Quantum algorithms

David Jao

August 14, 2023

UNIVERSITY OF
WATERLOO

Basic principles

Uncertainty principle: There is no way to determine a quantum state without measuring it. Quantum superposition: Prior to measurement, all possible potential outcomes of the measurement are valid. (Schrödinger's cat!)
Quantum entanglement: In an entangled pair, measuring one object constrains the possible states for the other object. (The second object's unmeasured state must be consistent with the first object's measurement.)

Quantum states

Definition

A quantum state is a line through the origin in a complex Hilbert space. (We usually normalize quantum states to have unit norm.)

Example

Consider \mathbb{C}^{2} with basis $\{|0\rangle,|1\rangle\}$. Then, as quantum states,

$$
\begin{aligned}
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) & =-\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& \neq \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

Measurement

Measuring a quantum state $v=\sum c_{i} b_{i}$ with respect to an orthonormal basis $\left\{b_{1}, \ldots, b_{n}\right\}$ yields b_{i} with probability $\left|c_{i}\right|^{2}$.

Example

Suppose $v=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.

- Measuring v with respect to $\{|0\rangle,|1\rangle\}$ yields either $|0\rangle$ or $|1\rangle$, with probability $\frac{1}{2}$ for each.
- Measuring v with respect to $\left\{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right\}$ always yields $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.

Tensor products

We denote tensor products using concatenation, e.g.

$$
\begin{aligned}
|0\rangle \otimes|0\rangle \otimes|0\rangle & =|0\rangle|0\rangle|0\rangle=|0,0,0\rangle=|000\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}=\mathbb{C}^{8} \\
|0\rangle \otimes|0\rangle \otimes|1\rangle & =|0\rangle|0\rangle|1\rangle=|0,0,1\rangle=|001\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}=\mathbb{C}^{8} \\
& \vdots \\
|1\rangle \otimes|1\rangle \otimes|1\rangle & =|1\rangle|1\rangle|1\rangle=|1,1,1\rangle=|111\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}=\mathbb{C}^{8}
\end{aligned}
$$

By abuse of notation, we write $|0\rangle=|000\rangle,|1\rangle=|001\rangle,|2\rangle=|010\rangle$, etc.

Quantum computation

Quantum computers operate on entangled particles ("qubits").

- On classical computers, a logic bit is either 0 or 1 .
- On quantum computers, a qubit is simultaneously 0 and 1 .
- A set of n qubits ranges simultaneously from 0 to $2^{n}-1$.

Therefore, for any function f :

- On a classical computer, computing $f(0), f(1), \ldots f\left(2^{n}-1\right)$ requires 2^{n} operations.
- On a quantum computer, computing $f(0), f(1), \ldots f\left(2^{n}-1\right)$ simultaneously requires one operation:

$$
\sum_{i=0}^{2^{n}-1}|i\rangle \rightarrow \sum_{i=0}^{2^{n}-1}|i\rangle|f(i)\rangle
$$

- Unfortunately, extracting the results of the computation requires a measurement, which yields only one (random) output.

Quantum computation

The allowed operations on quantum states are unitary operators. In particular, all such operations are invertible, or reversible.

Example

Let $f: \mathbb{Z} / 2^{n} \rightarrow \mathbb{Z} / 2^{n}$ be a function. We can evaluate f on quantum states as follows (ignoring normalization):

$$
\sum_{i=0}^{2^{n}-1}|i\rangle|0\rangle \mapsto \sum_{i=0}^{2^{n}-1}|i\rangle|f(i)\rangle
$$

- This operation is reversible - we retain the input values i.
- $|i\rangle$ and $|f(i)\rangle$ are entangled. Measuring one of them constrains the other.
- For example if we measure $|i\rangle$ and obtain $|5\rangle$, then $|f(i)\rangle$ must equal $|f(5)\rangle$ - even though it was not measured.

Quantum algorithms

The most important quantum algorithms:
Grover's algorithm: Inverts any function $f:\{0,1\}^{n} \rightarrow A$ in $2^{n / 2}$ quantum operations.
Shor's algorithm: Factors integers and finds discrete logarithms in a polynomial number of quantum operations.

Grover's algorithm

Grover's algorithm slightly affects the security of symmetric-key cryptosystems:

- Brute-force attack against a k-bit key requires $O\left(2^{k / 2}\right)$ quantum operations.
- Collisions in k-bit hash functions require $O\left(2^{k / 3}\right)$ quantum operations.
- Attack applies to symmetric-key encryption schemes, MAC schemes, and hash functions.
- Generally, doubling the key length restores security.

Shor's algorithm

Shor's algorithm breaks most public-key cryptosystems in use today, including:

- RSA
- Diffie-Hellman
- Elgamal
- DSA/ECDSA/EdDSA

Shor's algorithm

To factor an integer N :
(1. Choose Q such that $N^{2} \leq 2^{Q} \leq 2 N^{2}$ (usually Q is unique).
(2) Choose $x \in \mathbb{Z}_{N}^{*}$. Let ord (x) denote the period of $j \mapsto x^{j}$.
(0) Compute the quantum state

$$
\frac{1}{\sqrt{2^{Q}}} \sum_{j=0}^{2^{Q}-1}|j\rangle\left|x^{j} \bmod N\right\rangle
$$

- Measure the second register, and discard the result.
(0) Apply the quantum Fourier transform.
(0) Measure the first register. Let z denote its value.
- Then $z / 2^{Q}$ is very very very close to $c / \operatorname{ord}(x)$ for some c.
(Use continued fractions to find $c / \operatorname{ord}(x)$, and hence ord (x).
- Factor N.

Example (Credit: Srinivasan Arunachalam)

Suppose we want to factor $N=21$.

1. Choose Q such that $N^{2} \leq 2^{Q} \leq 2 N^{2}(Q=9)$.
2. Choose $x \in \mathbb{Z}_{N}^{*}($ say $x=2)$.
3. Compute the quantum state

$$
\frac{1}{\sqrt{512}} \sum_{j=0}^{511}|j\rangle|0\rangle \mapsto \frac{1}{\sqrt{512}} \sum_{j=0}^{511}|j\rangle\left|2^{j} \bmod N\right\rangle
$$

4. Measure the second register. Suppose we get $|2\rangle$. The quantum state is now

$$
\frac{1}{\sqrt{86}}(|1\rangle+|7\rangle+\ldots+|505\rangle+\ldots)|2\rangle=\frac{1}{\sqrt{86}} \sum_{k=0}^{85}|6 k+1\rangle|2\rangle
$$

5. Apply the quantum Fourier transform.

$$
\begin{gathered}
\left(\frac{1}{\sqrt{86}} \sum_{k=0}^{85}|6 k+1\rangle|2\rangle\right) \stackrel{\text { QFT }}{\mapsto} \frac{1}{\sqrt{512}} \sum_{j=0}^{511}\left(\frac{1}{\sqrt{86}} \sum_{a=0}^{85} e^{\frac{-2 \pi i j(6 a+1)}{512}}|j\rangle\right)|2\rangle \\
\operatorname{Prob}(j)=\frac{1}{512 \times 86}\left|\sum_{a=0}^{85} e^{-2 \pi i \frac{6 j a}{512}}\right|^{2}
\end{gathered}
$$

The DFT plots the frequencies which occur in the input distribution.

Obtaining ord (x)

6. Measure the first register. Suppose we get $|85\rangle$. (The peaks are at $0,85,171,256,341$, and 427.)
7. $\frac{85}{512}$ is very close to $\frac{c}{r}$ for some $r=$ ord $2 \ll 2^{Q}=512$.
8. Use continued fractions to find ord(2).

$$
\frac{85}{512}=\frac{1}{6+\frac{1}{42+\frac{1}{2}}} \approx \frac{1}{6}
$$

Hence $\operatorname{ord}(2)=6$. We verify that $2^{6} \equiv 1(\bmod 21)$.

Completing the factorization

9. $\operatorname{ord}(x)$ is usually very close to $\phi(n)=(p-1)(q-1)$. (If not, try again with another x.)

For $n=21$, we have $\phi(n)=12$ and $\operatorname{ord}(x)=6$. (In general, $\phi(n) / \operatorname{ord}(x)$ is a small integer k.)

Since $\phi(n) \approx n$, we can guess the value of k.
Given $\operatorname{ord}(x)$ and $k=\phi(n) / \operatorname{ord}(x)$, we can find $\phi(n)$.
Given $\phi(n)=(p-1)(q-1)$ and $n=p q$, solve for p and q.

Factorization and the hidden subgroup problem

Definition

Given a group G and a subgroup $H \subset G$, we say a function $f: G \rightarrow X$ hides H if for all $g_{1}, g_{2} \in G$,

$$
f\left(g_{1}\right)=f\left(g_{2}\right) \Longleftrightarrow g_{1} H=g_{2} H .
$$

The hidden subgroup problem is to find a generating set for H given f.

Example

For $N \in \mathbb{Z}$ and $x \in \mathbb{Z}_{N}^{*}$, the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{N}$ defined by $f(j)=x^{j} \bmod N$ hides $H=r \mathbb{Z}$, where $r=\operatorname{ord}(x)$.

Quantum algorithms for hidden subgroup problems

Shor's algorithm solves not only the integer factorization problem, but also the hidden subgroup problem in any abelian group.

Finding isogenies in CRS/CSIDH amounts to a hidden subgroup problem in a dihedral group:
(1) Express the complex multiplication operation $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$ as a group action of $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$.
(2) Express the group action inverse problem in $\mathrm{Cl}\left(O_{D}\right)$ as a hidden subgroup problem in the dihedral group $\mathrm{Cl}\left(O_{D}\right) \rtimes \mathbb{Z} / 2$.
Kuperberg's algorithm (arXiv:quant-ph/0302112) solves the dihedral hidden subgroup problem (and hence breaks CRS/CSIDH) in quantum subexponential time.

See also "The dihedral hidden subgroup problem", Imin Chen and David Sun, arXiv:2106.09907.

From isogenies to hidden subgroups

- For a finite abelian group G, let $G \times X \rightarrow X$ be any free and transitive group action. (Example: $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$)
- We wish to compute group action inverses: Given $x_{0}, x_{1} \in X$, find $\gamma \in G$ such that $\gamma x_{1}=x_{0}$.
- Let $\phi: \mathbb{Z} / 2 \rightarrow \operatorname{Aut}(G)$ be given by $\phi(b)(g)=g^{(-1)^{b}}$.
- Consider the function $f: G \rtimes_{\phi} \mathbb{Z} / 2 \rightarrow X, f(g, b)=g x_{b}$.
- Since the group action is free, we have

$$
\begin{array}{r}
f\left(g_{1}, b_{1}\right)=f\left(g_{2}, b_{2}\right) \Longleftrightarrow b_{1}=0, b_{2}=1, \text { and } g_{1}^{-1} g_{2}=\gamma \\
\\
\text { or } b_{1}=1, b_{2}=0, \text { and } g_{2}^{-1} g_{1}=\gamma
\end{array}
$$

Hence f hides the subgroup $\{(0,0),(\gamma, 1)\} \subset G \rtimes_{\phi} \mathbb{Z} / 2$.

- If we solve the hidden subgroup problem for f, then we will have found γ.

Dihedral hidden subgroup problem

- For simplicity, suppose $G=\mathbb{Z} / N$ and $D_{N}=\mathbb{Z} / N \rtimes \mathbb{Z} / 2$.
- Suppose f hides the subgroup $H=\{(0,0),(\gamma, 1)\} \subset D_{N}$.
- Form the state

$$
\frac{1}{\sqrt{\left|D_{N}\right|}} \sum_{d \in D_{N}}|d\rangle|f(d)\rangle
$$

- Measure the second register to obtain

$$
\frac{1}{\sqrt{|(z, 0) H|}} \sum_{d \in(z, 0) H}|d\rangle=\frac{1}{\sqrt{2}}(|(z, 0)\rangle+|(z+\gamma, 1)\rangle
$$

in the first register, for some random coset $(z, 0) H$. By abuse of notation, denote this "coset state" by $|(z, 0) H\rangle$.

- We can generate lots of these coset states, for random cosets. (We have no control over which cosets we obtain.)

Quantum Fourier transform

- Apply the quantum Fourier transform to the first coordinate:

$$
\begin{aligned}
|(z, 0) H\rangle & =\frac{1}{\sqrt{2}}(|(z, 0)\rangle+|(z+\gamma, 1)\rangle) \\
& \stackrel{\text { QFT }}{\mapsto} \frac{1}{\sqrt{2 N}} \sum_{k \in \mathbb{Z}_{N}}\left(\zeta_{N}^{k z}|(k, 0)\rangle+\zeta_{N}^{k(z+\gamma)}|(k, 1)\rangle\right) \\
& =\frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_{N}} \zeta_{N}^{k z}|k\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\zeta_{N}^{k \gamma}|1\rangle\right)
\end{aligned}
$$

- Measure the first register to obtain $|k\rangle$ for some k. The second register is

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+\zeta_{N}^{k \gamma}|1\rangle\right)
$$

Denote this quantum state by $\left|\psi_{k}\right\rangle$. We can generate lots of these states for random k, with no control over k (but we do know what k is for each such quantum state).

Overall strategy

We now assume for (further!) simplicity that N is a power of 2 . The strategy is as follows:

- If we could construct

$$
\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\zeta_{N}^{k \gamma}|1\rangle\right)
$$

for k of our choice, then (for example) we could find $\left|\psi_{N / 2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{\gamma}|1\rangle\right)$.

- Measure $\left|\psi_{N / 2}\right\rangle$ w.r.t. $\left\{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right\}$ to obtain the least significant bit of γ.
- Reduce to $D_{N / 2}$ and use induction to find γ.

Combining states

We can exert limited control over $\left|\psi_{k}\right\rangle$ by combining states:

$$
\begin{aligned}
\left|\psi_{p}, \psi_{q}\right\rangle & =\frac{1}{2}\left(|0,0\rangle+\zeta_{N}^{p \gamma}|1,0\rangle+\zeta_{N}^{q \gamma}|0,1\rangle+\zeta_{N}^{(p+q) \gamma}|1,1\rangle\right. \\
\stackrel{\text { CNOT }}{\mapsto} & \frac{1}{2}\left(|0,0\rangle+\zeta_{N}^{p \gamma}|1,1\rangle+\zeta_{N}^{q \gamma}|0,1\rangle+\zeta_{N}^{(p+q) \gamma}|1,0\rangle\right. \\
& =\frac{1}{\sqrt{2}}\left(\left|\psi_{p+q}, 0\right\rangle+\zeta_{N}^{q \gamma}\left|\psi_{p-q}, 1\right\rangle\right)
\end{aligned}
$$

We now measure the second register.

- If we get $|0\rangle$, then the first register is $\left|\psi_{p+q}\right\rangle$.
- If we get $|1\rangle$, then the first register is $\zeta_{N}^{q \gamma}\left|\psi_{p-q}\right\rangle=\left|\psi_{p-q}\right\rangle$.

We can't control which of $\left|\psi_{p \pm q}\right\rangle$ we get, but we know which one we got.

Kuperberg sieve

(1) Create $A \approx 4^{\sqrt{\log N}}$ quantum states ψ_{k}, for random $k \in \mathbb{Z}_{N}$.
(2) Group the quantum states into buckets according to their last $\sqrt{\log N}$ bits (least significant bits). On average each bucket has $A / 2^{\sqrt{\log N}}$ quantum states and there are $2^{\sqrt{\log N}}$ buckets.
(Combine pairs of states in each bucket, with the goal of zeroing out the last $\sqrt{\log N}$ bits.

- On average, combining states succeeds half the time.
- If successful, we destroy two states and create one new state.
- If unsuccessful, we lose two states and create nothing.
- On average, we have $1 / 4$ as many states as we had before.
(We get $A / 4$ quantum states, whose last $\sqrt{\log N}$ bits are zero.
(0) Repeat this bucket sorting process on the next $\sqrt{\log N}$ bits, to obtain $A / 4^{2}$ quantum states, whose last $2 \sqrt{\log N}$ bits are zero.
(0 ... Eventually we obtain $A / 4 \sqrt{\log N} \approx 1$ quantum states, with all but the most significant bit zero.

