
A Closer Look at the S-box: Deeper Analysis of
Round-Reduced ASCON-HASH

Xiaorui Yu1, Fukang Liu2,Gaoli Wang1, Siwei Sun3, Willi Meier4

1Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, Shanghai 200062, China

2Tokyo Institute of Technology, Tokyo, Japan
3School of Cryptology, University of Chinese Academy of Sciences, Beijing, China

4FHNW, Windisch, Switzerland

2023.8.16

1 / 30

Overview

1 Background
ASCON-HASH
Notations
Collision Attacks on ASCON-HASH

2 Our improvement
General 3-step attack strategy
Algebraic properties of the S-box
Improving the Attack

3 Conclusion and Future work

2 / 30

Lightweight Cryptography Standard

In 2013, NIST started the lightweight cryptography project.
In 2016, NIST provided an overview of the project and
decided to seek for some new algorithms as a lightweight
cryptography standard.
In 2019, NIST received 57 submissions and 56 of them
became the first round candidates after the initial review.
On February 7, 2023, NIST announced the selection of the
ASCON family for the lightweight cryptography
standardization.

3 / 30

ASCON-HASH

ASCON-HASH is one of the hash functions provided by
ASCON.
Sponge-based construction
320-bit state (r=64,c=256)
256-bit hash value

P
a

IV ||0c

⊕
P

a P
a P

a

M1

⊕

Ms H1
H⌈l/r⌉

Initialization Absorb Message Squeeze Phase

c c c c

4 / 30

Round Function of ASCON-HASH

■ Round function

S i fC−→ S i ,a fS−→ S i ,s fL−→ S i+1

Si[0]

Si[1]

Si[2]

Si[3]

Si[4]

fC

Si,a[0]

Si,a[1]

Si,a[2]

Si,a[3]

Si,a[4]

Si,s[0]

Si,s[1]

Si,s[2]

Si,s[3]

Si,s[4]

fSfC fL

Si+1[0]

Si+1[1]

Si+1[2]

Si+1[3]

Si+1[4]

S i ,a = S i [0]||S i [1]||S i [2]⊕ Ci ||S i [3]||S i [4]
S i ,s =S-box(S i ,a)
S i+1 =
Σ0(S i ,s [0])||Σ1(S i ,s [1])||Σ2(S i ,s [2])||Σ3(S i ,s [3])||Σ4(S i ,s [4])

5 / 30

S-box and Linear Diffusion of ASCON-HASH

5-bit S-box for each 5-bit column.

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0,
y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0,
y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,
y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0,
y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

5 independent linear functions for each line (64-bit word).

X0 ← Σ0(X0) = X0 ⊕ (X0 ≫ 19)⊕ (X0 ≫ 28),
X1 ← Σ1(X1) = X1 ⊕ (X1 ≫ 61)⊕ (X1 ≫ 39),
X2 ← Σ2(X2) = X2 ⊕ (X2 ≫ 1)⊕ (X2 ≫ 6),
X3 ← Σ3(X3) = X3 ⊕ (X3 ≫ 10)⊕ (X3 ≫ 17),
X4 ← Σ4(X4) = X4 ⊕ (X4 ≫ 7)⊕ (X4 ≫ 41).

6 / 30

Linear function and S-box

X1

X0

X2

X3

X4

Figure: S-box

X1

X0

X2

X3

X4

Figure: Linear Function

7 / 30

Notations

Table: Notations

r the length of the rate part for ASCON-HASH, r = 64
c the length of the capacity part for ASCON-HASH, c = 256
S i

j the input state of round i when absorbing the message block Mj
S i [j] the j-th word (64-bit) of Si
S i [j][k] the k-th bit of S i [j], k = 0 means the least significant bit and k is within modulo 64
xi the i-th bit of a 5-bit value x , x0 represents the most significant bit
M message
Mi the i-th block of the padded message
≫ right rotation (circular right shift)
a%b a mod b
0n a string of n zeroes

8 / 30

Collision Attacks on ASCON-HASH

Table: Summary of collision attacks on ASCON-HASH

Attack Type Rounds Time complexity Memory Complexity Reference

collision attack

2 2125* negligible 1

2 2103 negligible 2

2 262.6 negligible This paper.
3 2121.85 2121 3

4 2126.77 2126 3

* The characteristic used is invalid.

1Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision Attacks on Round-Reduced
GIMLI-HASH/ASCON-XOF/ASCON-HASH. Cryptology ePrint Archive, Paper 2019/1115.
https://eprint.iacr.org/2019/1115. 2019. url: https://eprint.iacr.org/2019/1115.

2David Gérault, Thomas Peyrin, and Quan Quan Tan. “Exploring Differential-Based Distinguishers and
Forgeries for ASCON”. In: IACR Trans. Symmetric Cryptol. 2021.3 (2021), pp. 102–136. doi:
10.46586/tosc.v2021.i3.102-136. url: https://doi.org/10.46586/tosc.v2021.i3.102-136.

3Lingyue Qin et al. Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-based Hashing Revisited.
Cryptology ePrint Archive, Paper 2023/518. https://eprint.iacr.org/2023/518. 2023. url:
https://eprint.iacr.org/2023/518.

9 / 30

https://eprint.iacr.org/2019/1115
https://eprint.iacr.org/2019/1115
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://eprint.iacr.org/2023/518
https://eprint.iacr.org/2023/518

Basic Attack Strategy for Sponge-based Hash Functions

■Requirements for differential characteristic:
For input difference, only non-zero difference in rate part.
For output difference, the same as above.
Active S-boxes should be as few as possible in the whole
characteristic.

10 / 30

General 2-step attack framework.

■Suppose that there are nc bit conditions on the capacity part of
S0

k and the remaining conditions hold with probability 2−nk .
Step1: Find a solution of (M1, . . . , Mk−1) such that the nc bit
conditions on the capacity part of S0

k can hold.
Step2: Exhaust Mk and check whether remaining nk bit
conditions can hold. If there is a solution, a collision is found.
Otherwise, return to Step 1.

P
a

IV ||0c

⊕
P

a P
a P

a

M1

⊕

Initialization Absorb Message

⊕

∆Mi = 0

Mk−1

S0

k

Mk

∆Mk �= 0

c c c

11 / 30

General 3-step attack strategy

■ Main idea: Further convert the nc conditions on the capacity
part of S0

k into some n1
c conditions on the capacity part of S0

k−1.

P
a

IV ||0c

⊕
P

a P
a P

a
P

a

M1

⊕

Initialization Absorb Message

⊕ ⊕

∆Mi = 0

Mk−1Mk−2

S0

k−1 S0

k

Mk

∆Mk−1 = 0 ∆Mk �= 0

c c c c

12 / 30

General 3-step attack strategy

Step 1: Find a solution of (M1, . . . , Mk−2) such that the n1
c

bit conditions on the capacity part of S0
k−1 can hold.

Step 2: Enumerate all the solutions of Mk−1 such that the
conditions on the capacity part of S0

k can hold.
Step 3: Exhaust Mk and check whether remaining nk bit
conditions can hold. If there is a solution, a collision is found.
Otherwise, return to Step 1.

P
a

IV ||0c

⊕
P

a P
a P

a
P

a

M1

⊕

Initialization Absorb Message

⊕ ⊕

∆Mi = 0

Mk−1Mk−2

S0

k−1 S0

k

Mk

∆Mk−1 = 0 ∆Mk �= 0

c c c c

13 / 30

Time complexity estimation

■ The time complexity of Step 1, 2 and 3 is denoted as Tpre1,
Tk-1 and Tk.

The general complexity estimation:

Ttotal = (k−2)·2nk+nc−2r ·Tpre1+2nk+nc−2r ·Tk-1+2nk−r ·Tk.

To optimize Tpre1 as Tpre1 = 2n′
c , we can improve this

complexity as below, where n′
c refers to the number of the

conditions on S0
k−1, converted from those n1

c conditions on S0
k .

Ttotal = (k − 2) · 2nk+nc+n′
c−2r + 2nk+nc−2r ·Tk-1 + 2nk−r ·Tk.

14 / 30

Algebraic properties of the S-box

■ With special input and output differences, we can get some
linear conditions from the ANF of the S-box.

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0,
y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0,
y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,
y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0,
y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

15 / 30

Algebraic properties of the S-box

Property 1 For an input difference (∆0, . . . , ∆4) satisfying
∆x1 = ∆x2 = ∆x3 = ∆x4 = 0 and ∆x0 = 1, the following
constraints hold:

For the output difference:
∆y0 ⊕∆y4 = 1,
∆y1 = ∆x0,
∆y2 = 0.

(1)

For the input value:{
x1 = ∆y0 ⊕ 1,
x3 ⊕ x4 = ∆y3 ⊕ 1.

(2)

16 / 30

Bit Conditions from Difference

Table: The 2-round differential characteristic.

∆S0 (2−54) ∆S1 (2−102) ∆S2

0xbb450325d90b1581 0x2201080000011080 0xbaf571d85e1153d7
0x0 0x2adf0c201225338a 0x0
0x0 0x0 0x0
0x0 0x0000000100408000 0x0
0x0 0x2adf0c211265b38a 0x0

■ Note:
Totally 4 message blocks will be used.
Totally 54 bit conditions on S0.
27 on S0[1] and 27 on S0[3]⊕ S0[4].

17 / 30

Bit conditions on S1

We further study the 28 active S-boxes in the second round. We
observe that from ∆S1 to ∆S1,s , there are only 3 different possible
difference transitions (∆x0, . . . , ∆x4)→ (∆y0, . . . , ∆y4) through
the S-box, as shown below:

(1, 1, 0, 0, 1) → (1, 0, 0, 0, 0),
(0, 0, 0, 1, 1) → (1, 0, 0, 0, 0),
(0, 1, 0, 0, 1) → (1, 0, 0, 0, 0).

18 / 30

Bit Conditions from Difference

Table: The 2-round differential characteristic.

∆S0 (2−54) ∆S1 (2−102) ∆S2

0xbb450325d90b1581 0x2201080000011080 0xbaf571d85e1153d7
0x0 0x2adf0c201225338a 0x0
0x0 0x0 0x0
0x0 0x0000000100408000 0x0
0x0 0x2adf0c211265b38a 0x0

■ Note:
Totally 102 bit conditions on S1.
21 on S1[2].

19 / 30

Algebraic properties of the S-box

■ Carefully, after the capacity part of S0
3 is fixed, S1[2] is

independent to S0[0] since

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1.

.
After calculation, there are 21 such conditions on S1[2].
So apart from the 54 linear conditions on the capacity part of
S0, it needs to add 21 nonlinear conditions on it.
As a result, the linear conditions on S1 reduced to 81.

20 / 30

Optimize Ehausting M3

Now we don’t need to exhaust message pairs (M3, M ′
3). With 81

linear conditions, we can establish 81 linear equations for M3.

S0

3 S1

3

conditions

S
0
3
[0] ← S

0
3
[0] ⊕ M3

linear euqations

f

21 / 30

Property 2

For (y0, . . . , y4) = SB(x0, . . . , x4), if x3 ⊕ x4 = 1, y3 will be
independent of x0.

Proof.
We can rewrite y3 as follows:

y3 = (x4 ⊕ x3 ⊕ 1)x0 ⊕ (x4 ⊕ x3 ⊕ x2 ⊕ x1).

Hence, if x3 ⊕ x4 = 1, y3 is independent of x0.

22 / 30

Property 3

Let

(S1[0], . . . , S1[4]) = f (S0[0], . . . , S0[4]),
(S2[0], . . . , S2[4]) = f (S1[0], . . . , S1[4]),

where (S0[1], S0[2], S0[3], S0[4]) are constants and S0[0] is the only
variable. Then, it is always possible to make u bits of S2[1] linear
in S0[0] by adding at most 9u bit conditions on S0[3]⊕ S0[4].

S0 S0,a S0,s S1 S1,a S1,s S2

linear

quadratic

constant

conditional bit

constant after adding conditions on S0[3]⊕ S0[4]

linear in S0[0]

fC fS fL fC fS fL

23 / 30

Property 4

Let

(S1[0], . . . , S1[4]) = f (S0[0], . . . , S0[4]),
(S2[0], . . . , S2[4]) = f (S1[0], . . . , S1[4]),

where (S0[1], S0[2], S0[3], S0[4]) are constants and S0[0] is the
only variable. Then, it is always possible to make u bits of S2[1]
linear in S0[0] by guessing 3u linear equations in S0[0].

S0 S0,a S0,s S1 S1,a S1,s S2

linear

quadratic

constant

guessed bits

linear in S0[0]

fC fS fL fC fS fL

24 / 30

The Framework of Improving the Attack

■ Assume that the capacity part of S0
2 is known.

1 Add 9u1 conditions on the capacity part of S0
2 =⇒ u1 bits of

S0
3 [1] can be linear in M2.

2 Guess 3u2 linear equations in M2 =⇒ u2 bits of S0
3 [1] can be

linear in M2.
3 Set up u1 + 4u2 linear equations in 64 variables to satisfy

u1 + u2 out of the original 27 bit conditions.
4 Apply Gaussian elimination on these u1 + 4u2 linear equations

and obtain
u3 = 64− u1 − 4u2

free variables.

25 / 30

Improve Exhausting M2

1 Guess 3u2 = 42 bits of M2 and construct 4u2 + u1 linear
equations.

2 Apply the Gaussian elimination to the system and obtain
u3 = 64− u1 − 4u2 free variables.

3 Construct 54− u1 − u2 quadratic equations in these u3
variables and solve the equations.

4 Check whether the remaining 21 quadratic conditions on the
capacity part of S0

3 can hold for each obtained solution.

26 / 30

The Optimal Guessing Strategy

Assume that one round of the ASCON permutation takes
about 15× 64 ≈ 210 bit operations
The optimal choice of (u1, u2, u3) is as follows:

u1 = 3, u2 = 13 u3 = 9.

The total time complexity can be estimated as

Ttotal = 228 × 227 + 228 × 256.6−11 + 217 × 219−11 ≈ 273.6

calls to the 2-round ASCON permutation.

27 / 30

Further Improving.

■ The core problem is to make

(S1
2 [3][i], S1

2 [3][i + 61], S1
2 [3][i + 39])

constant by either guessing their values or adding bit conditions on
S0

2 [3]⊕ S0
2 [4].

So for the same conditional bit, we can use a hybrid guessing
strategy.

28 / 30

Further Improving

Add u4 conditions on S0
2 [3]⊕ S0

2 [4] and guess u5 bits of S1
2 [3].

Set up u6 linear equations for u6 conditional bits of S2
2 [1].

We have in total u5 + u6 linear equations.
After the Gaussian elimination, we can set up 54− u6
quadratic equations in u7 = 64− u5 − u6 free variables.

Result: We propose to choose

u4 = 31, u5 = 28, u6 = 27

The new total time complexity is

Ttotal = 228×231+228×228×(217.6+215.3)×2−11+217×219−11 ≈ 262.6

hash function calls.

29 / 30

Conclusion and Future work

The attack complexity is reduced from 2103 to 262.6 hash
function calls.
The complexity of the attack is greatly related to the
differential characteristic.
Finding the better characteristic and make the time
complexity more practical will be token as our future work.
Studying more underlying properties of the round functions.

30 / 30

	Background
	ASCON-HASH
	Notations
	Collision Attacks on ASCON-HASH

	Our improvement
	General 3-step attack strategy
	Algebraic properties of the S-box
	Improving the Attack

	Conclusion and Future work

