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Lightweight Cryptography Standard

m In 2013, NIST started the lightweight cryptography project.

m In 2016, NIST provided an overview of the project and
decided to seek for some new algorithms as a lightweight
cryptography standard.

m In 2019, NIST received 57 submissions and 56 of them
became the first round candidates after the initial review.

m On February 7, 2023, NIST announced the selection of the
ASCON family for the lightweight cryptography
standardization.
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ASCON-HASH

ASCON-HASH is one of the hash functions provided by

ASCON.
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Round Function of ASCON-HASH

B Round function
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S-box and Linear Diffusion of ASCON-HASH

m 5-bit S-box for each 5-bit column.

Yo = Xax1 D X3 D x2x1 D X2 D x1x0 D x1 D X0,

Y1 = X4 D x3x2 D X3X1 © X3 D Xxo0x1 D X2 D X1 D Xo,
Y2 =x4x3 D x4 D x2 D x1 D1,

V3 = XaX0 D X4 D X3x0 D X3 D x20 D x1 D X0,

Ya = x4x1 D X4 D x3 B x1x0 D Xx1.

m 5 independent linear functions for each line (64-bit word).

Xo <— Zo(Xo)
X1 < Zl(Xl)
Xg — Z2(X2)
(X3)
(Xa)

Xo @ (Xo > 19) & (Xo > 28),
X1 P (Xl > 61) D (Xl > 39),
Xo @ (X2 > 1) D (X2 > 6),
X3 @ (X3 > 10) D (X3 > 17),
Xs @ (X4 > 7) &) (X4 > 41)

X3 (—Zg, X3
X4 — 24 X4
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Figure: Linear Function



Notations

Table: Notations

r the length of the rate part for ASCON-HASH, r = 64

c the length of the capacity part for ASCON-HASH, ¢ = 256

j the input state of round i when absorbing the message block M;

S the j-th word (64-bit) of S;

S[jl[k] | the k-th bit of S7[j], k = 0 means the least significant bit and k is within modulo 64

X; the j-th bit of a 5-bit value x, xp represents the most significant bit
M message

M; the i-th block of the padded message

> right rotation (circular right shift)

a%b a mod b

0" a string of n zeroes
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Collision Attacks on ASCON-HASH

Table: Summary of collision attacks on ASCON-HASH

Attack Type ‘ Rounds ‘ Time complexity ‘ Memory Complexity ‘ Reference

2 2125% negligible 1

2 2103 negligible 2
collision attack 2 2626 negligible This paper.

3 9121.85 9121 3

4 9126.77 9126 3

* The characteristic used is invalid.

LRui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision Attacks on Round-Reduced
GIMLI-HASH/ASCON-XOF/ASCON-HASH. Cryptology ePrint Archive, Paper 2019/1115
https://eprint.iacr.org/2019/1115. 2019. URL: https://eprint.iacr.org/2019/1115.

2David Gérault, Thomas Peyrin, and Quan Quan Tan. “Exploring Differential-Based Distinguishers and
Forgeries for ASCON". In: JACR Trans. Symmetric Cryptol. 2021.3 (2021), pp. 102-136. DOI
10.46586/tosc.v2021.13.102-136. URL: https://doi.org/10.46586/tosc.v2021.13.102-136.

3Lingyue Qin et al. Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-based Hashing Revisited.
Cryptology ePrint Archive, Paper 2023/518. https://eprint.iacr.org/2023/518. 2023. URL:
https://eprint.iacr.org/2023/518.
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Basic Attack Strategy for Sponge-based Hash Functions

BRequirements for differential characteristic:
m For input difference, only non-zero difference in rate part.
m For output difference, the same as above.

m Active S-boxes should be as few as possible in the whole
characteristic.
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General 2-step attack framework.

BSuppose that there are n. bit conditions on the capacity part of
S? and the remaining conditions hold with probability 2.

m Stepl: Find a solution of (M, ..., Mk_1) such that the n. bit
conditions on the capacity part of 52 can hold.

m Step2: Exhaust My and check whether remaining nj bit
conditions can hold. If there is a solution, a collision is found.
Otherwise, return to Step 1.

AM; =0 AM,;, £ 0

My M;
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General 3-step attack strategy

B Main idea: Further convert the n. conditions on the capacity
part of S? into some nl conditions on the capacity part of S ;.

AM; =0 AM1 =0 AM;#0
M,y Mo My M,
% &
I c | P° c c | P c | P*
ISe_y S9
1vi|o°
Initialization Absorb Message
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General 3-step attack strategy

m Step 1: Find a solution of (M, ..., M_5) such that the nl
bit conditions on the capacity part of 5,9_1 can hold.

m Step 2: Enumerate all the solutions of Mj_1 such that the
conditions on the capacity part of 52 can hold.

m Step 3: Exhaust M, and check whether remaining ny bit
conditions can hold. If there is a solution, a collision is found.
Otherwise, return to Step 1.

AM, =0 AMp =0 AM,#0

My My M,

M,
$
C

pe

Iv||o°
Initialization Absorb Message
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Time complexity estimation

B The time complexity of Step 1, 2 and 3 is denoted as Tpre1,
Tk_1 and Tk.
m The general complexity estimation:

Teotal = (k_2)'2nk+n672r' Toret 4-2Mkne=2r, Ty-1+2" " Ty.

m To optimize Tyret as Tprer = 2M we can improve this
complexity as below, where n’. refers to the number of the

conditions on 5271, converted from those ni conditions on 5,9.

Teotar = (k—2)- DMt netne=2r + 2Mtne=2r, Tuoq + 277 Ty
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Algebraic properties of the S-box

B With special input and output differences, we can get some
linear conditions from the ANF of the S-box.

Yo = Xax1 D x3 D xox1 D X2 D x1x0 D x1 D Xo,

Y1 = Xa S x3x2 D X3x1 D X3 B Xox1 D X2 S X1 D X,
V=x13DxX3Dx2Dx1 D1,

Y3 = XaXo D X4 D X3X0 D x3 B X2 D x1 D Xp,

Ya = XsX1 D xq4 D X3 D X1X0 D Xx1.
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Algebraic properties of the S-box

Property 1 For an input difference (A, ..., As) satisfying
Ax; = Axp = Axzs = Axg = 0 and Axg = 1, the following
constraints hold:

m For the output difference:

AYO D A_y4 = 17
Ayl - AX07 (]‘)
Ay, = 0.
m For the input value:
X1 = A)/O @ 17 (2)
x3Pxg =Ayz D 1.
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Bit Conditions from Difference

Table: The 2-round differential characteristic.

ASY (2755 AST (27102 AS?
0xbb450325d90b1581 | 0x2201080000011080 | 0xbaf571d85e1153d7
0x0 0x2adf0c201225338a | 0x0
0x0 0x0 0x0
0x0 0x0000000100408000 | 0x0
0x0 0x2adf0c211265b38a | 0x0

B Note:

m Totally 4 message blocks will be used.
m Totally 54 bit conditions on S°.
m 27 on S°[1] and 27 on S°[3] @ S°[4].
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Bit conditions on St

We further study the 28 active S-boxes in the second round. We
observe that from AS! to AS'*, there are only 3 different possible
difference transitions (Axg, ..., Axs) — (Ayo, ..., Ays) through
the S-box, as shown below:

(1,1,0,0,1) — (1,0,0,0,0),
(0,0,0,1,1) — (1,0,0,0,0),
(0,1,0,0,1) — (1,0,0,0,0).
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Bit Conditions from Difference

Table: The 2-round differential characteristic.

Aso (2—54) ASl (2—102) A52
0xbb450325d90b1581 | 0x2201080000011080 | 0xbaf571d85e1153d7
0x0 0x2adf0c201225338a | 0x0
0x0 0x0 0x0
0x0 0x0000000100408000 | 0x0
0x0 0x2adf0c211265b38a | 0x0

B Note:

m Totally 102 bit conditions on S*.

= 21 on S1[2).
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Algebraic properties of the S-box

B Carefully, after the capacity part of Sg is fixed, S'[2] is
independent to S°[0] since

Y2 =x4x3Dxa Dxo®x1 1.

m After calculation, there are 21 such conditions on S![2].

m So apart from the 54 linear conditions on the capacity part of
S9, it needs to add 21 nonlinear conditions on it.

m As a result, the linear conditions on S! reduced to 81.
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Optimize Ehausting M;

Now we don't need to exhaust message pairs (M3, M5). With 81
linear conditions, we can establish 81 linear equations for Mjs.
S3 S5

0 0
59[0] « S9[0] & Mg

——»| conditions

\/

linear eugations
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Property 2

For (yo,...,ya) = SB(x0,...,xa), if x3® xa =1, y3 will be
independent of xp.

We can rewrite y3 as follows:

y3=(xa ®x3D 1)x0 B (xa D x3 B x2 B x1).

Hence, if x3 ® x4 = 1, y3 is independent of xp. ]
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Property 3

Let
(S0], ..., St[4]) = F(S°[0],..., S°[4]),
(S2[0],...,S%[4]) = f(S[0],..., S*[4]),

where (S°[1], S°[2], S°[3], S°[4]) are constants and S°[0] is the only

variable. Then, it is always possible to make v bits of S2[1] linear
in S°[0] by adding at most 9u bit conditions on S°[3] @ S°[4].

S0 o GOss st gl gl 52
fe fs fi fe s W n
— — — — — —
LI L ””l”” | | | | | |
T TTTTTTTT
l:l linear ‘ conditional bit
l:l quadratic ‘ constant after adding conditions on S°[3] @ S°[4]
:] constant ‘ linear in S°[0]
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Property 4

Let
(S'0], ..., S'[4]) = £(S°[0],. .., S°[4]),
(52[0],...,S?[4]) = f(S'[0],..., S'[4]),

where (S9[1], S°[2], S°[3], S°[4]) are constants and S°[0] is the
only variable. Then, it is always possible to make u bits of S2[1]
linear in S°[0] by guessing 3u linear equations in S°[0].

50 g0a G0 51 gla gls 52
fe fs fu fe s IR £ [
— — — — — —
[ 11
l:l linear
l:l quadratic ‘ guessed bits
:] constant ‘ linear in S°[0]
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The Framework of Improving the Attack

B Assume that the capacity part of S is known.

Add 9u; conditions on the capacity part of S§ = u; bits of
S9[1] can be linear in M.

Guess 3up linear equations in M, = uy bits of 53[1] can be
linear in M.

Set up uy + 4us linear equations in 64 variables to satisfy
u1 + up out of the original 27 bit conditions.

Apply Gaussian elimination on these u; + 4uy linear equations
and obtain
uz3 =64 —up —4up

free variables.
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Improve Exhausting M,

Guess 3ur, = 42 bits of M> and construct 4us + uq linear
equations.

Apply the Gaussian elimination to the system and obtain
uz = 64 — u; — 4uy free variables.

Construct 54 — u; — up quadratic equations in these u3
variables and solve the equations.

Check whether the remaining 21 quadratic conditions on the
capacity part of S§ can hold for each obtained solution.
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The Optimal Guessing Strategy

m Assume that one round of the ASCON permutation takes
about 15 x 64 ~ 210 bit operations

m The optimal choice of (u1, up, u3) is as follows:
vy =3, w=13 wu3=09.
m The total time complexity can be estimated as
Toorar = 228 x 227 4 028 5 956:6-11 | 917 | 519-11 . 9736

calls to the 2-round ASCON permutation.
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Further Improving.

B The core problem is to make
(5231011, S2[3]17 + 61], S [3][i + 39])

constant by either guessing their values or adding bit conditions on
S313] @ S3[4].

So for the same conditional bit, we can use a hybrid guessing
strategy.
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Further Improving

m Add us conditions on S9[3] & S9[4] and guess us bits of S3[3].
m Set up ug linear equations for ug conditional bits of S3[1].
m We have in total us + ug linear equations.

m After the Gaussian elimination, we can set up 54 — ug
quadratic equations in u7; = 64 — us — ug free variables.

Result: We propose to choose
ug =31, us =28, ug=27
The new total time complexity is
Tootar = 228 x 23140285028, (217:6 1 915.3) =11 917 91911 -, 2626

hash function calls.
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Conclusion and Future work

m The attack complexity is reduced from 2103 to 2626 hash
function calls.

m The complexity of the attack is greatly related to the
differential characteristic.

m Finding the better characteristic and make the time
complexity more practical will be token as our future work.

m Studying more underlying properties of the round functions.
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