

Traceable Ring Signatures from Group Actions: Logarithmic, Flexible, and Quantum Resistant

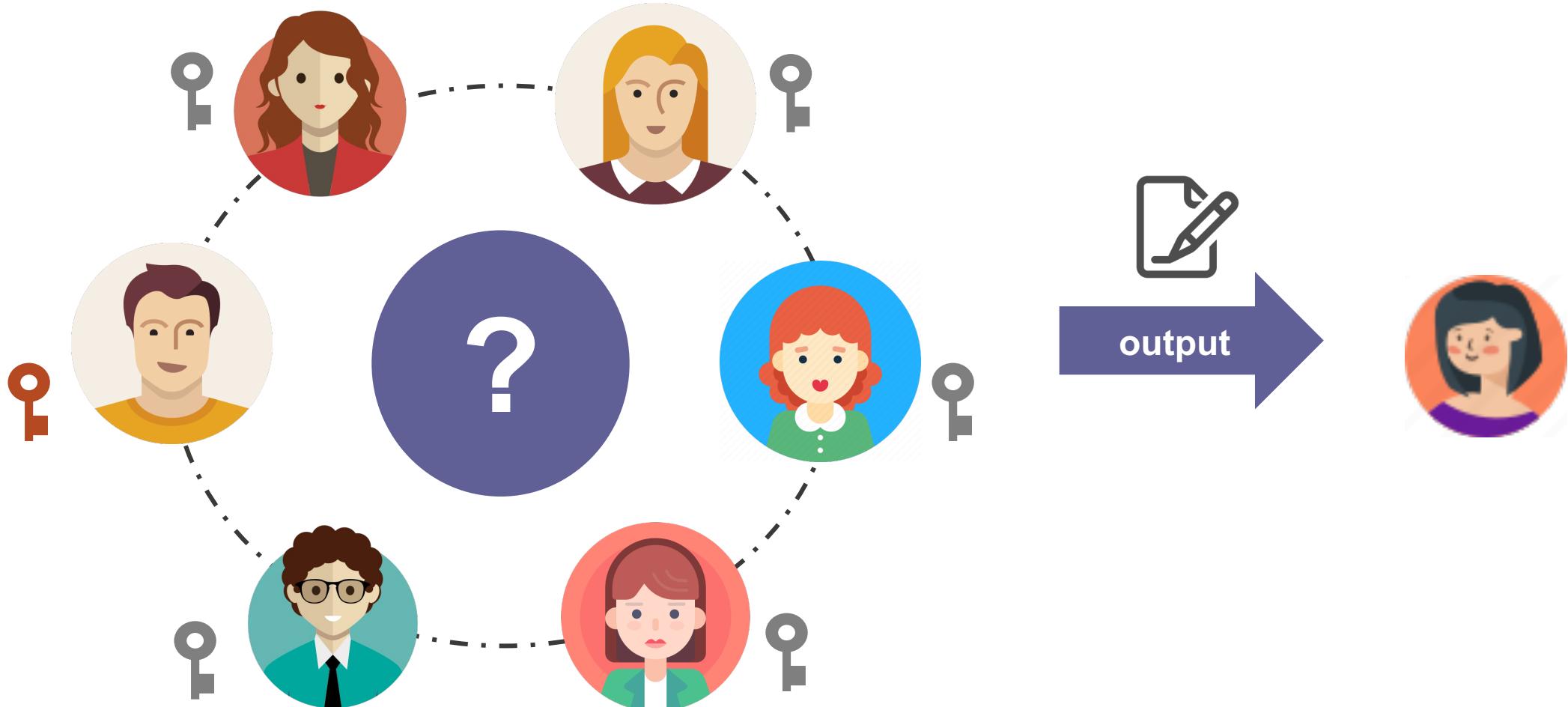
Reporter: Wei Wei

Authors: Wei Wei, Min Luo*, Zijian Bao, Cong Peng and Debiao He*

Wuhan University

2023-08-16

Motivation — Ring Signature

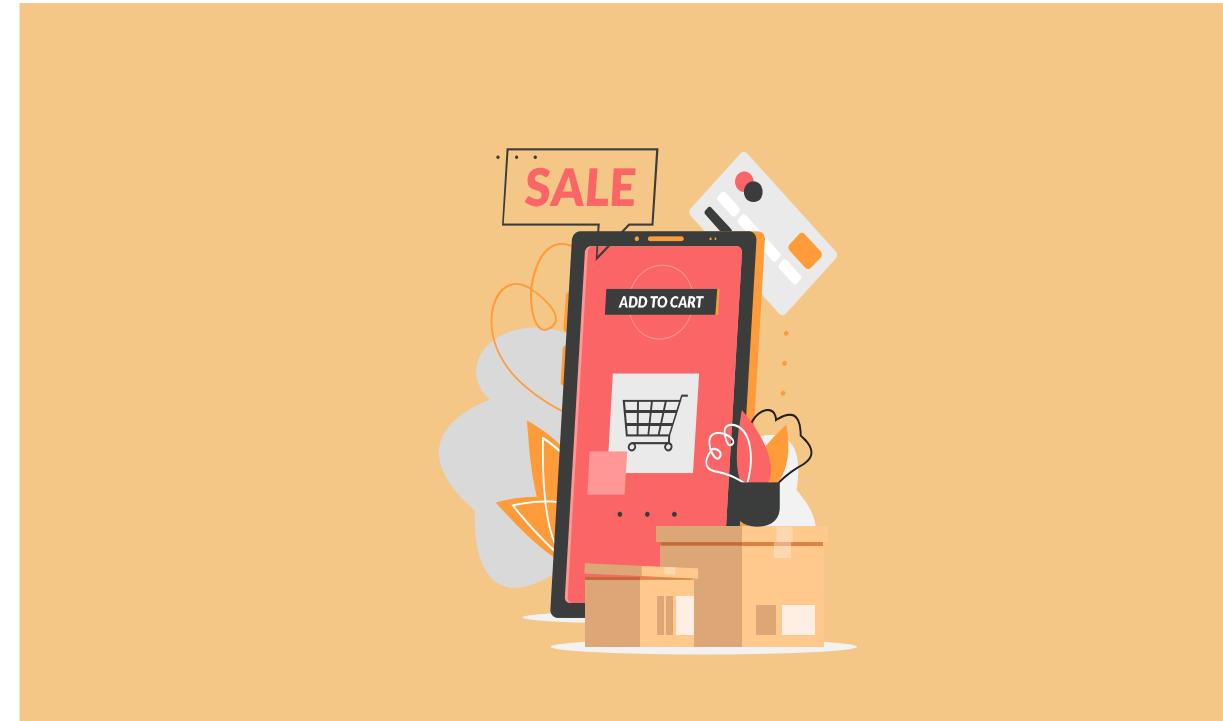


Hides the origin of a signature

Protect the privacy of signers

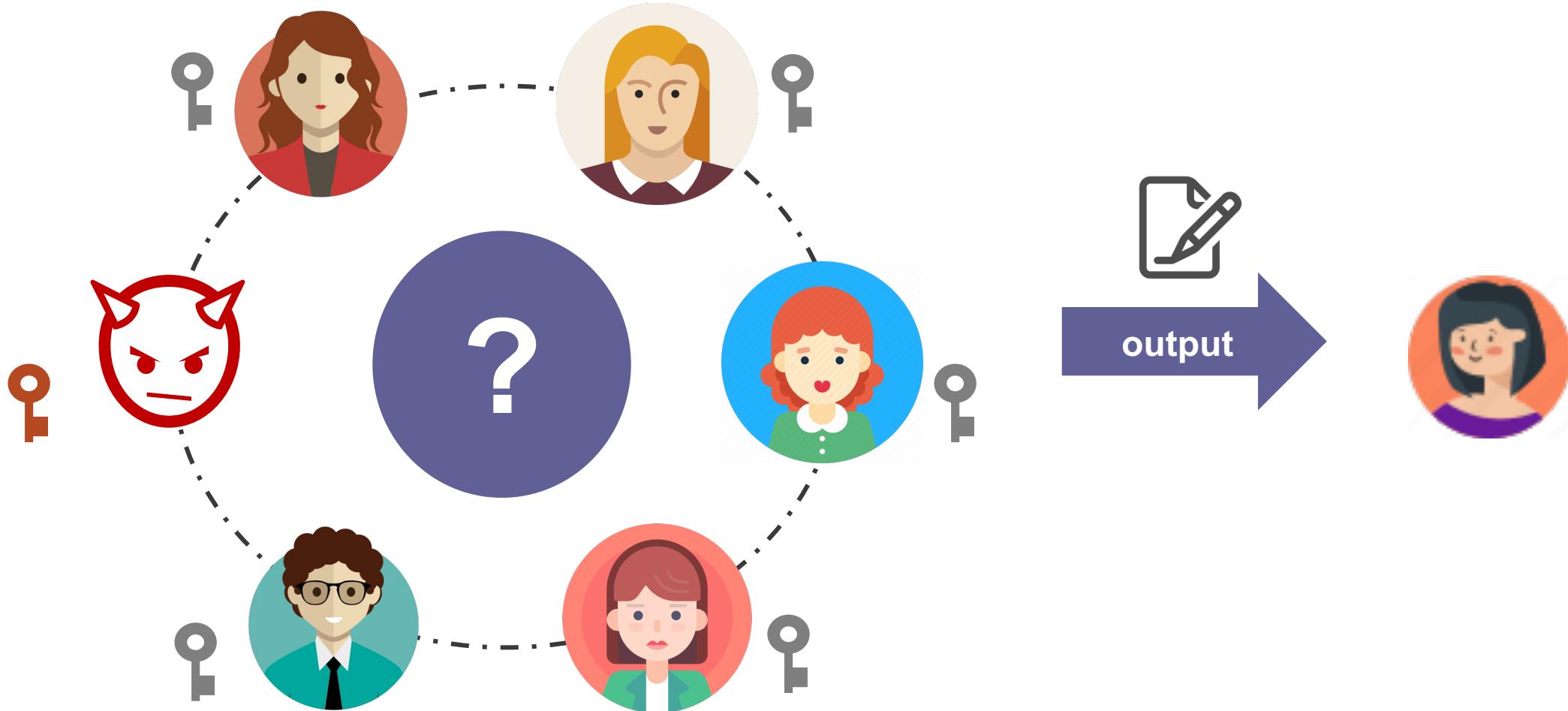
Motivation — Ring Signature

e-voting



e-coupon services

Motivation — Ring Signature



Unconditional anonymity

Motivation — Traceable Ring Signature

Honest member

message → signature

signature1 ← message1

signature2 ← message2

Dishonest member

message → signature

message → signature

Vote twice for two candidates

Double-spend

- How to construct a post-quantum secure traceable ring signature?

Motivation — Literature review

- Lattice-based schemes

ring signature

traceable ring signature

unique ring signature

- Isogeny-based schemes

linkable ring signature

accountable ring signature

revocable ring signature

- Other post-quantum schemes

traceable ring signature

one-time traceable ring signature

Table 1: Comparison of our TRS with other (traceable) ring signature.

Schemes	Signature size	Linkability	Traceability	Implementation	Hardness Assumption
Alessandra[32]	$O(N)$	✓	✓	✓	NONE
Branco[6]	$O(N)$	✓	✓	✗	SD ¹
Falafl[4]	$O(\log(N))$	✓	✗	✓	MSIS ² , MLWE ³
Feng H[19]	$O(\log(N))$	✓	✓	✗	SIS ² , LWE ³
MatRiCT[18]	$O(\log(N))$	✗	✗	✓	MSIS ² , MLWE ³
Esgin[16]	$O(\log(N))$	✗	✗	✓	SIS ² , LWE ³
Raptor[27]	$O(N)$	✓	✗	✓	NTRU ⁴
Calamari[4]	$O(\log(N))$	✓	✗	✓	CSIDH ⁵
CHH[10]	$O(N^2)$	✗	✓	✗	CSIDH ⁵
KYM[24]	$O(N \log(N))$	✗	✓	✗	CSIDH ⁵
This work	$O(\log(N))$	✓	✓	✓	MSIS ² , MLWE ³ , CSIDH ⁵

¹ SD: Syndrome Decoding

² SIS: Short Integer Solution, MSIS: Module Short Integer Solution

³ LWE: Learning with Errors, MLWE: Module Learning with Errors

⁴ NTRU: Number Theory Research Unit

⁵ CSIDH: Commutative Supersingular Isogeny Diffie Hellman

Motivation — Literature review

[BKP2020]

- construct an efficient **(linkable) ring signature** scheme and gave two concrete instances from isogenies and lattices
- a general OR-proof, logarithmic signature size

[BKP2023]

- construct an efficient **dynamic group signature** (accountable ring signature) from isogeny and lattice assumptions
- add a proof of valid ciphertext to [BKP2020]'s OR-proof and proving full anonymity

- Is this the construction for other signature schemes (traceable ring signature)?

Background — Restricted Pair of Group Action

Group Action

Let (\mathcal{G}, \cdot) be a group with identity element $e \in \mathcal{G}$ and \mathcal{X} a set. A map $\star: \mathcal{G} \times \mathcal{X} \rightarrow \mathcal{X}$ is a group action if it satisfies the following properties:

- **Compatibility:** $(g \cdot h) \star x = (h \cdot g) \star x$ for all $g, h \in \mathcal{G}$ and $x \in \mathcal{X}$.
- **Identity:** $e \star x = x$ for all $x \in \mathcal{X}$.

Restricted Effective Group Action

Let $(\mathcal{G}, \mathcal{X}, \star)$ be a group action and let $\vec{g} = \{g_1, \dots, g_n\}$ be a generating set for \mathcal{G} . we call $(\mathcal{G}, \mathcal{X}, \star, \tilde{x})$ a restricted effective group action if:

1. The group \mathcal{G} is finite and $n = \text{poly}(\log(\#\mathcal{G}))$.
2. membership testing and unique representation.
3. There exists a distinguished element $\tilde{x} \in \mathcal{X}$ with known representation.
4. There exists an efficient algorithm that given $g_i \in \mathcal{G}$ and $x \in \mathcal{X}$, outputs $g_i \star x$ and $g_i^{-1} \star x$.

Background — Restricted Pair of Group Action

Restricted Pair of Effective Group Action

Given a finite commutative group $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2 \subseteq \mathcal{G}$, \mathcal{S} and \mathcal{T} are two sets. For $(S_0, T_0) \in \mathcal{S} \times \mathcal{T}$, we say that $(\mathcal{G}, \mathcal{S}, \mathcal{T}, \mathcal{G}_1, \mathcal{G}_2)$ is a ξ -restricted pair of group actions if the following holds:

- **Efficient Group Action:** For any $g \in \mathcal{G}_1 \cup \mathcal{G}_2$ and $(S, T) \in \mathcal{S} \times \mathcal{T}$, it is efficient to compute $g \star S$ and $g \star T$.
- **Efficient Rejection Sampling:** For all $g \in \mathcal{G}_1$, the intersection of all sets $\mathcal{G}_2 + g$ is large enough. Let $\mathcal{G}_3 = \bigcap_{g \in \mathcal{G}_1} \mathcal{G}_2 + g$, then $|\mathcal{G}_3| = \xi |\mathcal{G}_2|$.
- **Efficient Membership Testing:** It is efficient to verify that an element $z \in \mathcal{G}_1$, or $z \in \mathcal{G}_2$, or $z \in \mathcal{G}_3$.

- $(g \star S_0, g \star T_0) \approx (S, T)$, s.t. $g \xleftarrow{\$} \mathcal{G}_1, (S, T) \xleftarrow{\$} \mathcal{S} \times \mathcal{T}$ anonymity
- It is difficult to find $g, g' \in \mathcal{G}_2 + \mathcal{G}_3$, s.t. $g \star S_0 = g' \star S_0$ and $g \star T_0 \neq g' \star T_0$. tag-linkability
- Given $S = g \star S_0, T = g \star T_0$, it is hard to find $g' \in \mathcal{G}_2 + \mathcal{G}_3$, s.t. $T = g' \star T_0$ or $S = g' \star S_0$. exculpability

Construction — Idea

We introduce tag sets to build traceable ring signatures → validity and traceability

- A **general traceable ring signature scheme** is constructed based on OR sigma protocol and group action.
- Each user generates a **tag set** based on message.
- **Traceability** will be possible by checking whether each tag/vector in the two sets is equal.
- **Validity** will be ensured by adding the tag set to OR-proof.
- **Logarithmic signature size under** Isogeny-based and lattice-based Instantiation.

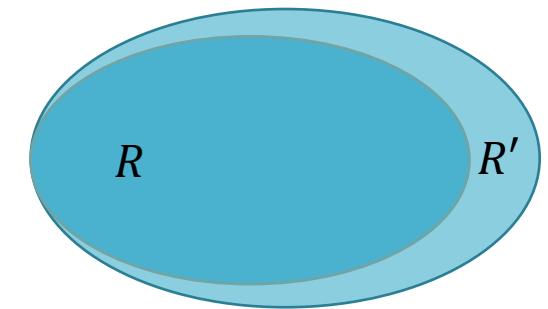
Construction — Definition of relation

- The relation $R \subset \mathcal{S}^{N+1} \times \mathcal{T}^{N+1} \times (\mathcal{G}_1, \mathbb{Z}_N)$

$$R = \{(S_0, S_1, \dots, S_N), (T_0, T_1, \dots, T_N), (g, \pi), \mid g \in \mathcal{G}_1, S_i \in \mathcal{S}, T_i \in \mathcal{T}, S_\pi = g \star S_0, T_\pi = g \star T_0\}$$

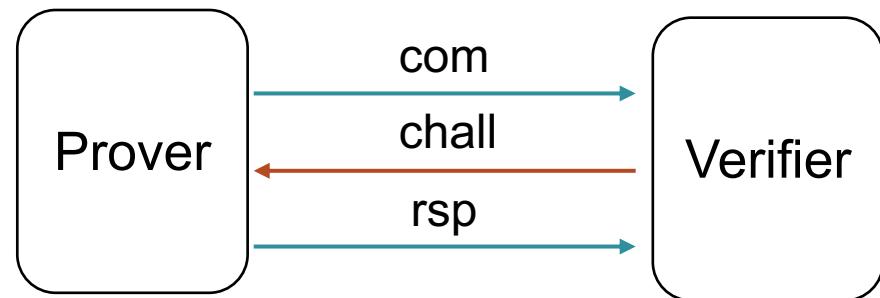
- The relation R' slightly wider than the relation R : $R \subseteq R'$

$$\left\{ (S_0, S_1, \dots, S_N), (T_0, T_1, \dots, T_N), w \mid \begin{array}{l} S_i \in \mathcal{S}, T_i \in \mathcal{T} \text{ and} \\ w = (g, \pi): g \in \mathcal{G}_1, S_\pi = g \star S_0 \\ T_\pi = g \star T_0 \text{ or} \\ w = (x, x'): x \neq x', H_2(x) = H_2(x') \end{array} \right\}$$



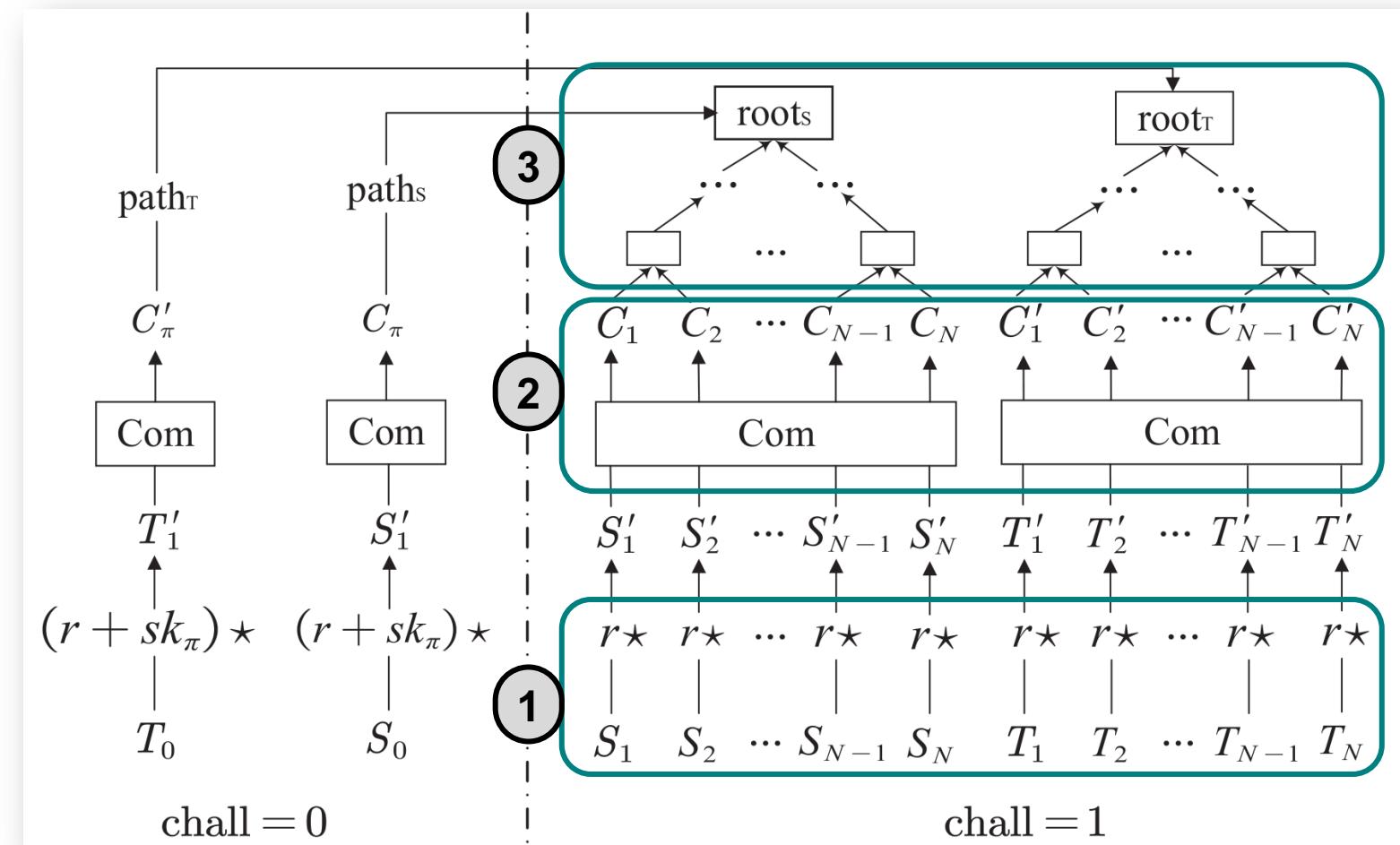
Under (R, R') , the OR sigma protocol is still useful as long as (R, R') is sufficiently difficult.

Construction — OR sigma protocol



● Commitment

1. Randomize rpk and TagSet
2. Create commitments C_i, C'_i
3. Create Merkle Tree
4. Create the final commitment

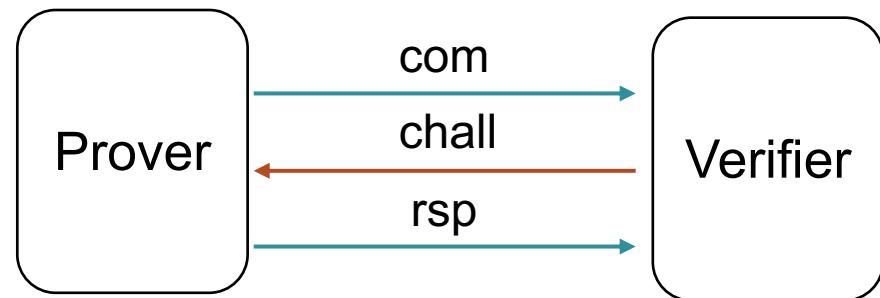
$$com \leftarrow H_2(root_S, root_T)$$


● Challenge

$$chall \leftarrow \{0,1\}$$

$$sk_\pi \star S_0 = S_\pi \text{ and } sk_\pi \star T_0 = T_\pi$$

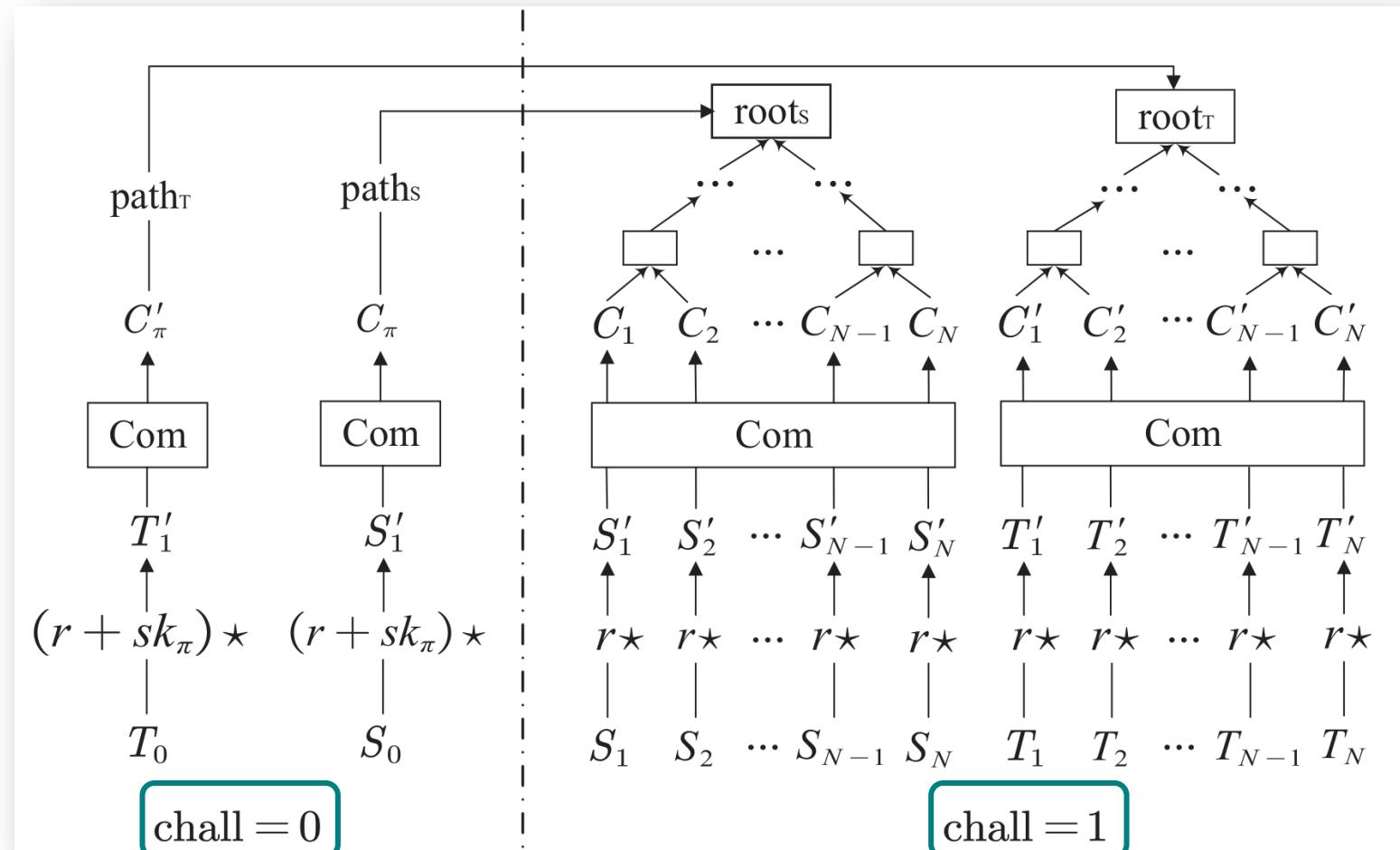
Construction — OR sigma protocol



● Response

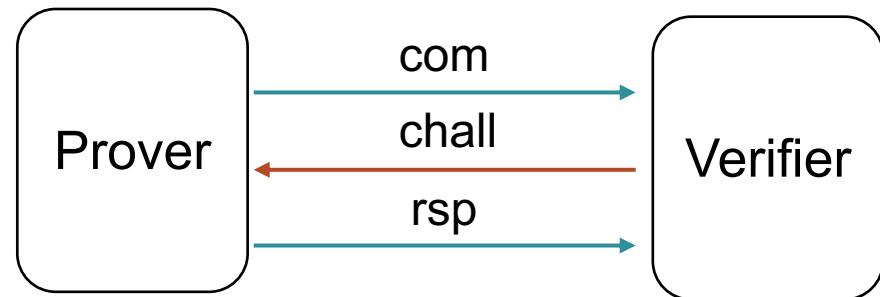
If $\text{chall}=0$: The commitments C_π and $C_{\pi'}$ will be revealed.

If $\text{chall}=1$: All commitments will be revealed.



$sk_\pi \star S_0 = S_\pi$ and $sk_\pi \star T_0 = T_\pi$

Construction — OR sigma protocol



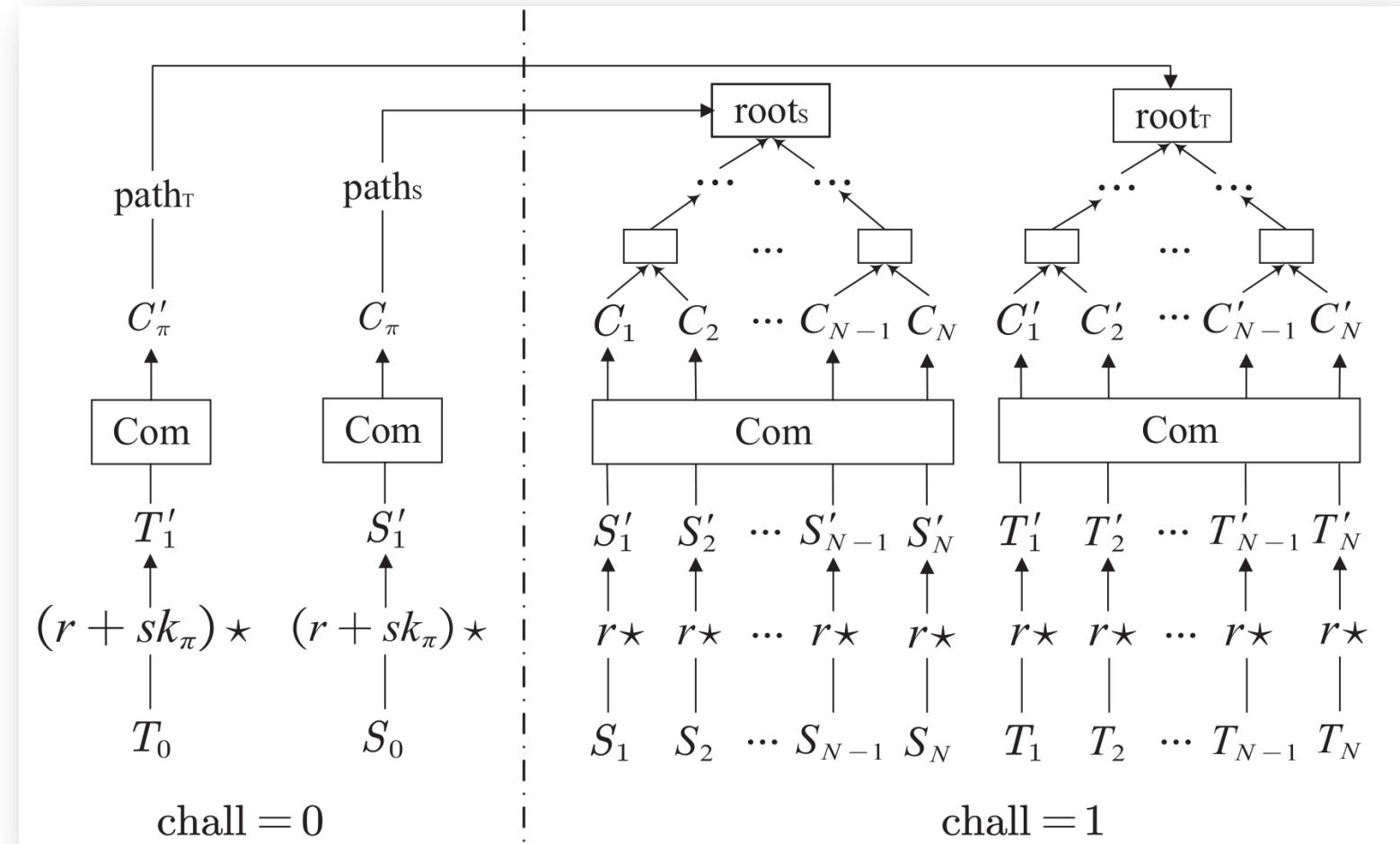
● Verification

If $\text{chall}=0$

1. Recovery root for rpk and TagSet from path_T and path_S
2. Verify the final commitment

If $\text{chall}=1$

1. Recovery root from all commitments
2. Verify the final commitment



$$sk_\pi \star S_0 = S_\pi \text{ and } sk_\pi \star T_0 = T_\pi$$

Construction — Isogeny-based TRS scheme

Generate Tag Set

RSign_ISO($(sk_\pi, \pi), L, M$)

1. $(issue, rpk) \leftarrow L$
2. $T_0 = \mathcal{H}_1(L) \star S_0, a = \mathcal{H}_1(L, M)$
3. $T = (sk_\pi - \mathcal{H}_1(a, \pi)) \star T_0$
4. **for** all $i \in N$
 - 5. $k = \mathcal{H}_1(a, i)$
 - 6. $T_i = k \star T$
7. $\text{TagSet} \leftarrow (T_0, T_1, \dots, T_N)$
8. $\text{com} \leftarrow P_{main}^1(M, rpk, \text{TagSet})$
9. $\text{chall} \leftarrow \mathcal{H}_3(M, rpk, \text{TagSet}, \text{com})$
10. $\text{rsp} \leftarrow P_{main}^2((sk_\pi, \pi), \text{chall})$
11. **return** $\sigma = (T, \text{com}, \text{chall}, \text{rsp})$.

RVer_ISO(L, M, σ)

1. $(issue, rpk) \leftarrow L$
2. $(T, \text{com}, \text{chall}, \text{rsp}) \leftarrow \sigma$
3. $T_0 = \mathcal{H}_1(L) \star S_0, a = \mathcal{H}_1(L, M)$
4. **for** all $i \in N$
 - 5. $k = \mathcal{H}_1(a, i)$
 - 6. $T_i = k \star T$
7. $\text{TagSet} \leftarrow (T_0, T_1, \dots, T_N)$
8. **if** $V_{main}^2(\text{com}, \text{chall}, \text{rsp}) = \text{accept}$
 $\wedge \mathcal{H}_3(M, rpk, \text{TagSet}, \text{com}) = \text{chall}$
 - 9. **return** accept.
 - 10. **else return** reject.

Recover two Tag Sets

RTtrace_ISO($L, M, \sigma, M', \sigma'$)

1. $(issue, rpk) \leftarrow L$
2. $(T, \text{com}, \text{chall}, \text{rsp}) \leftarrow \sigma$
3. $(T', \text{com}', \text{chall}', \text{rsp}') \leftarrow \sigma'$
4. $a = \mathcal{H}_1(L, M), a' = \mathcal{H}_1(L, M')$
5. **for** all $i \in N$
 - 6. $k = \mathcal{H}_1(a, i), k' = \mathcal{H}_1(a', i)$
 - 7. $T_i = k \star T, T'_i = k' \star T'$
8. **if** for all $i \in [N], T_i = T'_i$
 - 9. **return** linked.
10. **if** only exist one $i \in [N]$, such that $T_i = T'_i$
 - 11. **return** pk_i .
12. **else return** indep.

Add the tagSet to the OR-proof

$$H_1(a, \pi) \star ((sk_\pi - H_1(a, \pi)) \star T_0) = sk_\pi \star T_0 = T_\pi$$

Tracing the ring member π

Link /Trace two signatures

Construction — Lattice-based TRS scheme

Generate Tag Set

RSign_LAT($(sk_\pi, \pi), L, M$)

1. $(issue, rpk) \leftarrow L$
2. $T_0 = \mathcal{H}_4(L), a = \mathcal{H}_5(L, M)$
3. $T_\pi = sk_\pi \star T_0, aux = \frac{(T_\pi - a)}{\pi}$
4. **for** all $i \in N, i \neq \pi$
5. $k = a + aux \cdot i$
6. $T_i = k \star T_0$
7. $TagSet \leftarrow (T_0, T_1, \dots, T_N)$
8. $com \leftarrow P_{main}^1(M, rpk, TagSet)$
9. $chall \leftarrow \mathcal{H}_3(M, rpk, TagSet, com)$
10. $rsp \leftarrow P_{main}^2((sk_\pi, \pi), chall)$
11. **return** $\sigma = (aux, com, chall, rsp)$.

Add the tagSet to the OR-proof

$$\left(a + \frac{T_\pi - a}{\pi} \cdot \pi \right) = T_\pi$$

Tracing the ring member π

Recover two Tag Sets

RTrace_LAT($L, M, \sigma, M', \sigma'$)

1. $(issue, rpk) \leftarrow L$
2. $(aux, com, chall, rsp) \leftarrow \sigma$
3. $(aux', com', chall', rsp') \leftarrow \sigma'$
4. $a = \mathcal{H}_5(L, M), a' = \mathcal{H}_5(L, M')$
5. **for** all $i \in N$
6. $k_i = a + aux \cdot i$
7. $k'_i = a' + aux' \cdot i$
8. **if** for all $i \in [N], k_i = k'_i$
9. **return** linked.
10. **if** only exist one $i \in [N]$, such that $k_i = k'_i$
11. **return** pk_i .
12. **else return** indep.

Link /Trace two signatures

Analysis — Correctness

- **completeness**

completeness can be deduced from the correctness of the main OR sigma protocol.

The traceability of the scheme in all possible situations.

- Situation 1 ($\pi = \pi' \wedge M = M'$) Linked
- Situation 2 ($\pi = \pi' \wedge M \neq M'$) pk_π
- Situation 3 ($\pi \neq \pi'$) Indep

- **security**

If the OR sigma protocol is soundness and zero-knowledge, the hash function H_1, H_2 are collision-resistant, the ResPGA is a restricted pair of group actions, then our TRS scheme satisfies **tag-linkability, anonymity and exculpability**.

Analysis — Performance

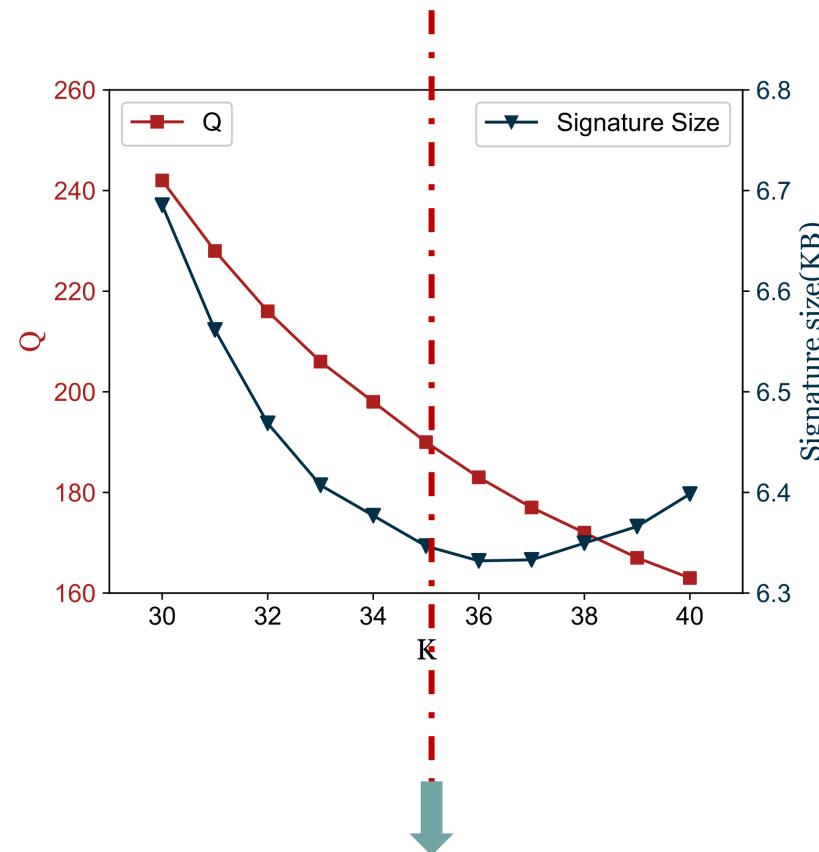
N			2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶
TRS_ISO	Time	KeyGen(ms)	39	39	39	39	39	39
		Sign(s)	3.37×10^1	6.63×10^1	1.31×10^2	2.64×10^2	5.23×10^2	1.07×10^3
		Verify(s)	3.20×10^1	6.02×10^1	1.16×10^2	2.31×10^2	4.64×10^2	9.22×10^2
	Size	Public Key(Byte)	64					
		Secret Key(Byte)	16					
		Signature(KB)	4.45	6.43	8.25	10.09	12.06	13.87
TRS_LAT (NIST 2)	Time	KeyGen(ms)	0.2	0.2	0.2	0.2	0.2	0.2
		Sign(ms)	68.5	101.3	131.4	230.8	390.3	764.0
		Verify(ms)	27.4	34.9	50.3	81.1	144.0	265.4
	Size	Public Key(Byte)	4096					
		Secret Key(Byte)	16					
		Signature(KB)	56.37	57.37	58.37	59.37	60.37	61.37

Analysis — Performance

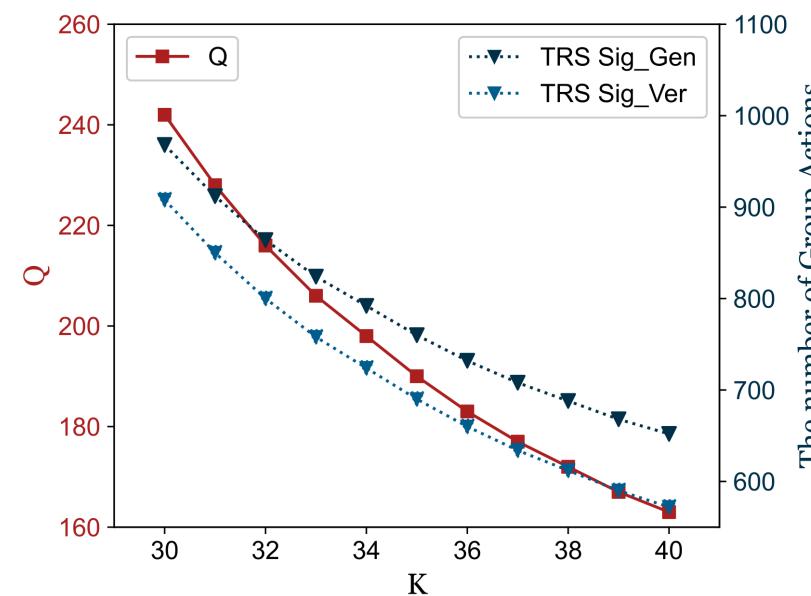
Schemes	Public key (KB)	Secret key (KB)	Signature size (KB)				Security Level	
			2^1	2^3	2^6	2^{10}		
Calamari[4]	64 (Byte)	16 (Byte)	3.5	5.4	8.2	10	*	
Beullens_ISO[3]	64 (Byte)	16 (Byte)	3.6	-	6.6	9.0	*	
Raptor[27]	0.9	9.1	2.6	11	82	1331.2	100bits	
Beullens_LAT[3]	5120 (Byte)	16 (Byte)	124	-	126	129	NIST 2	
Falafl[4]	5120 (Byte)	16 (Byte)	49	50	52	55	NIST 2	
Branco[6]	1577	0.5	-	1920	1536	245(MB)	NIST 5	
Alessandra[32]	6	4	4	16	131	1024	NIST 5	
Feng H[19]	-	-	135.1	136.3	138.2	140.7	NIST 5	
Esign[17]	≤ 8.33	≤ 0.83	-	-	774	1021	NIST 5	
this work	ISO	64 (Byte)	16 (Byte)	4.5	8.3	13.9	22.2	*
	LAT	4096 (Byte)	16 (Byte)	56.3	58.3	61.3	65.3	NIST 2
	LAT	6144 (Byte)	16 (Byte)	74.3	76.3	79.3	83.3	NIST 5

Analysis — Flexible

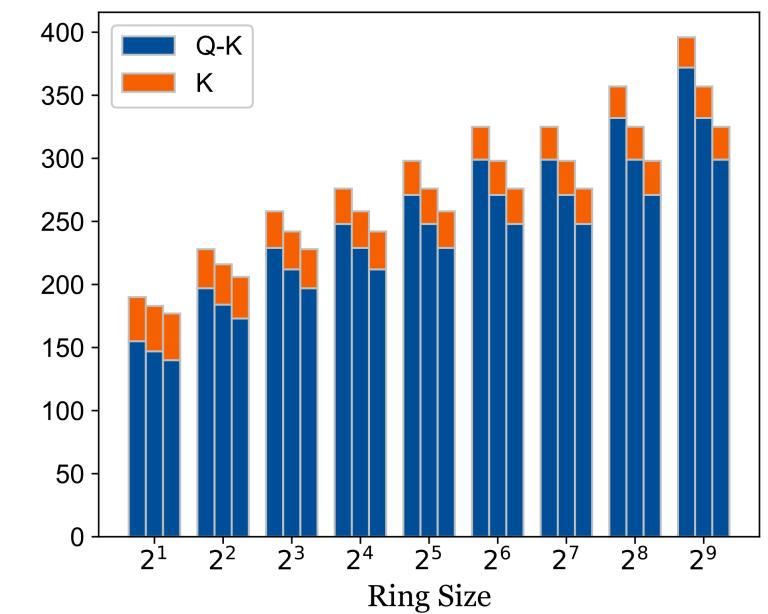
When $\binom{Q}{K} > 128$, the TRS scheme offers flexible customization of signature size and time for signature generation and verification.



the **minimum signature size** is obtained when **$K = 36$**



The **smaller** the value of Q is, the **less time** it takes for signature generation and verification.



three optimal (Q, K) pairs under different ring sizes

Conclusion

- A general traceable ring signature scheme is constructed.
- The first traceable ring signature scheme from isogeny is implemented.
- The signature size is logarithmic, the signature size and signing time are flexible.
- Futher topic:

Reducing the number of group actions to minimize computational costs and extending the technique to other signature schemes.

Thanks!

Q&A