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Road Map

We study robust and non-malleable threshold schemes in two

settings:

1. equiprobable sources (secrets)

2. known sources (secrets)

threshold scheme
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difference set
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weak AMD code

strong EDF
strong AMD code

non-malleable

circular EDF
weak circular AMD code

strong circular EDF
strong circular AMD
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(k,n)-Threshold Schemes

Let 1 < k < n and let S be the set of possible secrets.
There are n participants in the scheme, denoted P,..., P,
as well as an additional participant called the dealer.

A secret s € S is chosen by the dealer.

The dealer then constructs n shares, which we denote by
S1y .-+ 8n-

The share s; is given to participant P;, for 1 < i < n.

The following two properties should be satisfied.

Correctness: Any set of k participants can recover the secret
from the shares that they hold collectively.

Perfect privacy: No set of k — 1 or fewer participants can
obtain any information about the secret from
the shares that they hold collectively.
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Shamir’s Threshold Scheme

® Suppose [, is a finite field, where g is a prime power.

® The (k,n)-threshold scheme will share a secret s € F,, where
qg>n+1.

Share: The dealer selects a random polynomial f(z) € Fyx]
of degree k — 1 such that f(0) = s. Each share s; is
an ordered pair, i.e., s; = (x;,y;), where the z;'s are
distinct and non-zero and y; = f(i). The z;'s are
public and the y;'s are secret.

Recover: Given k shares, the participants use Lagrange
interpolation to reconstruct f(x) and then they
evaluate the polynomial f(z) at 2 = 0 to recover the
secret s.
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Lagrange Interpolation Formula

Let y1,...,yx € Fy and let zq, ...,z € Fy be distinct.
Then there is a unique polynomial f(x) € Fy[x] with degree
at most k£ — 1 such that f(x;) =y; for 1 <i <k.

The Lagrange interpolation formula (LIF) states that
b x—
— Tp
f@)=>"v ]I e
J=1  1<h<khzj R

Since s = f(0), it is sufficient to compute
k

Th
s=2 v 1l -
j Th — T4

=1 1<h<kh#j

If we define

Th
bi = H xp —
1<h<khzj "

for 1 < j <k, then we can write s = Z§=1 b;y;.
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Robust Threshold Schemes

We review the model introduced by Tompa and Woll (1988).
Assume a (k,n)-threshold scheme, where the secret s is chosen
equiprobably from the set S. Fix t such that 1 <t < k. We
consider the following Robustness Game.

1. ¢ of the n shares are given to the adversary. The adversary
modifies the ¢ shares to create new “bad shares”.

2. A secret s’ is reconstructed using the ¢ “bad shares” and k —t
of the original “good shares”. The adversary may choose
which of the “good shares” are used in reconstruction. The
adversary wins the robustness game if the reconstructed secret
s’ is a valid secret and s’ # s.

Typically, we let t = k — 1. For 0 < € < 1, if the adversary can
only win this game with probability at most €, then we say that the
threshold scheme is e-robust (here € is the cheating probability).
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The Basic Shamir Scheme is Not Robust

It is possible for a single adversary to win the Robustness
Game with probability € = 1.

Suppose that the first share is modified: y| = y1 + J, where
0 #0.

Suppose that the first k shares are used to reconstruct the
secret.

Recalling the LIF, the reconstructed secret will be

k k

S =biyh + Y by =bi(yi +6) + Y bjy; = s+bid £ s.
j=2 Jj=2

Observe also that the adversary knows the relation between s
and s’, even though they do not know s.

7/36



How to Make the Shamir Scheme Robust

Tompa and Woll’s solution requires that both co-ordinates of
shares (z;,y;) are secret.

More recent solutions follow the standard convention where
only the y-co-ordinate of a share is secret.

We discuss the approach due to Ogata and Kurosawa (1996).

The basic idea is that only some secrets are considered to be
“valid.”

A secret is first encoded, using a public encoding function, and
the resulting encoded secret is shared using Shamir's scheme.

The encoding function suggested by Ogata and Kurosawa uses
a classic combinatorial structure known as a difference set.
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Difference Sets

Suppose that (G, +) is an abelian group of order v.
D C G is a (v, m, \)-difference set if

1. |D] =m and

2. for every g € G\ {0}, there are exactly A pairs d;,d; € D such

that d; — dj =g.

If a (v, m, A)-difference set exists, then A(v — 1) = m(m — 1).
If A =1, then v = m? —m + 1; this is called a planar
difference set.
The development of a planar difference set D, which consists
of D and all of its translates, is a finite projective plane of
order m — 1.
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Singer Difference Sets

e {0,1,3} is a (7,3, 1)-difference set in Z7.

® |ts development consists of the seven 3-sets

{0,1,3} {1,2,4} {2,3,5} {3,4,6}
{4,5,0} {5,6,1} {6,0,2},

which is the famous Fano plane.
e {0,1,3,9} is a (13,4, 1)-difference set.
e {3,6,12,7,14} is a (21,5, 1)-difference set.
® |n general, if ¢ is a prime or prime power, then there is a

Singer difference set, which is a
(¢> + g+ 1,q+ 1,1)-difference set in L2 4 qt1-

10/36



The Ogata-Kurosawa Scheme

® Suppose we have a (v, m, \) difference set D in the abelian
group F,, where v is prime.

® We can use D to robustly share one of m equiprobable
secrets, denoted as s1,..., Sm.

o let D={g1,...,9m}

® We require that v > n + 1 in order to implement a Shamir
scheme in F,.

The Ogata-Kurosawa Scheme works as follows:

1. Given a secret s; (where 1 <1 < m), encode s; as g = g;.

2. Compute shares for the encoded secret g using a
(k,n)-Shamir scheme in F,,.

3. To reconstruct a secret from k shares, first use the LIP to
reconstruct ¢’ € IF,,.

4. If ¢ ¢ D, then ¢’ is invalid; if ¢ = g;, then the reconstructed
(i.e., decoded) secret is s;.

11/36



Analysis of the Ogata-Kurosawa Scheme

The effect of modifying one or more shares (up to k — 1
shares) is to replace g by g + A, where A is a quantity that is
known to the & — 1 adversaries.

The adversaries win the Robustness Game if g+ A € D.

For any nonzero A, there are exactly A\ choices of g € D such
that g+ A € D.

Since |D| = m and the secrets are equiprobable, it follows

that the adversaries win the Robustness Game with probability
A/m.
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Example

Suppose we start with D = {0, 1,3,9} which is a

(13,4, 1)-difference set.

We have four secrets and the possible encoded secrets are
0,1,3 and 9.

We share an encoded secret g using a (k,n)-Shamir scheme
implemented over Fi3 (this requires n < 12).

Each possible modification g — g + A, where A € Fy3\ {0},

succeeds with probability 1/4.
A =1 succeeds iff g = 0;

A = 2 succeeds iff g = 1;

A = 3 succeeds iff g = 0;

A = 4 succeeds iff g = 9;

etc.
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External Difference Families

¢ Ogata, Kurosawa, Stinson and Saido (2004) observed that
external difference families (EDFs) could also be used to
construct robust threshold schemes.

® A (19,3,3,3)-EDF is given by the three sets {1,7,11},
{4, 9,6} and {16, 17, 5} in Zlg.

® Every nonzero element of Z1g occurs three times as a
difference between two elements in two different sets.

® For the purposes of a robust threshold scheme, there would be
three secrets, say si, s9, S3.

® The secret s; would be encoded by choosing a random
element in the ¢th set.

® Then the encoded secret is shared, as before.
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AMD Codes

Cramer, Dodis, Fehr, Padré and Wichs (2008) defined
algebraic manipulation detection codes (AMD codes).

They also described applications of these structures to robust
secret sharing schemes, robust fuzzy extractors, secure
multiparty computation, and non-malleable codes.

S is the source space, where |S| = m.
An additive abelian group G is the message space.

For every source s € S, let A(s) C G denote the set of valid
encodings of s. We require that A(s) N A(s) =0 if s £ 5.
Denote A = {A(s) : s € S}.

E :S8 — G is a (randomized) encoding function that maps a
source s € S to g € A(s) that is chosen uniformly at random.
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Security of an AMD Code

We define a weak AMD code (S, G, A, E) by considering a
certain game incorporating an adversary.

The adversary has complete information about the AMD code.

Based on this information, the adversary will choose a value
A # 0 from G.
Suppose (S,G, A, E) is an AMD code.

1. The value A € G\ {0} is chosen by the adversary.

2. The source s € S is chosen uniformly at random.

3. s is encoded into g € A(s) using the encoding function E.
4. The adversary wins if and only if g + A € A(s’) for some

s #s.
The success probability, denoted ea, is the probability that
the adversary wins this game.
The code (S,G, A, E) is an (v, m, ¢)-AMD code, where ¢
denotes the success probability of the adversary's optimal
strategy (i.e., ¢ = maxa{ea}.)
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R-optimal Weak AMD Codes

® Paterson and Stinson (2016) introduced R-optimal weak
AMD codes.
® Recall that m is the number of sources, and the encoded

sources are in an abelian group of cardinality v.

® We denote the total number of valid encodings by a.

Theorem 1 (PS16)
In any (v, m, €)-weak AMD code, it holds that

. _a(m—1)

E> ——~.

~ m(v—1)

® |f we have equality in Theorem 1, then the code is defined to
be R-optimal.

® In an R-optimal weak AMD code, any choice of A is optimal!
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Examples of R-optimal Weak AMD Codes

We summarize a few results from [PS16].

An AMD code is (-regular if every every source has exactly /¢

possible encodings.

In an {-regular AMD code, we have a = ¢m and hence
alm—1) £(m—1)

S sy Rl (1)

An R-optimal /-regular weak AMD code is equivalent to an
(v,m, ¢, \)-EDF, where A\ = (>m(m —1)/(v — 1).
Note that the lower bound for € is minimized when ¢ = 1.

In this case, the optimal R-optimal weak AMD codes are
(v, m, \)-difference sets.
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Near-optimal Weak AMD Codes

Since optimal AMD codes exist only for certain parameters, it
is useful for applications to consider “near-optimal” codes.

Instead of using a difference set, we can employ a cyclic
difference packing.

A (v, m)-cyclic difference packing is an m-subset of Z, such
that, for every g € Z, \ {0}, there is at most one pair

di,d; € D such that d; —d; = g.

Difference packings are equivalent to other well-studied
combinatorial objects, including modular Golomb rulers and
optical orthogonal codes.

The corresponding 1-regular (weak) AMD code has é = 1/m
(an optimal strategy is to choose any A that occurs as a
difference of two elements of D).
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Near-optimal Weak AMD Codes (cont.)

Buratti and Stinson (2021) proved the following result.

Theorem 2 (BS21)
For any m > 3 and any v > 3m? — 1, there is a (v, m)-cyclic
difference packing.

® Theorem 2 is proven using Singer difference sets, some
computational results for small m, and known results on the
distribution of primes.

® In Theorem 2, we have v ~ 3m?2.

® ¢ =1/m is a factor of three greater than the lower bound
from (1), namely,

m—1 1

~
~

v—1 3m’
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Nonuniform Source Distributions

So far, the AMD codes and robust threshold schemes we have
discussed assume uniformly distributed secrets (or sources).

It would be nice be able to construct robust threshold schemes
that are secure even if the secrets are not equally likely.

In an extreme case, the secret would be known to the
adversary.
The associated AMD codes are termed strong AMD codes:
1. The source s € S is given to the adversary.
2. Then the value A € G\ {0} is chosen by the adversary.
3. s is encoded into g € A(s) using the encoding function E.
4. The adversary wins if and only if g + A € A(s’) for some

s #s.
The adversary chooses a value A = o(s) for every source s.
The code (S,G, A, E) is an (v, m, €)-strong AMD code,
where é denotes the success probability of the adversary’s
optimal strategy (i.e., ¢ = max,{e,}.)
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R-optimal Strong AMD Codes

® Suppose we have an (-regular (v, m, €)-strong AMD code.

® Then

{(m—1)

é>
v—1

(2)

® This is the same bound as in the case of weak AMD codes.

® R-optimal strong AMD codes can be constructed from strong
external difference families, which were defined in [PS16].
A (v,m, ¢, \)-strong external difference family (SEDF) is a set
of m disjoint ¢-subsets of an abelian group G of order v, say
Aq, ..., Ay, such that the following multiset equation holds
for all i:
U D4, 4)) = MG\ {0}).

{7 +i#4}
where D(A1, Ay) ={z —y:x € A,y € As}.
If an (v, m, ¢, \)-SEDF exists, then v > m/{ and
Av—1)=£2(m—1).
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SEDF with A =1

Example 3
Let G = (Zg2+1,+), A; ={0,1,...,¢/—1} and
Ay ={0,2¢,... 0%}, Thisis an (£2+1,2,¢,1)-SEDF.

When ¢ = 4, we have G = (Z17,+), A1 ={0,1,2,3} and
Ay = {4,8,12,16}.

Example 4
Let G = (Zy,+) and A; = {i} for 0 <i <wv—1. Thisis an
(v,v,1,1)-SEDF.

The above two examples are quite special:

Theorem 5 (PS16)

There exists an (v, m, ¢, 1)-SEDF if and only if m = 2 and
v=0410or¢{=1andv=m.
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SEDF with A > 1

There are numerous examples of SEDF with m =2 and A > 1.

On the other hand, Martin and Stinson (2017) used the group
algebra and character theory to prove nonexistence of
nontrivial SEDF with m = 3,4 or with v prime.

Many other nonexistence results were subsequently proven by
a variety of authors using the character theory approach.

At the present time, there is only one known example of an
SEDF with m > 2 and £ > 1. It was found independently by
two sets of authors: Wen, Yang and Feng (2018) and Jedwab
and Li (2019).

In the finite field [F3s, let Cy be the subgroup of F3; of order
22 and let (4, ..., be its cosets.

It turns out that {Cy,...,Cio} is a (243,11, 22,20)-SEDF.
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Near-optimal Strong AMD Codes

® Fortunately, it is possible to find good constructions for
near-optimal strong AMD codes.

e Cramer, Fehr and Padro (2013) proved the following result.
Theorem 6 (CFP13)

For all prime powers q, there exists a q-regular (¢°,q,1/q)-strong
AMD code.

Proof.
For every s € Fy, let A; = {(5,0,0) + «(0,1,s) : v € Fy }. O
® The lower bound from (2) is
s lm=1) _ale=1) g
RS | ¢ -1 @?+qg+1’

which is quite close to 1/q.
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Non-malleable Threshold Schemes

Non-malleable threshold schemes have been considered by
various authors, and several different definitions can be found
in the literature. Here | discuss the approach of Veitch and
Stinson (2023).

We use the term “non-malleable” to denote a scheme that
protects against certain pre-specified adversarial attacks.
Suppose ~ is an irreflexive binary relation on the set S of
possible secrets.

The adversary's goal in the Malleability Game is to modify
one or more shares in such a way that s’ ~ s, where s is the
true secret and s’ # s is the reconstructed secret.

If we define s’ ~ s if and only if s # s/, then the requirement
for the adversary to win the Malleability Game is that s’ # s.
This is the same a a robust scheme.

We consider an additive relation, e.g., s’ ~q s iff s/ = s+ 1.
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Optimal Non-malleable Threshold Schemes

e QOptimal non-malleable threshold schemes for the additive
relation ~71 can be obtained from circular external difference
families and strong circular external difference families.

Definition 7

Let G be an additive abelian group of order v and suppose m > 2.
An (v, m, ¢; \)-circular external difference family (or

(v,m, £; \)-CEDF) is a set of m disjoint ¢-subsets of G, say

A = (Ao, ..., Am—1), such that the following multiset equation
holds:

m—1
U D(Aj—H mod m>» Aja ) = AG\ {0}).
j=0
We observe that m¢? = (v — 1) if a (v, m, £; \)-CEDF exists.
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An Example of a CEDF

There are a number of different constructions for CEDF. Here is a
small example.

Example 8
The following four sets of size 2 form a (17, 4,2,1)-CEDF in Z7:

A= ({1,16},{9,8},{13,4},{15,2)}).

To verify, we compute:

9-1=8 8—1=7 9—-16=10 8§—-16=9
13-9=14 4—-9=12 13-8=5 4—-8=13
15-13=2 2-13=6 15-4=11 2—-4=15
1-156=3 16-15=1 1-2=16 16-2=14
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Strong CEDF

Definition 9

Let GG be an additive abelian group of order v and suppose m > 2.
An (v, m, ; \)-strong circular external difference family (or
(v,m, ¢; \)-SCEDF) is a set of m disjoint ¢-subsets of G, say

A= (Ao, ..., Am—1), such that the following multiset equation
holds for every 5, 0 < j <m —1:

D(Aj—i-l mod m>» A]) = )‘(G \ {0})

We observe that ¢2 = \(v — 1) if an (v, m, ¢; \)-SCEDF exists.
® Each pair of adjacent sets in an SCEDF form an SEDF.
® In general, SCEDF seem to be difficult to construct.
® There are examples with m = 2: any (v, 2, ¢; \)-SEDF is
automatically strong.
® At present, we are unable to construct any (v, m, ¢; A\)-SCEDF

with m > 3.
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Near-optimal Strong Circular AMD Codes

Since strong CEDF (i.e., optimal strong circular AMD codes)
are apparently very difficult to find, we instead explore
constructions for near-optimal strong circular AMD codes.

One possibility is to use cyclotomic classes in a finite field.

The security of a resulting AMD code depends on the relevant
cyclotomic numbers.

Let ¢ = ef + 1 be a prime power and let o € [F; be a
primitive element.

Define Cp = {a’®: 0 < j < f — 1} and define C; = a’Cj for
1< <e—1.
Co,...,Ce_q are the cyclotomic classes of index e.

The cyclotomic numbers of order e are the integers denoted
(i,5)e (0 <1i,j < e— 1) that are defined as follows:

(i, 4)e = [(Ci + 1) N Cjl.
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Near-optimal Strong Circular AMD Codes (cont.)

Theorem 10
Let g =ef + 1 be a prime power. Denote

A =max{(i,i+1mode):0<i<e—1}.

Then A={Cy,...,Ce_1} is an f-regular strong circular
(q,e,€)-AMD code, where ¢ = \/f.
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Strong Circular (¢, 4, €)-AMD Codes

Suppose ¢ = 1 mod 8 and we take e = 4 in Theorem 10.

The security of the resulting AMD code depends on the
cyclotomic numbers (0, 1)4, (1,2)4, (2,3)4 and (3,0)4.

® To compute them, express ¢ in the form ¢ = pu? + 402, where
© =1 mod 4; the sign of v is undetermined.

Then we have

—3+2 8v
(0a1)4 g 1—zgu+
(1a2>4 = (H%G_;u

— — 8v
(3,0, = 2 16“ .

® Switching the sign of v interchanges the values of (0,1)4 and
(3,0)4, but the resulting value of X is not affected.
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Example

Suppose ¢ =97 =4 x 24 + 1.
We have 97 =92 +4 x 22 so =9 and v = £2.

The largest of the four cyclotomic numbers is

97 —3+18+16 _

16 8.

We obtain a 24-regular strong circular (97,4,1/3)-AMD code.
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An Asymptotic Result

® To analyse the asymptotic behaviour of this approach, we
maximize the function
q—3+2u+8v q—3+2u+8v
16q/4 N 4q

subject to the constraint ¢ = u? + 402

® Using elementary calculus, we see that
2u+ 8v < 2\/5\/5
® The following result is obtained.
Theorem 11
Suppose ¢ = 1 mod 8 is a prime power. Then there is a

(¢ — 1)/4-regular strong circular (q, 4, €)-AMD code with
e<i+ éq_l/ 2,
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Thank You For Your Attention!
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