of \mathbb{Z}_{19} occurs three times as a difference between two elements in **two different sets**.
- For the purposes of a robust threshold scheme, there would be three secrets, say s_1, s_2, s_3 .
- The secret s_i would be encoded by choosing a random element in the i th set.
- Then the encoded secret is shared, as before.

AMD Codes

- Cramer, Dodis, Fehr, Padró and Wichs (2008) defined **algebraic manipulation detection codes (AMD codes)**.
- They also described applications of these structures to **robust secret sharing schemes**, **robust fuzzy extractors**, **secure multiparty computation**, and **non-malleable codes**.
- \mathcal{S} is the **source space**, where $|\mathcal{S}| = m$.
- An additive abelian group \mathcal{G} is the **message space**.
- For every source $s \in \mathcal{S}$, let $A(s) \subseteq \mathcal{G}$ denote the set of **valid encodings** of s . We require that $A(s) \cap A(s') = \emptyset$ if $s \neq s'$. Denote $\mathcal{A} = \{A(s) : s \in \mathcal{S}\}$.
- $E : \mathcal{S} \rightarrow \mathcal{G}$ is a (randomized) **encoding function** that maps a source $s \in \mathcal{S}$ to $g \in A(s)$ that is chosen uniformly at random.

Security of an AMD Code

- We define a **weak** AMD code $(\mathcal{S}, \mathcal{G}, \mathcal{A}, E)$ by considering a certain game incorporating an adversary.
- The adversary has complete information about the AMD code.
- Based on this information, the adversary will choose a value $\Delta \neq 0$ from \mathcal{G} .
- Suppose $(\mathcal{S}, \mathcal{G}, \mathcal{A}, E)$ is an AMD code.
 1. The value $\Delta \in \mathcal{G} \setminus \{0\}$ is chosen by the adversary.
 2. The source $s \in \mathcal{S}$ is chosen uniformly at random.
 3. s is encoded into $g \in \mathcal{A}(s)$ using the encoding function E .
 4. The adversary wins if and only if $g + \Delta \in \mathcal{A}(s')$ for some $s' \neq s$.
- The **success probability**, denoted ϵ_Δ , is the probability that the adversary wins this game.
- The code $(\mathcal{S}, \mathcal{G}, \mathcal{A}, E)$ is an **$(v, m, \hat{\epsilon})$ -AMD code**, where $\hat{\epsilon}$ denotes the success probability of the adversary's optimal strategy (i.e., $\hat{\epsilon} = \max_\Delta \{\epsilon_\Delta\}$.)

R-optimal Weak AMD Codes

- Paterson and Stinson (2016) introduced R-optimal weak AMD codes.
- Recall that m is the number of sources, and the encoded sources are in an abelian group of cardinality v .
- We denote the total number of valid encodings by a .

Theorem 1 (PS16)

In any $(v, m, \hat{\epsilon})$ -weak AMD code, it holds that

$$\hat{\epsilon} \geq \frac{a(m-1)}{m(v-1)}.$$

- If we have equality in Theorem 1, then the code is defined to be **R-optimal**.
- In an R-optimal weak AMD code, any choice of Δ is optimal!

Examples of R-optimal Weak AMD Codes

- We summarize a few results from [PS16].
- An AMD code is *ℓ -regular* if every every source has exactly ℓ possible encodings.
- In an ℓ -regular AMD code, we have $a = \ell m$ and hence

$$\hat{\epsilon} \geq \frac{a(m-1)}{m(v-1)} = \frac{\ell(m-1)}{v-1}. \quad (1)$$

- An R-optimal ℓ -regular weak AMD code is *equivalent* to an (v, m, ℓ, λ) -EDF, where $\lambda = \ell^2 m(m-1)/(v-1)$.
- Note that the lower bound for $\hat{\epsilon}$ is minimized when $\ell = 1$.
- In this case, the optimal R-optimal weak AMD codes are (v, m, λ) -difference sets.

Near-optimal Weak AMD Codes

- Since optimal AMD codes exist only for certain parameters, it is useful for applications to consider “near-optimal” codes.
- Instead of using a difference set, we can employ a cyclic difference packing.
- A (v, m) -cyclic difference packing is an m -subset of \mathbb{Z}_v such that, for every $g \in \mathbb{Z}_v \setminus \{0\}$, there is at most one pair $d_i, d_j \in D$ such that $d_i - d_j = g$.
- Difference packings are equivalent to other well-studied combinatorial objects, including modular Golomb rulers and optical orthogonal codes.
- The corresponding 1-regular (weak) AMD code has $\hat{\epsilon} = 1/m$ (an optimal strategy is to choose any Δ that occurs as a difference of two elements of D).

Near-optimal Weak AMD Codes (cont.)

Buratti and Stinson (2021) proved the following result.

Theorem 2 (BS21)

For any $m \geq 3$ and any $v \geq 3m^2 - 1$, there is a (v, m) -cyclic difference packing.

- Theorem 2 is proven using Singer difference sets, some computational results for small m , and known results on the distribution of primes.
- In Theorem 2, we have $v \approx 3m^2$.
- $\hat{\epsilon} = 1/m$ is a factor of three greater than the lower bound from (1), namely,

$$\hat{\epsilon} \geq \frac{m-1}{v-1} \approx \frac{1}{3m}.$$

Nonuniform Source Distributions

- So far, the AMD codes and robust threshold schemes we have discussed assume **uniformly distributed** secrets (or sources).
- It would be nice be able to construct robust threshold schemes that are secure even if the secrets are **not equally likely**.
- In an extreme case, the secret would be known to the adversary.
- The associated AMD codes are termed **strong AMD codes**:
 1. The source $s \in \mathcal{S}$ is given to the adversary.
 2. Then the value $\Delta \in \mathcal{G} \setminus \{0\}$ is chosen by the adversary.
 3. s is encoded into $g \in A(s)$ using the encoding function E .
 4. The adversary wins if and only if $g + \Delta \in A(s')$ for some $s' \neq s$.
- The adversary chooses a value $\Delta = \sigma(s)$ for every source s .
- The code $(\mathcal{S}, \mathcal{G}, \mathcal{A}, E)$ is an **$(v, m, \hat{\epsilon})$ -strong AMD code**, where $\hat{\epsilon}$ denotes the success probability of the adversary's optimal strategy (i.e., $\hat{\epsilon} = \max_{\sigma} \{\epsilon_{\sigma}\}$.)

R-optimal Strong AMD Codes

- Suppose we have an ℓ -regular $(v, m, \hat{\epsilon})$ -strong AMD code.
- Then

$$\hat{\epsilon} \geq \frac{\ell(m-1)}{v-1}. \quad (2)$$

- This is the same bound as in the case of weak AMD codes.
- R-optimal strong AMD codes can be constructed from strong external difference families, which were defined in [PS16].
- A (v, m, ℓ, λ) -strong external difference family (SEDF) is a set of m disjoint ℓ -subsets of an abelian group G of order v , say A_1, \dots, A_m , such that the following multiset equation holds for all i :

$$\bigcup_{\{j : i \neq j\}} \mathcal{D}(A_i, A_j) = \lambda(G \setminus \{0\}).$$

where $\mathcal{D}(A_1, A_2) = \{x - y : x \in A_1, y \in A_2\}$.

- If an (v, m, ℓ, λ) -SEDF exists, then $v \geq m\ell$ and $\lambda(v-1) = \ell^2(m-1)$.

SEDF with $\lambda = 1$

Example 3

Let $\mathcal{G} = (\mathbb{Z}_{\ell^2+1}, +)$, $A_1 = \{0, 1, \dots, \ell - 1\}$ and $A_2 = \{\ell, 2\ell, \dots, \ell^2\}$. This is an $(\ell^2 + 1, 2, \ell, 1)$ -SEDF.

When $\ell = 4$, we have $\mathcal{G} = (\mathbb{Z}_{17}, +)$, $A_1 = \{0, 1, 2, 3\}$ and $A_2 = \{4, 8, 12, 16\}$.

Example 4

Let $\mathcal{G} = (\mathbb{Z}_v, +)$ and $A_i = \{i\}$ for $0 \leq i \leq v - 1$. This is an $(v, v, 1, 1)$ -SEDF.

The above two examples are quite special:

Theorem 5 (PS16)

There exists an $(v, m, \ell, 1)$ -SEDF if and only if $m = 2$ and $v = \ell^2 + 1$, or $\ell = 1$ and $v = m$.

SEDF with $\lambda > 1$

- There are numerous examples of SEDF with $m = 2$ and $\lambda > 1$.
- On the other hand, Martin and Stinson (2017) used the **group algebra** and **character theory** to prove nonexistence of nontrivial SEDF with $m = 3, 4$ or with v prime.
- Many other nonexistence results were subsequently proven by a variety of authors using the character theory approach.
- At the present time, there is only **one known example** of an SEDF with $m > 2$ and $\ell > 1$. It was found independently by two sets of authors: Wen, Yang and Feng (2018) and Jedwab and Li (2019).
- In the finite field \mathbb{F}_{3^5} , let C_0 be the subgroup of $\mathbb{F}_{3^5}^*$ of order 22 and let C_1, \dots, C_{10} be its cosets.
- It turns out that $\{C_0, \dots, C_{10}\}$ is a $(243, 11, 22, 20)$ -SEDF.

Near-optimal Strong AMD Codes

- Fortunately, it is possible to find good constructions for **near-optimal** strong AMD codes.
- Cramer, Fehr and Padro (2013) proved the following result.

Theorem 6 (CFP13)

For all prime powers q , there exists a q -regular $(q^3, q, 1/q)$ -strong AMD code.

Proof.

For every $s \in \mathbb{F}_q$, let $A_s = \{(s, 0, 0) + \alpha(0, 1, s) : \alpha \in \mathbb{F}_q\}$. □

- The lower bound from (2) is

$$\hat{\epsilon} \geq \frac{\ell(m-1)}{v-1} = \frac{q(q-1)}{q^3-1} = \frac{q}{q^2+q+1},$$

which is quite close to $1/q$.

Non-malleable Threshold Schemes

- Non-malleable threshold schemes have been considered by various authors, and several different definitions can be found in the literature. Here I discuss the approach of Veitch and Stinson (2023).
- We use the term “**non-malleable**” to denote a scheme that protects against certain **pre-specified** adversarial attacks.
- Suppose \sim is an **irreflexive binary relation** on the set \mathcal{S} of possible secrets.
- The adversary’s goal in the **Malleability Game** is to modify one or more shares in such a way that $s' \sim s$, where s is the true secret and $s' \neq s$ is the reconstructed secret.
- If we define $s' \sim s$ if and only if $s \neq s'$, then the requirement for the adversary to win the **Malleability Game** is that $s' \neq s$. This is the same as a robust scheme.
- We consider an **additive relation**, e.g., $s' \sim_1 s$ iff $s' = s + 1$.

Optimal Non-malleable Threshold Schemes

- Optimal non-malleable threshold schemes for the additive relation \sim_1 can be obtained from circular external difference families and strong circular external difference families.

Definition 7

Let G be an additive abelian group of order v and suppose $m \geq 2$.

An $(v, m, \ell; \lambda)$ -circular external difference family (or $(v, m, \ell; \lambda)$ -CEDF) is a set of m disjoint ℓ -subsets of G , say $\mathcal{A} = (A_0, \dots, A_{m-1})$, such that the following multiset equation holds:

$$\bigcup_{j=0}^{m-1} \mathcal{D}(A_{j+1 \bmod m}, A_j,) = \lambda(G \setminus \{0\}).$$

We observe that $m\ell^2 = \lambda(v - 1)$ if a $(v, m, \ell; \lambda)$ -CEDF exists.

An Example of a CEDF

There are a number of different constructions for CEDF. Here is a small example.

Example 8

The following four sets of size 2 form a $(17, 4, 2, 1)$ -CEDF in \mathbb{Z}_{17} :

$$\mathcal{A} = (\{1, 16\}, \{9, 8\}, \{13, 4\}, \{15, 2\}).$$

To verify, we compute:

$$9 - 1 = 8 \quad 8 - 1 = 7 \quad 9 - 16 = 10 \quad 8 - 16 = 9$$

$$13 - 9 = 4 \quad 4 - 9 = 12 \quad 13 - 8 = 5 \quad 4 - 8 = 13$$

$$15 - 13 = 2 \quad 2 - 13 = 6 \quad 15 - 4 = 11 \quad 2 - 4 = 15$$

$$1 - 15 = 3 \quad 16 - 15 = 1 \quad 1 - 2 = 16 \quad 16 - 2 = 14$$

Strong CEDF

Definition 9

Let G be an additive abelian group of order v and suppose $m \geq 2$.

An $(v, m, \ell; \lambda)$ -strong circular external difference family (or $(v, m, \ell; \lambda)$ -SCEDF) is a set of m disjoint ℓ -subsets of G , say $\mathcal{A} = (A_0, \dots, A_{m-1})$, such that the following multiset equation holds for every j , $0 \leq j \leq m-1$:

$$\mathcal{D}(A_{j+1 \bmod m}, A_j) = \lambda(G \setminus \{0\}).$$

We observe that $\ell^2 = \lambda(v-1)$ if an $(v, m, \ell; \lambda)$ -SCEDF exists.

- Each pair of adjacent sets in an SCEDF form an SEDF.
- In general, SCEDF seem to be difficult to construct.
- There are examples with $m = 2$: any $(v, 2, \ell; \lambda)$ -SEDF is automatically strong.
- At present, we are unable to construct any $(v, m, \ell; \lambda)$ -SCEDF with $m \geq 3$.

Near-optimal Strong Circular AMD Codes

- Since strong CEDF (i.e., **optimal** strong circular AMD codes) are apparently very difficult to find, we instead explore constructions for **near-optimal** strong circular AMD codes.
- One possibility is to use cyclotomic classes in a finite field.
- The security of a resulting AMD code depends on the relevant cyclotomic numbers.
- Let $q = ef + 1$ be a prime power and let $\alpha \in \mathbb{F}_q$ be a primitive element.
- Define $C_0 = \{\alpha^{je} : 0 \leq j \leq f - 1\}$ and define $C_i = \alpha^i C_0$ for $1 \leq i \leq e - 1$.
- C_0, \dots, C_{e-1} are the **cyclotomic classes of index e** .
- The **cyclotomic numbers of order e** are the integers denoted $(i, j)_e$ ($0 \leq i, j \leq e - 1$) that are defined as follows:

$$(i, j)_e = |(C_i + 1) \cap C_j|.$$

Near-optimal Strong Circular AMD Codes (cont.)

Theorem 10

Let $q = ef + 1$ be a prime power. Denote

$$\lambda = \max\{(i, i + 1 \bmod e)_e : 0 \leq i \leq e - 1\}.$$

Then $\mathcal{A} = \{C_0, \dots, C_{e-1}\}$ is an f -regular strong circular $(q, e, \hat{\epsilon})$ -AMD code, where $\hat{\epsilon} = \lambda/f$.

Strong Circular $(q, 4, \hat{\epsilon})$ -AMD Codes

- Suppose $q \equiv 1 \pmod{8}$ and we take $e = 4$ in Theorem 10.
- The security of the resulting AMD code depends on the cyclotomic numbers $(0, 1)_4$, $(1, 2)_4$, $(2, 3)_4$ and $(3, 0)_4$.
- To compute them, express q in the form $q = \mu^2 + 4\nu^2$, where $\mu \equiv 1 \pmod{4}$; the sign of ν is undetermined.
- Then we have

$$\begin{aligned}(0, 1)_4 &= \frac{q - 3 + 2\mu + 8\nu}{16} \\(1, 2)_4 &= \frac{q + 1 - 2\mu}{16} \\(2, 3)_4 &= \frac{q + 1 - 2\mu}{16} \\(3, 0)_4 &= \frac{q - 3 + 2\mu - 8\nu}{16}.\end{aligned}$$

- Switching the sign of ν interchanges the values of $(0, 1)_4$ and $(3, 0)_4$, but the resulting value of λ is not affected.

Example

- Suppose $q = 97 = 4 \times 24 + 1$.
- We have $97 = 9^2 + 4 \times 2^2$, so $\mu = 9$ and $\nu = \pm 2$.
- The largest of the four cyclotomic numbers is

$$\frac{97 - 3 + 18 + 16}{16} = 8.$$

- We obtain a 24-regular strong circular $(97, 4, 1/3)$ -AMD code.

An Asymptotic Result

- To analyse the asymptotic behaviour of this approach, we maximize the function

$$\frac{q - 3 + 2\mu + 8\nu}{16q/4} = \frac{q - 3 + 2\mu + 8\nu}{4q}$$

subject to the constraint $q = \mu^2 + 4\nu^2$.

- Using elementary calculus, we see that

$$2\mu + 8\nu \leq 2\sqrt{5}\sqrt{q}.$$

- The following result is obtained.

Theorem 11

Suppose $q \equiv 1 \pmod{8}$ is a prime power. Then there is a $(q-1)/4$ -regular strong circular $(q, 4, \hat{\epsilon})$ -AMD code with $\hat{\epsilon} < \frac{1}{4} + \frac{\sqrt{5}}{2}q^{-1/2}$.

Some References

- [1] M. Tompa and H. Woll. How to share a secret with cheaters. *J. Cryptology* **1** (1989), 133–138.
- [2] W. Ogata and K. Kurosawa. Optimum secret sharing scheme secure against cheating. *Lecture Notes in Computer Science* **1070** (1996), 200–211 (EUROCRYPT '96).
- [3] R. Cramer, Y. Dodis, S. Fehr, C. Padró and D. Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. *Lecture Notes in Computer Science* **4965** (2008), 471–488 (EUROCRYPT 2008).
- [4] M.B. Paterson and D.R. Stinson. Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. *Discrete Math.* **339** (2016), 2891–2906.
- [5] S. Veitch and D.R. Stinson. Unconditionally secure non-malleable secret sharing and circular external difference families. To appear in *Designs, Codes and Cryptography*.
- [6] M.B. Paterson and D.R. Stinson. New results on circular external difference families. In preparation.

Thank You For Your Attention!

